
Pattern Recognition 107 (2020) 107501 

Contents lists available at ScienceDirect 

Pattern Recognition 

journal homepage: www.elsevier.com/locate/patcog 

Handling incomplete heterogeneous data using VAEs 

Alfredo Nazábal a , ∗, Pablo M. Olmos b , Zoubin Ghahramani c , d , Isabel Valera 

e , f 

a The Alan Turing Institute, London, United Kingdom 

b University Carlos III, Madrid, Spain 
c University of Cambridge, Cambridge, United Kingdom 

d Uber AI Labs, San Francisco, US 
e Max Planck Institute for Intelligent Systems, Tübingen, Germany 
f Department of Computer Science, Saarland University, Saarbrücken, Germany 

a r t i c l e i n f o 

Article history: 

Received 25 March 2019 

Revised 23 March 2020 

Accepted 12 June 2020 

Available online 13 June 2020 

Keywords: 

Generative models 

Variational autoencoders 

Incomplete heterogenous data 

a b s t r a c t 

Variational autoencoders (VAEs), as well as other generative models, have been shown to be efficient and 

accurate for capturing the latent structure of vast amounts of complex high-dimensional data. However, 

existing VAEs can still not directly handle data that are heterogenous (mixed continuous and discrete) or 

incomplete (with missing data at random), which is indeed common in real-world applications. 

In this paper, we propose a general framework to design VAEs suitable for fitting incomplete heteroge- 

nous data. The proposed HI-VAE includes likelihood models for real-valued, positive real valued, interval, 

categorical, ordinal and count data, and allows accurate estimation (and potentially imputation) of miss- 

ing data. Furthermore, HI-VAE presents competitive predictive performance in supervised tasks, outper- 

forming supervised models when trained on incomplete data. 

© 2020 Elsevier Ltd. All rights reserved. 
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Data are usually organized and stored in databases, which are

ften large, heterogenous, noisy, and incomplete. For example, an

nline shopping platform has access to heterogenous and incom-

lete information of its users, such as their age, gender, orders,

ish lists, etc. Similarly, Electronic Health Records of hospitals

ight contain different lab measurements, diagnoses and genomic

nformation about their patients. Learning generative models that

ccurately capture the distribution, and therefore the underlying

atent structure, of such incomplete and heterogeneous datasets

ay allow us to better understand the data, estimate missing or

orrupted values, detect outliers, and make predictions (e.g., on pa-

ients’ diagnosis) on unseen data [1] . 

Deep generative models have been recently proved to be highly

exible and expressive unsupervised methods, able to capture

he latent structure of complex high-dimensional data. They effi-

iently emulate complex distributions from large high-dimensional

atasets, generating new data points similar to the original real-

orld data, after training is completed [2–4] . So far, the main fo-

us in the literature is to enrich the prior or posterior of explicit

enerative models such as variational autoencoders (VAEs); or to
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ropose alternative training objectives to the log-likelihood, lead-

ng to implicit generative models such as, e.g., generative adversar-

al networks (GANs) [5] . Indeed, we are witnessing a race between

n ever-growing spectrum of VAE models, e.g., VAE with a Vamp-

rior [6] , Output Interpretable VAEs [7] , DVAE++ [8] , Shape Vari-

tional Autoencoder [9] and GAN-style objective functions (f-GAN

10] , DR-GAN [11] , Wasserstein GANs [12] , MMD-GAN [13] , Gated-

AN [14] , AdaGAN [15] , feature-matching GAN [16] , etc.). While all

hese approaches compete to generate the most realistic images or

eadable text, the deployment of such models to solve practically-

elevant problems in arbitrary datasets, which are often incomplete

nd heterogenous [17] , is being overlooked. In the following, we

iscuss these problems in more detail and why we believe our pa-

er is relevant to data-scientists interested in exploiting the deep

enerative model pipeline in the data wrangling process. We pro-

ide with practical tools to handle both missing and heterogeneous

ata with little supervision from the user, who merely has to indi-

ate the data type model of each attribute and the position of the

issing data. 

Currently deep generative models focus on highly-structured

omogeneous data collections including, e.g., images [18,19] , text

20] , video [21–23] or speech [24] , which are characterized by

trong statistical dependencies between pixels or words. The dom-

nant existing approach to account for heterogenous data follows

 deep domain-alignment approach [25–27] , designed to discover
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relations between two unpaired unlabelled datasets rather than

modelling their joint distribution using a probabilistic generative

model [28–30] . Surprisingly, not much attention has been paid to

describing how deep generative models can be designed to ef-

fectively learn the distribution of less structured, heterogeneous

datasets. In these datasets there is no clear notion of correlation

among the different attributes (or dimensions) to be exploited by

weight sharing using convolutional or recurrent neural networks.

As we show in this paper, preventing a few dimensions of the

data dominating the training is a crucial aspect to effectively de-

ploy deep generative models suitable for heterogeneous data. 

Similarly, there is no clear discussion in the current literature

on how to incorporate missing data during the training of deep

generative models. Existing approaches consider either complete

data during training [31] , or assume incomplete information only

in one of the dimensions of the data, which corresponds to the one

they aim to predict (e.g., the label in a classification task) [32,33] .

However, both approaches are not realistic enough, since it might

be crucial for the performance of an unsupervised model to use all

the available information during training. Recently, [34] proposed

a GAN approach, named as GAIN, to input missing data, where the

generator completes the missing values given the observed ones,

and the discriminator aims to distinguish between true and im-

puted values. However, this approach can only handle continuous

or binary data, and it is not easily generalizable to heterogeneous

data. As a consequence, strategies to effectively train deep gener-

ative models on incomplete and heterogeneous datasets are still

required. 

