
Pattern Recognition, Vol. 25, No. 7, pp. 741-747, I992
Printed in Great Britain

oo31-3203/92 $5.tx) + .oo
Pergamon Press Ltd

Pattern Recognition Society

HYPERCUBE ALGORITHMS FOR OPERATIONS ON
QUADTREES

RAVI V. SHANKAR and SANJAY RANKA~
School of Computer and Information Science, Syracuse University, Syracuse, NY 13244-4100, U.S.A.

(Received 26 February 1991; in revised form 29 October 1991; received for publication 20 November
1991)

Abstract--This paper describes parallel algorithms for the following operations on quadtrees--boolean
operations (union, intersection, complement), collapsing a quadtree, and neighbor finding in an image
represented by a quadtree. The architecture assumed in this paper is a hypercube with one processing
element (PE) per hypercube node. It is assumed that the architecture is SIMD, i.e. all PEs work under
the control of a single control unit.

Quadtrees Hypercube algorithms Image processing

1. INTRODUCTION

A quadtree 0) is a tree representation of a sparse
image (in general, any two-dimensional (2D) array).
The root of the quadtree represents the entire image.
If the portion of the image represented by any node
does not have the same gray value, the node is
asigned four children. Each child represents one of
the four quadrants of the image portion represented
by its parent. This continues recursively until all the
leaf nodes represent portions of the image with the
same gray value.

Throughout this work we assume that the input
image is binary. The algorithms can be extended to
deal with gray-level/color images.

1.1. Definitions

The level of a quadtree node is its distance (in
terms of number of links) from the root. The height
of a quadtree is the greatest of the distances between
the nodes of the quadtree and the root. The term
node actually indicates a collection of pixels. A node
at level l in a quadtree of height h represents a
collection of 4 (h4) pixels.

Every non-leaf node in the quadtree has exactly
four children. Every leaf node is either filled (i.e.
has a value of 1) or empty (i.e. has a value of 0).

Nodes representing single pixels have the same
index as the shuffled row-major index of the pixel
they represent. The index of nodes representing a
collection of pixels is the smallest of the indices of
the pixels represented. Shuffled row-major indexing
for an 8 × 8 image is shown in Fig. l (a) .

A node X in tree 7'1 is said to cover a node Y in
tree T2 if (i) there exists a node Z in T2 such that Z

t Author to whom all correspondence should be addres-
sed.

741

is an ancestor of Y and index(Z) and level(Z) are
equal to index(X) and level(X), respectively, or (ii)
X is identical to Y. Node X in tree TI covers node
Y in tree T2 iff the portion of the image represented
by X occludes the portion of the image represented
by Y.

1.2. Representation of the quadtree

There are many ways in which a quadtree can be
stored. The most expensive method is to store the
actual tree including the values and the pointers at
each node. A better way would be to store only the
leaves of the quadtree along with the corresponding
indices and values. Even this contains redundant
information since information about empty leaves
can be obtained given the information about filled
leaves alone. We represent the quadtree using only
its filled leaves. The advantage of our representation
is that the number of processing elements (PEs)
required to store the quadtree nodes is kept to a
minimum. This makes load balancing easy, resulting
in efficient processor utilization. Given a quadtree

0 1 4 5 16 17 20 21

2 3 6 7 18 19 22 23

8 9 12 13 24 25 28 29

10 11 14 15 26 27 30 31

32 33 36 37 48 49 52 53

34 35 38 39 50! 51 54! 55

40 41 44 45 56 57 60 61

42 43 46 47 58 59 62 63

Fig. l(a). Shuffled row-major indexing for an 8 × 8 image.

742 R.V. SHANKAR and S. RANKA

mm mmmn
mm mm
mmmm
mmmm

mm
mmmm

Index: 12 26 27 40 41 48

Level: 2 3 3 3 3 1

Fig. l(b). A binary image and its 1D representation.

---_...

Fig. l(c). A quadtree for Fig. l(b).

with N filled nodes, either LN/P] o r FN/P] nodes
are stored in each PE (P = number of PEs). The
index, and level of each filled leaf are stored in the
index and level registers. An additional value register
is needed for gray level/color images.

Figures l (b) and (c) show a binary image, a
quadtree for the same image, and the one-dimen-
sional (1D) representation of the quadtree. The 1D
representation of quadtrees is referred to as "linear
quadtrees" in the literature.

The quadtree representation in a 1D array of PEs
is said to be in standard form when (i) only filled leaf
nodes are represented, (ii) the filled leaf nodes are
arranged with their indices in increasing order, and
(iii) every PE to the left of a PE having a filled leaf
node has a filled leaf node of its own. All algorithms
in this paper assume that the input is in standard
form. The output of all algorithms is also in standard
form.

all image pixels (empty and filled) to processors,
which in the case of sparse images would result in
a lot of idle processors. Martin et al. (5) describe
algorithms for a horizontally reconfigurable archi-
tecture. Hung and Rosenfeld (6) consider a mesh con-
nected computer. It appears that their intersection/
union algorithm assumes the availability of both
empty as well as filled leaves, which represents
redundant input. Our collapse algorithm is based on
one of their quadtree building algorithms, while our
neighbor finding algorithm is a modified version of
their algorithm for the hypercube. Nandy et al. (7)
describe linear quadtree algorithms for neighbor
finding and boundary following on an MIMD hyper-
cube. Their work does not give complexity analysis
for the complete embedding of the quadtree.

2. HYPERCUBE PRIMITIVES

2.1. Concentrate

In the Concentrate algorithm we start with a subset
of the processing elements, each containing data in
register D, and the PE's rank (that is, the number
of selected PEs with lower index than self) in register
R. The objective is to move the data in register D
such that D(i) goes to the PE with index R(i). This
primitive is used to bring the 1D representation of a
quadtree into standard form.

The Concentrate algorithm is described in ref-
erence (8). Figure 2(a) illustrates the concentrate
operation. The time complexity of the algorithm is
O((N/P) log P) where N is the size of the given input
and P is the number of PEs.

2.2. Merge

Merging of two sorted arrays can be done on the
hypercube using the bitonic merge algorithm. The

D dl d4 d5 d6
R ct 0 c~ ct 1 2 3 ct

D(afterConeentrate) d I d 4 d 5 d 6

(a) Concentrate

D d o d I d 2 d 3
R 2 3 6 7 ~ ct ~ ct

D(afterGeneralize) d o d o d o d I d 2 d 2 d 2 d 3

(b) Generalize

1.3. Earlier work

Sequential algorithms for processing pointer-less
quadtrees are described in references (2, 3). Parallel
quadtree algorithms for various architectures can
be found in the literature. Mei and Liu (4) consider
quadtree algorithms for a 2D shuffle exchange net-
work. The paper also assumes a static allocation of

D 7 9 4 6 8 2 1 5
D(after+-scan) 7 16 20 26 34 36 37 42

S I 0 0 1 0 0 1 0
D(after segmented +-scan) 7 16 20 6 14 16 1 6

(c) Non-segmented / Segmented Prefix Scan

Fig. 2. Hypercube primitives.

Hypercube algorithms for operations on quadtrees 743

hypercube algorithm is described in reference (9).
The merge algorithm takes time O((N/P) log P). The
merge primitive is used in the quadtree intersection/
union algorithm.

2.3. Generalize

In the Generalize algorithm we start with data in
register D in the first k PEs. A detination PE index
is available in register R and is such that
R (i - 1) < R (i) for 0~<i~<k. For convenience,
assume R (- 1) = 0. The objective is to move the
data in register D such that D(i) goes to all the PEs
with index k satisfying <R(i) and >~R(i- 1). This
primitive is used to obtain the complement of a
quadtree.

The Generalize algorithm is described in reference
(8). Figure 2(b) illustrates the generalize primitive.
The time complexity of the algorithm is O((N/
P) log P).

2.4. Segmented scans

In the segmented prefix scan algorithm a lobit
register S is used to indicate the start of a new
segment when set to 1. Data is available in register
D. A binary associative operator @ is specified. The
objective is to obtain in PE i the quantity
D(j) • D(j + 1) ~ . • • D(i) where j satisfies the fol-
lowing properties: (i) j ~< i, (ii) S(j) -- 1, and (iii) for
all k satisfying j < k ~< i and S(k) = 0. Segmented
scans are used in the quadtree union/intersection,
collapse and in the neighbor finding algorithms.

The segmented scan algorithm is a modified form
of the prefix scan algorithm presented in reference
(8). Figure 2(c) illustrates the scan primitive. The
time complexity of the algorithm is O((N/
P) + log P).

2.5. Sort

Bitonic sort can be used to sort an array on the
hypercube. The sorting algorithm is described in
reference (9). The bitonic sort algorithm takes time
O(log 2 N) when P = N. A faster deterministic sort-
ing algorithm that runs in nearly logarithmic time is
presented in reference (10). The complexity of this
sorting algorithm is O(log N(log log N) 2) when P =
N. Sort (N, P) is used throughout this paper to
indicate the time taken to sort N elements on a
hypercube with P PEs. The Sort primitive is used in
the neighbor finding algorithm.

3. BOOLEAN OPERATIONS

3.1. Intersection~union

The intersection/union of two quadtrees T t and
7"2 is a quadtree T such that the image represented
by T is the intersection/union of the images repre-
sented by Tl and 7"2.

The intersection/union algorithm is outlined in
Fig. 3.