In this work, we present a general framework for VAEs that ef-

fectively incorporates incomplete data and heterogenous observa-

tions. Our design presents the following features: 

i) a generative model that handles mixed numerical (continu-

ous real-valued and positive real-valued, as well as discrete

count data) and nominal (categorical and ordinal data) like-

lihood models, which we parametrize using deep neural net-

works (DNNs); 

ii) a stable recognition model that handles Missing Data Com-

pletely at Random (MCAR) without increasing its complexity or

promoting overfitting; 

ii) a data-normalization input/output layer that prevents a few di-

mensions of the data dominating the training of the VAE, im-

proving also the training convergence; and 

v) an ELBO (Evidence Lower Bound), used to optimize the param-

eters of both the generative and the recognition models, that is

computed only on the observed data, regardless of the pattern

of missing data. 

The resulting VAE is a fully unsupervised model which allows

us not only to accurately solve unsupervised tasks, such as den-

sity estimation or missing data completion, but also supervised

tasks (e.g., classification or regression) with incomplete input data.

We provide the reader with specific guidelines to design VAEs for

real-world data, which are compatible with modern effort s in the

design of VAEs and implicit models (GANs), mainly oriented to

prevent the mode-dropping effect [12,35] . Our empirical results

show that our proposal outperforms competitors, including the re-

cent GAIN [34] , on a heterogenous data completion task, and pro-

vides comparable accuracy in classification tasks to deep super-

vised methods–which cannot handle missing values in the input

data, therefore, requiring imputing missing inputs in the data. 

1. Problem statement 

We define a heterogeneous dataset as a collection of N objects,

where each object is defined by D attributes and these attributes

correspond to either numerical (continuous or discrete) or nominal
ariables. We denote each object in the dataset as a D -dimensional

ector x n = [ x n 1 , . . . , x nD ] , where each attribute x nd corresponds to

ne of the following data types: 

• Numerical variables: 

1. Real-valued data, which takes values in the real line, i.e.,

x nd ∈ R . 

2. Positive real-valued data, which takes values in the positive

real line, i.e., x nd ∈ R 

+ . 
3. (Discrete) count data, which takes values in the natural

numbers, i.e., x nd ∈ { 1 , . . . , ∞} . 
• Nominal variables: 

1. Categorical data, which takes values in a finite unordered

set, e.g., x nd ∈ {‘blue’, ‘red’, ‘black’}. 

2. Ordinal data, which takes values in a finite ordered set, e.g.,

x nd ∈ {‘never’, ‘sometimes’, ‘often’, ‘usually’, ‘always’}. 

Additionally, we consider that a random set of entries in the

ata is incomplete, under the MCAR assumption [36] , such that

ach object x n can potentially correspond to any combination of

bserved and missing attributes. Let O n ( M n ) be the index set

f observed (missing) attributes for the n th data point, where

 n ∩ M n = ∅ . Also, let x o n ( x m 

n ) represent the sliced x vector, in-

luding only the elements indexed by O n ( M n ). Fig. 1 (a) shows an

xample of an incomplete heterogenous dataset, where we observe

hat the different attributes (or dimensions) in the data correspond

o different types of numerical and nominal variables, and missing

alues appear ubiquitously across the data. 

Diverging from common trends in the deep generative commu-

ity, we consider databases that do not contain highly-structured

omogeneous data, but instead each observed object is a set of

calar mixed numerical and nominal attributes, being the correla-

ions between attributes (the underlying structure), in many cases,

eak. Since the dimensionality of these datasets can be relatively

mall (compared to images for instance), we need to carefully de-

ign the generative model to avoid overfitting on the observed

ata, while keeping the model flexible enough to incorporate both

eterogeneous data types and random patterns of missing data. 

. Generalizing VAEs for heterogeneous and incomplete data 

In this section, we show how to extend the vanilla VAE intro-

uced in [2] to handle incomplete and heterogeneous data. 

.1. Handling incomplete data 

In a standard VAE, missing data affect both the generative (de-

oder) and the recognition (encoder) models. The ELBO is defined

ver the complete data, and it is not straightforward to decouple

he missing entries from rest of the data, particularly when these

ntries appear completely at random in the dataset. To this end,

e first propose to use the following factorization for the decoder

 Fig. 1 (b)): 

p(x n , z n ) = p(z n ) 
∏ 

d 

p(x nd | z n ) , (1)

here z n ∈ R 

K is the latent K -dimensional vector representation of

he object x n , and p(z n ) = N (z n | 0 , I K ) . This factorization makes it

asy to marginalize out the missing attributes for each object from

he variational ELBO. We parametrize the likelihood p ( x nd | z n ) with

he set of parameters γnd = h d (z n ) , where h d ( z n ) is a DNN that

ransforms the latent variable z n into the likelihood parameters

nd . 

Note that the above factorization of the likelihood allows us to

eparate the contributions of the observed data x o n from the miss-

ng data x m 

n as 

p(x n | z n ) = 

∏ 

d∈ O n 
p(x nd | z n ) 

∏ 

d∈ M n 

p(x nd | z n ) . (2)
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Fig. 1. (a) Example of incomplete heterogenous data. Panel (b) shows our generative model, where every dimension in the observation vector x n = [ x n 1 , . . . , x nD ] corresponds 

to either a numerical or nominal variable, and therefore, the likelihood parameters of each dimension d are independently provided by an independent DNN h d . Additionally, 

panel (c) shows our recognition model to infer the missing data x m n from observed data x o n . 
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The recognition model, graphically represented in Fig. 1 (c), also

eeds to account for incomplete data, such that the distribution of

he latent variable z n only depends on the observed attributes x o n ,

.e., 

 (z n , x 

m 

n | x 

o 
n ) = q (z n | x 

o 
n ) 

∏ 

d∈ M n 

p(x nd | z n ) . (3)

Given the above generative and recognition models, described

espectively by (1) and (3) , the ELBO of the marginal likelihood

computed only on the observed data X 

o ) can be written as 

og p(X 

o ) = 

N ∑ 

n =1 

log p(x 

o 
n ) = 

N ∑ 

n =1 

log 

∫ 
p(x 

o 
n , x 

m 

n , z n ) d z n d x 

m 

n 

≥
N ∑ 

n =1 

E q (z n | x o n ) 

[ ∑ 

d∈ O n 
log p(x nd | z n ) 

] 

−
N ∑ 

n =1 

KL ( q (z n | x 

o 
n ) || p(z n ) ) , (4) 

here the first term of the ELBO corresponds to the reconstruction

erm of ( only ) the observed data X 

o , and the Kullback-Liebler (KL)

ivergence in the second term penalizes any deviation of the pos-

erior q (z n | x o n ) from the prior p ( z n ). Note that the KL divergence

an be computed in closed-form [2] . 

ecognition models for incomplete data. 

We need an encoder that is flexible enough to handle any com-

ination of observed and missing attributes. To this end, we pro-

ose an input drop-out recognition distribution whose parameters

re the output of a DNN with input ˜ x n , such that 

 (z n | x 

o 
n ) = N 

(
z n | μq ( ̃ x n ) , �q ( ̃ x n ) 

)
, (5) 

here the input ˜ x n is a D -length vector that resembles the orig-

nal observed vector x n but the missing dimensions are replaced

y zeros, and μq ( ̃ x n ) and �q ( ̃ x n ) are parametrized DNNs with in-

ut ˜ x n whose output determine the mean and the diagonal covari-

nce matrix of (5) . In order to make sure that the missing inputs

o not affect to the output of the encoder (nor to the learning of

ts parameters), we need to ensure that the contribution of the

issing attributes to the encoder outputs and the evaluation of

he derivatives with respect to the network parameters of μq ( ̃ x n )

nd �q ( ̃ x n ) is zero. To this end, we rely on multilayer perceptron

eural network architectures, where the output of every neuron is

 non-linear transformation of a (linear) weighted sum of the in-

uts, and thus the output (and its derivative) does not depend on

he zero entries. 

An alternative approach, proposed in [37] , consists of exploiting

he properties of Gaussian distributions in the linear factor analysis

ase [38] and extending them to non-linear models, designing a
actorized recognition model: 

 (z n | x 

o 
n ) = p(z n ) 

∏ 

d∈ O n 
q (z n | x nd ) , 

here q (z n | x nd ) = N ( z n | μd (x nd ) , �d (x nd )) , and therefore,

 (z n | x o n ) = N 

(
z n | μq (x o n ) , �q (x o n ) 

)
with 

−1 
q (x 

o 
n ) = I K + 

∑ 

d∈ O n 
�−1 

d (x nd ) , (6)

μq (x 

o 
n ) = �q (x 

o 
n ) 

( ∑ 

d∈ O n 
μd (x nd ) �

−1 
d (x nd ) 

) 

. (7)

ote that, in contrast to our input drop-out recognition model, in

his case we need to train an independent DNN per attribute d ,

hich might not only result in a higher computational cost, as well

s in overfitting, but it also loses the ability of DNNs to amortize

he inference of the parameters across attributes, and therefore,

cross different missing data patterns. 

emark. This VAE for incomplete data can readily be used to esti-

ate the missing values in the data as follows 

p(x 

m 

n | x 

o 
n ) ≈

∫ 
p(x 

m 

n | z n ) q (z n | x 

o 
n ) dz n (8)

he KL term in (4) , promotes a missing-data recognition model

hat does not rely on the observed attributes, i.e., p(x m 

n | x o n ) ≈
 

p(x m 

n | z n ) N (z n | 0 , I K ) dz n . In those cases where the KL term

n (4) tends to dominate the ELBO, we can modify the probabilistic

odel to favour richer structures in the posterior distribution by

eplacing the independent Gaussian prior with a more structured

istribution such as a mixture model. We discuss this approach in

ore detail in Section 3 . 

.2. Handling heterogenous data 

Standard applications of VAEs consider homogeneous data (e.g.,

mages) where all the observed attributes (pixels) share the like-

ihood function (e.g., a Gaussian or a Bernoulli distribution [2] )

hose parameters are often jointly modeled by a single NN (e.g.,

 convolutional DNN). In contrast, our setting assumes that every

ttribute in the data may correspond to one of the numerical or

ominal data types introduced in Section 1 , and thus it requires an

ppropriate likelihood function. Assuming the factorized decoder

n (1) , we can easily accommodate a variety of likelihood func-

ions, one per input attribute, where an independent DNN, h d ( · ),

s used to determine the parameters γnd of every likelihood model

p(x nd | z n ) = p(x nd | γnd = h d (z n )) , as shown in Fig. 1 (b). Next, we

efine suitable likelihood functions to model the numerical and

ominal data types introduced in Section 1 , and show how to pa-

ameterize these likelihood functions using DNNs. We remark, that
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while here we have selected common choice likelihood functions

as showcase examples – e.g., log-Normal, ordinal logit-function and

Poisson distributions to respectively model positive real-valued, or-

dinal categorical nominal, and count variables –, other distribu-

tions, such as the Gamma distribution for positive real data or the

negative binomial distribution for count data, could alternatively

be used. 

1. Real-valued data. For real-valued data, we assume a Gaus-

sian likelihood model, i.e., 

p(x nd | γnd ) = N 

(
x nd | μd (z n ) , σ

2 
d (z n ) 

)
, (9)

with γnd = { μd (z n ) , σ 2 
d 
(z n ) } , where the mean μd ( z n ) and the vari-

ance σ 2 
d 
(z n ) are computed as the outputs of DNNs with input z n . 

2. Positive real-valued data. For positive real-valued data, we

assume a log-normal likelihood model, i.e., 

p(x nd | γnd ) = log N 

(
x nd | μd (z n ) , σ

2 
d (z n ) 

)
, (10)

with γnd = { μd (z n ) , σ 2 
d 
(z n ) } , where the likelihood parameters

μd ( z n ) and σ 2 
d 
(z n ) (which corresponds to the mean and variance

of the variable’s natural logarithm) are the outputs of DNNs with

input z n . 