Figure 4 illustrates the intersection/union algor-
ithm through an example. The Index, Level, and
Tree-no registers are set by merging the given quad-
trees as mentioned in step I of the algorithm. Initially
the Cover register is set as described in step 2--a "1"
indicates a covering node, and "0" a node that has
not been labeled yet. The contents of the Cover
register are modified after determination of
"leaders". The label "2" indicates a node covered by
a filled leaf, and "3" a node covered by an empty
leaf. The lines marked Coverl and Cover2 in Fig. 4
show the contents of the cover register after step 2
and step 5 of the algorithm, respectively. The
resulting tree after the intersection and union opera-
tions are obtained as described in step 5. These are
available in registers Inter and Union.

1. Merge trees T~ and T2 such that the merged tree is sorted by (index,level,tree-no).
2. Let each node P examine its immediate successor X. The following cases may arise:

a index(P) = index(X), level(P) = level(X), tree-no(P) < tree-no(X)
b index(P) = index(X), level(P) < level(X)
c index(P) < index(X).

Case a P covers X and X covers P. Mark one of the nodes (say P, since P was the node that detected the covering) as
"covering" and mark the other for deletion.

Case b tree-no(P) must be different from tree-no(x) since no two filled leaves from the same tree will have identical
indices. P covers X. Mark P as "covering" and X as "covered".

Case c If index(X) < index(P) + size(P), then P covers X. Mark P as "covering" and X as "covered".

3. Split the nodes into segments with the covering nodes determined so far marking the start of new segments.
4. The index and level of the covering nodes (we will call these "leaders") are copied onto each node in the segment.
5. Each node in the segment checks whether it is covered by its leader. If yes, leave as such for intersection and invalidate
the leader. For union remove these. If not, it is covered by an empty node. Remove these for intersection. Leave as such
for union.
6. Concentrate to remove all nodes that were invalidated or marked for deletion. A Collapse algorithm will be required
after union, to replace subtrees with all leaves filled, by a single node.

Fig. 3. Algorithm for the intersection/union of two quadtrees.

744 R.V. SHANKAR and S. RANKA

Index: 2 3 4 8 10 12 14 Index 0 1 4 6 10 11 12
Level: 2 2 1 2 2 2 2 Leoel 2 2 2 2 2 2 1

(a) Tree T 1 (b) Tree T 2

Index: 0 1 2 3 4 4 6 8 10 10 11 12 12 14
Level: 2 2 2 2 1 2 2 2 2 2 2 1 2 2
Tree-no: 1 I 0 0 0 1 1 0 0 1 1 1 0 0
Coverl: 0 0 0 0 1 0 0 0 1 0 0 1 0 0
Cover2: 3 3 3 3 1 2 2 3 1 2 3 1 2 2
Inter: 0 0 0 0 0 1 1 0 0 1 0 0 1 1
Union: 1 1 1 1 1 0 0 1 0 1 1 1 0 0

(c) Steps in the Union/Intersection Algorithm.

Index: 4 6 10 12 14 Index:O 4 8 10 11 12
Level: 2 2 2 2 2 Level: 1 1 2 2 2 1

(d) Tree T 1 n T 2 (e) Tree T 1 u T 2

Fig. 4. Union/intersection.

For the in tersect ion/union algorithm to work cor-
rectly we only need to correctly mark all the filled
leaves in the given trees as "covering", "covered by
a filled leaf" or "covered by an empty node". This is
because we can retain all nodes covered by an empty
leaf and remove those covered by a filled leaf for
quadtree union. For intersection, we can retain all
nodes covered by a filled leaf while removing the
filled cover of those nodes and also remove nodes
covered by an empty leaf.

The correctness of the union/ in tersect ion algor-
ithm can be proved as follows. In step 2, cases a-c
mark the covering nodes in the input quadtree cor-
rectly. Steps 3-5 mark the quadtree nodes that are
covered by a filled leaf. We claim that the nodes in
the given quadtrees that have not been marked so
far are all covered by an empty leaf. This is true
since all nodes covered by any leaf X appear as a
continuous run of nodes after X in the sorted
ordering described in step 1.

This is because empty covering nodes are not
available in our representat ion. Further , all nodes
covered by P were not marked as "covered" in cases
b and c.

A node X is covered by its leader Y iff index(Y) =
i n d e x (X) - index(X) m o d 4 height-level(Y). In step 5,

invalidation of the leader can be done by the leader
itself.

The merge in step 1 and the concentrate in step 6
take time O ((N / P) log P). The prefix scan in steps 4
and 5 take O ((N / P) + log P) time. Steps 2 and 3 also
take O ((N / P) + log P) time. Thus the intersect ion/
union algorithm has an O ((N / P) I o g P) time
complexity.