3. Count data. For count data x nd ∈ { 0 , 1 , 2 , . . . , ∞} , we assume

a Poisson likelihood model, i.e, 

p(x nd | γnd ) = Poiss ( x nd | λd (z n ) ) = 

(λd (z n )) x nd exp (−λd (z n )) 

x nd ! 
, 

(11)

with γnd = λd (z n ) , where the mean parameter of the Poisson dis-

tribution corresponds to the output of a DNN. 

4. Categorical data. For categorical data, codified us-

ing one-hot encoding, we assume a multinomial logit

model such that the R -dimensional output of a DNN

γnd = { h d0 (z n ) , h d1 (z n ) , . . . , h d(R −1) (z n ) } represents the vector

of unnormalized probabilities, such that the probability of every

category is given by 

p(x nd = r| γnd ) = 

exp (−h dr (z n )) ∑ R 
q =1 exp (−h dq (z n )) 

. (12)

To ensure identifiability, we fix the value of h d 0 ( z n ) to zero. 

5. Ordinal data. For ordinal data, codified using thermome-

ter encoding, 1 we assume the ordinal logit model [39] , where the

probability of each (ordinal) category can be computed as 

p(x nd = r| γnd ) = p(x nd ≤ r| γnd ) − p(x nd ≤ r − 1 | γnd ) , (13)

with 

p(x nd ≤ r| z n ) = 

1 

1 + exp (−(θr (z n ) − h d (z n ))) 
. (14)

Here, the thresholds θ r ( z n ) divide the real line into R regions and

h d ( z n ) indicates the region (category) in which x nd falls. Therefore,

the likelihood parameters are γnd = { h d (z n ) , θ1 (z n ) . . . , θR −1 (z n ) } ,
which we model as the output of a DNN. To guarantee that

θ1 (z n ) < θ2 (z n ) < . . . < θR −1 (z n ) , we apply a cumulative sum func-

tion to the R − 1 positive real-valued outputs of the network. 

Moreover, for all the likelihood parameters which need to be

positive, we use the softplus function f (x ) = log (1 + exp (x )) . 

Remark. The caveat of the generative model in Fig. 1 is that we

are losing the ability of deep neural networks to capture correla-

tions among data attributes by amortizing the parameters, since

we are learning a different network to link the latent variable z
1 As an example, in an ordinal variable with three categories the lowest value is 

encoded as “100”, the middle value as “110” and the highest value as “111”. 

b

c

o each particular attribute by modeling the parameters of a cer-

ain observation model p ( x d | z ). An alternative would be to use

he approach in [40] , where categorical one-hot encoded variables

re approximated by continuous variables using jitter noise (uni-

orm on [0,1]). When all attributes are assumed to be continu-

us, we could use a single network to map z to the parameters

mean and covariance) of a D -dimensional Gaussian distribution.

owever, this approach does not allow a combination of differ-

nt likelihood models or distinguish categorical and ordinal data.

n Section 3 , we show how to solve this limitation by using a hier-

rchical model. 

Handling heterogenous data ranges. Apart from different

ypes of attributes, heterogeneous datasets commonly contain nu-

erical attributes whose values correspond to completely differ-

nt domains. For example, a dataset may contain the height of

ifferent individuals with values in the order of 1 . 5 − 2 . 0 meters,

nd also their income, which might reach tens or even hundreds

housands of dollars per year. In order to learn the parameters of

oth the generative and the reconstruction models in Fig. 1 , one

ight rely on stochastic gradient descent using at every iteration a

inibatch estimate of the ELBO in (4) . 2 However, the heterogenous

ature of the data and these differences of value ranges between

ontinuous variables result in broadly different likelihood param-

ters (e.g., the mean of the height is much lower than the mean

f the income), leading in practice to heterogenous (and poten-

ially unstable) gradient evaluations. To avoid the gradient evalu-

tions of the ELBO being dominated by a subset of attributes, we

pply a batch normalization layer at the input of the reconstruction

odel for the numerical variables, and we apply the complemen-

ary batch denormalization at the output layer of the generative

odel to denormalize the likelihood parameters. 

In particular, for real-valued variables, we shift and scale the

nput data to the recognition model to ensure that the normal-

zed minibatch has zero mean and variance equal to one. These

hift and scale normalization parameters, μ′ and σ ′ , are afterwards

sed to denormalize the likelihood parameters of the Gaussian dis-

ribution, i.e., x nd ∼ N 

(
x nd | σ ′ μd (z n ) + μ′ , σ ′ 2 σ2 

d 
(z n ) 

)
. For positive

eal-valued variables, for which a log-Normal model is used, we

pply the same batch normalization at the encoder and denormal-

zation at the decoder used for real-valued variables, but to the

atural logarithm of the data, instead of directly to the data. We

ote that count variables are not batch denormalized at the de-

oder, but a normalized log ( · ) transformation is used to feed the

ecognition network. With this batch normalization and denormal-

zation layers at respectively the recognition and the generative

odels, we do not only enforce more stable evaluations (free of

umerical errors) of the gradients, but we also speed-up the con-

ergence of the optimization. 

. The heterogeneous-incomplete VAE (HI-VAE) 

In the previous section, we have introduced a simple VAE ar-

hitecture that handles incomplete and heterogeneous data. How-

ver, this approach might be too restrictive to capture complex

nd high-dimensional data. More specifically, we have assumed a

tandard Gaussian prior on the latent variables z n , which might

e too restrictive based on the literature [6] and may be particu-

arly problematic when the final goal is to estimate missing values

n unstructured datasets (refer to the discussion under (8) ). Simi-

arly, we have assumed a generative model that fully factorizes for

very (heterogenous) dimension in the data, losing the properties
2 Although here we use the standard ELBO for VAEs, tighter log-likelihood lower 

ound, such as the one proposed in the importance weight encoder (IWAE) in [41] , 

ould also be applied. 
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Table 1 

HI-VAE probabilistic model. 

Generative p(x n , z n , s n ) = p(s n ) p(z n | s n ) ∏ 

d p(x nd | γnd = h d (y nd , s n )) , where 

where Y n = [ y n 1 , . . . , y nD ] = g (z n ) 

p(s n ) = Categorical (s n | π) , p(z n | s n ) = N (z n | μp (s n ) , I K ) 

Recognition q (s n , z n , x 
m 
n | x o n ) = q (s n | x o n ) q (z n | x o n , s n ) 

∏ 

d∈ M n 
p(x nd | z n , s n ) , 

where q (s n | x o n ) = Categorical (s n | π( ̃ x n )) 

q (z n | x o n , s n ) = N (z n | μq ( ̃ x n , s n ) , �q ( ̃ x n , s n )) 

ELBO log p(X o ) ≥ ∑ N 
n =1 

(
E q (s n , z n | x o n ) 

[∑ 

d∈ O n log p(x nd | z n , s n ) 
])

− ∑ N 
n =1 E q (s n | x o n ) [ KL ( q (z n | x o n , s n ) || p(z n | s n ) ) ] 

− ∑ N 
n =1 KL ( q (s n | x o n ) || p(s n ) ) 

Likelihoods Real-valued data (Normal): γnd = { μd (y nd , s n ) , σ
2 
d 
(s n ) } 

Positive real-valued data (log-Normal): γnd = { μd (y nd , s n ) , σ
2 
d 
(s n ) } 

Count data (Poisson): γnd = λd (y nd , s n ) 

Categorical (Mult. logit): γnd = { h d0 (y nd , s n ) , . . . , h d(R −1) (y nd , s n ) } 
Ordinal (Ordinal logit): γnd = { h d (y nd , s n ) , θ1 (s n ) . . . , θR −1 (s n ) } 
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Fig. 2. Graphical models for the generative and recognition models of the HI-VAE. 
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f an amortized generative model where the different dimensions

hare the weights of a common DNN capturing the relationships

etween attributes (as CNNs capture correlations between pixels

n an image). In this section, we overcome these limitations of the

odel discussed in the previous section and remark that the mod-

ls proposed in this paper are, in fact, compatible with the current

evelopments in VAE literature. 

In order to prevent the KL term in (4) from dominating the

LBO, thus penalizing rich posterior distributions for z n , we can

mpose structure in the latent variable representation z n through

ts prior distribution. We propose a Gaussian mixture prior p ( z n )

42] , such that 

p(s n ) = Categorical (s n | π) (15)

p(z n | s n ) = N (z n | μp (s n ) , I K ) , (16)

here s n is a one-hot encoding vector representing the component

n the mixture, i.e., the mean of the Gaussian component that gen-

rates z n . For simplicity, we assume a uniform Gaussian mixture

ith π� = 1 /L for all � . 

Moreover, to allow the model to more accurately capture the

tatistical dependencies among heterogeneous attributes, we pro-

ose a hierarchical structure that allows different attributes to

hare network parameters (i.e., to amortize the generative model).

ore specifically, we introduce an intermediate homogenous rep-

esentation of the data Y = [ y n 1 , . . . , y nD ] , which is jointly gener-

ted by a single DNN with input z n , g ( z n ). Then, the likelihood pa-

ameters of each attribute d are the output of an independent DNN

ith inputs y nd and s n , such that p(x nd | γnd = h d (y nd , s n )) . Note

hat, in this hierarchical structure, the top level (from z n to Y n )

aptures statistical dependencies among the attributes through the

hared DNN g ( z n ), while the bottom level in the hierarchy (from Y n 

nd s n to x n ) accounts for heterogeneous likelihood models using

 independent DNNs h d ( y nd , s n ). The resulting generative model,

hat is hereafter referred to as Heterogeneous-Incomplete VAE (HI-

AE), is shown in Fig. 2 and is formulated as indicated in Table 1 ,

hich also shows how we parametrize in the HI-VAE the different

ikelihood models provided in Section 2.2 . 3 

Regarding the recognition network ( Fig. 2 b) q (s n | x o n ) is a cate-

orical distribution with a parameter vector π given by the output

f a DNN with input ˜ x n and a soft-max output function. Then, a

oncatenation of both s n and 

˜ x n is used to construct the moments

f the Gaussian q (z n | x o n , s n ) posterior distribution via two indepen-

ent NNs. Finally, to enforce that the model captures all correla-

ions using the hidden variables s n and z n , in the recognition net-

ork we assume that the posterior distribution of the missing at-

ributes x m 

n is conditionally independent on the observed attributes
3 Other likelihood functions (e.g., a Gamma distribution) and data types (e.g., in- 

erval data using e.g., a Beta distribution) can be readily be incorporated. 

5

 

p  
 

o 
n , given s n and z n . Hence, our variational distribution (or, equiva-

ently, our recognition model) factorizes as: 

 (s n , z n , x 

m 

n | x 

o 
n ) = q (s n | x 

o 
n ) q (z n | x 

o 
n , s n ) 

∏ 

d∈ M n 

p(x nd | z n , s n ) . 

y combining the HI-VAE generative model and the proposed

ecognition network, we derive the expression for ELBO in Table 1 ,

here the Gumbel-softmax reparameterization trick [42] is used to

raw differentiable samples from q (s n , z n | x o n ) . 

. Experiments 

In this section, we first evaluate the performance of the HI-VAE

t solving a missing data imputation task in heterogeneous data,

omparing it to other methods in the literature. Then, we focus on

 classification task, where we evaluate the classification degrada-

ion due to performing mean imputation for the missing data in

upervised models compared to using the fully generative HI-VAE,

hich does not require data imputation. The models and datasets

mployed in the experiments can be found in the following public

epository https://github.com/probabilistic- learning/HI- VAE . 

.1. Missing data imputation 

In our first experiment, we evaluate the performance of the

roposed HI-VAE at imputing missing data. We use six different

eterogenous datasets from the UCI repository [43] , which vary

oth in the number of instances and attributes, as well as in the

tatistical data types of the attributes. We summarize the main

haracteristics of these databases in Table 2 . For each dataset we

enerate 10 different incomplete datasets, removing completely at

andom a percentage of the data ranging from a 10% deletion to a

0%. 

Imputation strategy. Once the HI-VAE model is trained, the im-

utation of missing data is performed in a three-step process: First,

https://github.com/probabilistic-learning/HI-VAE
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Table 2 

Dataset description. The attributes include the target variable for those datasets that have an associated binary 

classification task. 

Database Objects Attributes # Real # Positive # Categorical # Ordinal # Count 

Adult 32,561 12 0 3 6 1 2 

Breast 699 10 0 0 1 9 0 

Default Credit 30,000 24 6 7 4 6 1 

Letter 20,000 17 0 0 1 16 0 

Spam 4601 58 0 57 1 0 0 

Wine 6497 13 0 11 1 0 1 
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we perform the MAP estimate of q (z n , s n | x o n ) to obtain 

ˆ z n and 

ˆ s n .

With these MAP estimates, we evaluate the generative model, ob-

taining ˆ Y n = g ( ̂ z n ) and ˆ γnd = h d ( ̂ y nd , ̂  s n ) for every attribute. Finally,

the imputed values ˆ x n are obtained as the mode of each distribu-

tion p(x nd | ̂  γnd ) , where the computation of the mode depends on

the likelihood model of the attribute. A further discussion on im-

putation methods is provided in Section 4.1.1 . 

Imputation error. We compare the above models in terms

of average imputation error computed as AvgErr = 1 /D 

∑ 

d err (d) ,

where we use the following error metrics for each attribute, since

the computation of the errors depends on the type of variable we

are considering: 

• Normalized Root Mean Square Error (NRMSE) for numerical

variables, i.e., 

err (d) = 

√ 

1 /n 

∑ 

n (x nd − ˆ x nd ) 2 

max (x d ) − min (x d ) 
. (17)

• Accuracy error for categorical variables, i.e., 

err (d) = 

1 

n 

∑ 

n 

I(x nd � = 

ˆ x nd ) . (18)

• Displacement error for ordinal variables, i.e., 

err (d) = 

1 

n 

∑ 

n 

| x nd − ˆ x nd 

R 

| . (19)

Comparison. We compare the performance of the following meth-

ods for missing data imputation: 

• Mean Imputation : We use as baseline an algorithm that im-

putes the mean of each continuous attribute and the mode of

each discrete attribute. 
• MICE: Multiple Imputation by Chained Equations [44] , which

is an iterative method that performs a series of supervised

regression models, in which missing data is modeled condi-

tional upon the other variables in the data, including those im-

puted in previous rounds of the algorithm. We use MICE imple-

mentation within the fancyimpute package https://github.com/

iskandr/fancyimpute , which, in its current implementation, only

allows the user to pick a homogeneous regression model for

all attributes, independently of whether they are numerical or

nominal. 
• GLFM: General latent feature model for heterogeneous data [1] ,

which was initially introduced for table completion in hetero-

geneous datasets in [45] . This method handles all the numer-

ical and nominal data types described in Section 1 and per-

forms MCMC inference. We run 50 0 0 iterations of the sam-

pler using the available implementation in https://github.com/

ivaleraM/GLFM . 
• GAIN: Generative adversarial network for missing data imputa-

tion [34] , which uses MSE as a loss function for numerical vari-

ables, and cross-entropy for binary variables. We train GAIN for

20 0 0 epochs using the network specifications and hyperparam-

eters reported in [34] . 
• HI-VAE: Model introduced in Section 3 , which we implement

in TensorFlow using only one dense layer for all the param-

eters of the encoder and decoder of the HI-VAE). We set the

dimensionality of z, y and s to 10, 5 and 10, respectively. The

parameter τ of the Gumbel-Softmax is annealed using a linear

decreasing function on the number of epochs, from 1 to 10 −3 .

We train our algorithms for 20 0 0 epochs using minibatches of

10 0 0 samples. We note that we have used the same NN archi-

tecture in all experiments and, therefore, further improvements

could be achieved by cross-validating the architecture for each

database. We further explore this aspect in Section 4.1.1 . 

.1.1. Variations in the HI-VAE design 

First, we explore different aspects of the design (such as net-

ork architecture, normalization layer, and hyperparameter selec-

ion) and how the use of the missing data imputation strategy of

I-VAE may improve the performance of the proposed HI-VAE for

issing data estimation. 

Network design. Here we analyze the sensitivity of the HI-VAE

o the network architecture. To this end, we vary dimensionality

f s, z and y and consider both generator and inference networks

ith either one or two dense layers with ReLu activation func-

ions. In Fig. 3 we show the HI-VAE average imputation error with

 20% missing data rate for different network configurations and

atent space dimensions. Here we observe that, while using two

ayers and a larger latent dimension (brown bars) tend to improve

he performance, significant gains are only observed with Letter

atabase, where more complex architectures lead to a lower im-

utation error. 

HI-VAE imputation strategy. Once we have trained the gener-

tive model, to impute missing data we can either sample from

he generative model or use the inferred parameters of the output

istribution, e.g., impute the mode of the inferred distribution. To

llustrate the differences, we show in Figs. 4 and 5 the goodness of

t provided by the HI-VAE and the GLFM in a positive real-valued

ariable and a categorical variable with 6 categories, both belong-

ng to the Adult dataset. Specifically, we show (top row) the true

istribution of the data together with the HI-VAE output distribu-

ion for the observed data and the HI-VAE output distribution for

he missing values. We show results for HI-VAE using the mode

f the distribution and HI-VAE using one sample for imputation.

e also show results for the GLFM. Further, in the bottom row we

how the Q-Q plot for the positive-real variable and the confusion

atrix for the categorical variable (see the figure caption for more

etails). Note that, while both the HI-VAE and the GLFM result in a

ood fit of the positive real variable (although the HI-VAE provides

 smoother, and thus, more realistic distribution for the data); the

LFM fails at capturing the categorical variable–it assigns all the

robability to a single category. These results are consistent with

able 4 in the paper, which demonstrate the superior ability of the

I-VAE to perform missing data imputation in nominal variables. 

Normalization layer. Finally, we study the effect of the batch

de-)normalization layer at the input of the reconstruction (and at

he output layer of the generative) model for the numerical vari-

https://github.com/iskandr/fancyimpute
https://github.com/ivaleraM/GLFM
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Fig. 3. HI-VAE average imputation error for different network configurations and latent space dimensions with a 20% rate of missing data. 

Fig. 4. We demonstrate the fit provided by the HI-VAE and the GLFM in a positive real-valued variable of the Adult dataset. Top row depicts the true empirical data 

distribution (shadowed histogram) and the inferred data distribution for the observed attributes in dashed line and for the missing data in solid line. The bottom row shows 

the Q-Q plot (observed in orange ( •) marker and missing in green ( ◦) marker). The left-most column shows the results for the HI-VAE when we sample from the model 

posterior distribution (given the observed data) to impute, while for the center column we use the mode of the posterior. (For interpretation of the references to colour in 

this figure legend, the reader is referred to the web version of this article.) 
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d  
bles described in Section 2.2 . The first two rows of Tables 3 and

 show the imputation error of the HI-VAE with and without the

de-)normalization layers for all the considered datasets containing

umerical variables (since the normalization layer only apply to

umerical variables), and for a 20% of missing data selected com-

letely at random. Here we observe that the normalization layer

ot only leads to a significant improvement in terms of imputa-

ion error for the Adult, the Spam and the Wine datasets, but it
lso prevents numerical errors from occurring during inference –

or the Default dataset, the gradients of the ELBO with respect to

he model parameters take infinite values. 

.1.2. Comparison with exiting methods 

Finally, we compare the performance of the HI-VAE with exist-

ng methods in the literature to input missing data in heterogenous

atasets. For the HI-VAE we use here a relatively-simple configura-
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Fig. 5. We demonstrate the fit provided by the HI-VAE and the GLFM in a categorical variable with 6 categories of the Adult dataset. Top row depicts the true empirical 

data distribution and the inferred data distribution for the observed attributes and for the missing data. The bottom row shows the missing data confusion matrix. 

Table 3 

Imputation error. Average and standard deviation of the imputation error for a 20% of missing data, evaluated exclusively over numeric 

variables . 

Model Adult Breast DefaultCredit Letter Spam Wine 

HI-VAE (no norm.) 0.210 ± 0.028 – Inf – 0.054 ± 0.018 0.165 ± 0.042 

HI-VAE 0.106 ± 0.002 – 0.043 ± 0.001 – 0.052 ± 0.001 0 . 074 ± 0 . 001 

Mean imputation 0.111 ± 0.002 – 0.056 ± 0.001 – 0.053 ± 0.001 0.103 ± 0.002 

MICE 0.108 ± 0.002 – 0 . 035 ± 0 . 002 – 0.052 ± 0.003 0.074 ± 0.002 

GLFM 0 . 083 ± 0 . 001 – 0.051 ± 0.005 – 0.052 ± 0.001 0.082 ± 0.004 

GAIN 0.225 ± 0.192 – 0.044 ± 0.002 – 0 . 049 ± 0 . 001 0.086 ± 0.002 

Table 4 

Imputation error. Average and standard deviation of the imputation error for a 20% of missing data, evaluated exclusively over nomi- 

nal variables . 

Model Adult Breast DefaultCredit Letter Spam Wine 

HI-VAE (no norm.) 0.406 ± 0.005 – 0.202 ± 0.003 – 0.166 ± 0.019 0.245 ± 0.017 

HI-VAE 0 . 304 ± 0 . 006 0.112 ± 0.003 0 . 158 ± 0 . 001 0 . 105 ± 0 . 002 0 . 111 ± 0 . 009 0.016 ± 0.003 

Mean imputation 0.405 ± 0.002 0.211 ± 0.006 0.2 ± 0.001 0.162 ± 0.002 0.393 ± 0.014 0.248 ± 0.014 

MICE 0.601 ± 0.002 0.111 ± 0.002 0.163 ± 0.003 0.133 ± 0.0 0.168 ± 0.012 0.02 ± 0.004 

GLFM 0.407 ± 0.003 0 . 076 ± 0 . 003 0.236 ± 0.012 0.161 ± 0.001 0.154 ± 0.02 0 . 006 ± 0 . 001 

GAIN 0.66 ± 0.025 0.16 ± 0.009 0.211 ± 0.005 0.164 ± 0.001 0.276 ± 0.017 0.236 ± 0.014 
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4 We would like to clarify that the reported results do not quite match those 

provided in [34] , despite using the code and the hyperparameters provided by the 
tion with a single dense layer with a latent space of dimensions

dim (z ) = 10 , dim (s ) = 10 and dim (y ) = 10 . A more careful design

of the HI-VAE structural parameters for each dataset may thus im-

prove the HI-VAE performance. Fig. 6 summarizes the average im-

putation error for each database as we vary the fraction of missing

data. The results clearly show that the proposed HI-VAE is the only

method that consistently outperforms mean imputation in all the

datasets—since mean imputation assumes all the attributes to be

independent, any missing data imputation method that accounts

for statistical dependencies in the data should perform at least
s accurately as mean imputation. The second more robust model

s the GLFM, which performs best in small datasets (Breast and

ine). This might be explained by the fact that, while it accounts

or mixed nominal and discrete data, it relies on Gibbs-sampling

or inference, scaling and mixing poorly for larger datasets. In

ontrast, the MICE and GAIN 

4 are outperformed by the Mean-
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Fig. 6. Missing Data. Average imputation error for different percentages of missing data (completely at random). 
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o  
mputation baseline in several datasets, most likely, due to the fact

hat they do not account for different types of mixed nominal and

umerical attributes. 

A deeper understanding of the results in Fig. 6 can be obtained

y separately analyzing the error in numeric variables (real, pos-

tive and count variables) in Table 3 , and nominal variables (cat-

gorical/ordinal variables) in Table 4 . In both cases, we use 20%

issing data. While for numeric variables HI-VAE achieves a com-

arable error w.r.t. the rest of the methods, it is in the imputation

f nominal variables where HI-VAE achieves a remarkable gain, be-

ng the best performing method in four out of six cases. These re-

ults demonstrate the superior ability of HI-VAE to exploit under-

ying correlations among the set of heterogeneous attributes. 

.2. Predictive task 

Although the HI-VAE is a fully unsupervised generative model,

e evaluate its performance at solving a classification task, a

ulti-class classification problem for the Letter dataset (with 26

lasses corresponding to the different letters) and a binary clas-

ification problem for the rest of databases (predicting the binary
uthors. For the sake of reproducibility, we will incorporate the GAIN implementa- 

ion to our public repository. 

t  

B  

m  
abel of each element of the dataset). The idea behind this exper-

ment, is to treat the classes to be predicted as missing entries

n the target attribute, using HI-VAE to provide an imputation of

hese missing entries. We use 50% of the data for training, which

or HI-VAE means that we remove 50% of the labels in the tar-

et attribute to train the generative model. Regarding the training

ata, we consider three different scenarios: the first assumes com-

lete input attributes in the training set (no missing data), the sec-

nd assumes 10% missing values in the input training data, and the

hird assumes 50% missing values. Since the supervised methods

e compare HI-VAE to cannot handle missing data, we impute the

ean (or the mode for discrete attributes) of each attribute to the

issing input values during training. Here, we compare our HI-VAE

ith two supervised methods: deep logistic regression (DLR) and

he conditional VAE (CVAE) in [32] . Following our results in Fig. 3 ,

e use the basic configuration for the HI-VAE, i.e., one dense layer

nd z, y and s to 10, 5 and 10, respectively, for all datasets except

or the Letter, for which we use two dense layers with ReLU acti-

ations and 50-dimensional latent spaces. 

Results. Table 5 summarizes the results, where we observe that

ur HI-VAE method provides competitive results in all cases. Fur-

hermore, note HI-VAE provides the best results for both Wine and

reast, while showing less degradation with increasing fraction of

issing input data in the DefaultCredit and Spam. These results
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Table 5 

Prediction Accuracy. Average and standard deviation of the classification error when we use 50% of the labels for 

training and assume complete input data and 10% and 50% of missing values in input data (right-hand table). 

% Missing Model Breast DefaultCredit Letter Spam Wine 

0% DLR 0.041 ± 0.01 0 . 179 ± 0 . 002 0.142 ± 0.003 0 . 081 ± 0 . 005 0.018 ± 0.003 

CVAE 0.04 ± 0.012 0 . 179 ± 0 . 001 0.14 ± 0.004 0.081 ± 0.006 0.016 ± 0.002 

HIVAE 0 . 026 ± 0 . 005 0.2 ± 0.004 0 . 117 ± 0 . 014 0.096 ± 0.007 0 . 014 ± 0 . 002 

10% DLR 0.04 ± 0.009 0 . 184 ± 0 . 001 0.229 ± 0.002 0.09 ± 0.005 0.027 ± 0.003 

CVAE 0.048 ± 0.009 0.184 ± 0.002 0.227 ± 0.003 0 . 088 ± 0 . 006 0.025 ± 0.003 

HIVAE 0 . 031 ± 0 . 007 0.201 ± 0.002 0 . 212 ± 0 . 017 0.103 ± 0.008 0 . 022 ± 0 . 006 

50% DLR 0.08 ± 0.014 0 . 196 ± 0 . 003 0 . 496 ± 0 . 005 0 . 134 ± 0 . 008 0.078 ± 0.006 

CVAE 0.101 ± 0.038 0.197 ± 0.003 0 . 496 ± 0 . 005 0.138 ± 0.009 0.078 ± 0.005 

HIVAE 0 . 052 ± 0 . 012 0.205 ± 0.003 0.589 ± 0.014 0.138 ± 0.005 0 . 042 ± 0 . 005 
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show that a fully generative model might be preferred over a su-

pervised model with imputed data. 

5. Conclusions 

In this paper, we focus on designing and inferring deep gen-

erative models (in particular, VAEs) for heterogeneous and incom-

plete data. We note that it is not a straightforward problem, and

that it has been overlooked in the literature. The main issues cov-

ered in this paper and for which HI-VAE provides an effective solu-

tion can be summarized as follow: First, standard (and conditional)

VAEs assume complete data during training, however, missing data

imputation is a fully unsupervised task where missing values may

appear ubiquitously in the dataset. Unfortunately, while VAEs per-

form accurate inference through a recognition model sharing pa-

rameters among inputs, this is not directly possible when training

data is incomplete (DNNs require complete input). In HI-VAE, we

derive a lower-bound on the data marginal likelihood that depends

exclusively on the observed data. Also, we propose methods to deal

with missing values in the recognition network. Second, when data

are heterogeneous in both statistical types and ranges, the infer-

ence of a joint set of parameters that accurately captures the statis-

tical dependencies among attributes results in a complex optimiza-

tion problem with many local optima. Intuitively, each local optima

potentially captures the correlations between a subset of attributes

and treats the rest as independent, while the global optima cap-

tures all the existing correlations in the data. In HI-VAE, we enforce

correlation by using a joint DNN to construct the parameters that

define the output distribution of each of the attributes. Third, in

contrast to deep generative approaches for structured and homo-

geneous data (e.g., images or text), the use of more complex DNNs

(e.g., CNNs or RNNs) does not necessarily lead to a better fitting of

the data in heterogeneous datasets, where there is no clear notion

of correlation to be exploited by weight sharing of the DNNs. The

hierarchical HI-VAE generative model captures correlation among

the different attributes by using a latent space spanned by a Gaus-

sian mixture. 

Our empirical results show that our proposed HI-VAE outper-

forms competitors on a heterogenous data completion task and

provides comparable results in classification accuracy to deep su-

pervised methods, which cannot handle missing values in the in-

put data, therefore, requiring imputation of missing inputs in the

data. Future work includes the extension to more complex at-

tributes such as images or text, and the generalization to temporal

heterogeneous series with missing data. 
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