3.2. C o m p l e m e n t

The complement algorithm is outl ined in Fig. 5.
Let N 1 be the number of filled leaves in the given

quadtree. Step 1 takes O ((N 1 / P) + log P) t ime and

1. Each node looks at its immediate successor and finds out the number of empty pixels between them.
2. The generalize algorithm is used to spread the empty nodes across the available processing elements.
3. A collapse algorithm is run to group empty nodes together and to bring the result to standard form.

Fig. 5. The Complementing algorithm.

Hypercube algorithms for operations on quadtrees 745

(a) Tree T 3 (b) Complement of T 3

Index:
Level:
I1:
12:
NumEmpty:
I ndOfEmpty:

Index
Level

Index: 4 12 13 22 28 32 48 54
Level: 2 3 3 3 3 1 2 3

(c) 1D Repesentation of T 3

4 12 13 22 28 32 48 54
3 3 3 3 3 1 2 3
4 12 13 22 28 32 48 54 (64)

(-1) 7 12 13 22 28 47 51 54
4 4 0 8 5 3 0 2 9
0 1 2 3 8 9 10 11 14 15 16 17 18 20 21 23
24 25 26 27 29 30 31 52 55 56 57 58 60 61 62 63

(d) Steps in the Complement Algorithm

0 8 14 15 16 20 21 23 24 29 30 31 52 53 55 56 60
2 3 3 3 2 3 3 3 2 3 3 3 3 3 3 2 2

(e) 1D Representation of complement of T 3

Fig. 6. Complement algorithm.

s t eps 2 and 3 t ake O ((N / P) log P) t ime , w h e r e N is
the s u m o f s izes (in p ixels) o f t h e e m p t y leaves in t he
given q u a d t r e e . T h e en t i r e c o m p l e m e n t a lgo r i t hm
has an O ((N / P) log P) t ime complex i t y . T h e

a lgo r i t hm, h o w e v e r , has a h igh wor s t - ca se space

complex i ty .
T h e n u m b e r o f e m p t y n o d e s is d e t e r m i n e d as

fol lows: let A and B be t h e two leaf n o d e s b e t w e e n

which we wish to f ind t h e n u m b e r o f e m p t y n o d e s .

F ind the i ndex i I o f t he r i g h t m o s t n o d e at t h e l owes t
level o f t he s u b t r e e r o o t e d at A a n d t h e index i 2 o f
the l e f t mos t n o d e at t h e lowes t level o f t he s u b t r e e

r o o t e d at B. (i2 - il - 1) g ives t h e n u m b e r o f e m p t y
n o d e s b e t w e e n A and B. (M i n o r mod i f i ca t i ons can
be m a d e for t he first and t h e last leaf n o d e s .)

To r educe the a m o u n t o f space r e q u i r e d the fol-

1. Each node determines the maximum number of pixels (filled or empty) it can represent. This is stored in register
NumPix.
NumPix(i) = 4 NTzp~il where NTZP(i) is the number of trailing zero-pairs in node index i.
2. The filled leaves of the quadtree are split into segments. A 1-bit register segment in each node is used to indicate
whether that node is the beginning of a segment. Register segment is set to true if the index of the node being considered
minus the index of the last pixel of the immediately preceding node is greater than 1. The index of the last pixel in any
node = index of node + size of node - 1 where size of a node = 4 (he'ght- leoell.
3. Each node obtains the number of pixels preceding it in the same segment and stores it in register position. This is just
a segmented sum scan of the size of each node. 1 + the position of the last node in a segment gives the segment 's length.
A segmented backward copy scan makes this value available to each node in the segment in register length.
4. Each node stores in register follow the number of pixels following it (including self) in the same segment. This is just
length - position. Followl is set to the largest power of 4 ~< the contents of the follow register in the same node.
5. The minimum of NumPix and fol lowl in each node gives the size of the largest block of filled leaves represented by
that node. This is available in the register MaxBlkFL. The register leoell is set based on the contents of MaxBlkFL.
6. Nodes that are redundant need to be deleted. A node is redundant when it represents only a subset of the pixels
represented by another node. Using the index and level information each node first finds the number of its sibling nodes
that have higher indices than self and the number of siblings with lower indices. By comparing this with the contents of
the position and follow registers the node can determine whether it is redundant or not. If it is redundant it is marked
for deletion.
7. Concentrate to remove nodes that were marked for deletion.

PR 2517-F

Fig. 7. Quadtree Collapse algorithm.

746 R .V. SHANKAR and S. RANKA

Index: 0 1 2 3 4 8 10 11 12
Level: 1 2 2 2 I 2 2 2 1
Size: 1 l 1 1 4 1 1 1 4
Seg: 1 0 0 0 0 0 1 0 0
Position: 0 1 2 3 4 8 0 1 2
Follow: 9 8 7 6 5 1 6 5 4
MaxBkSz: 4 I 1 1 4 1 1 1 4
Follow1: 4 4 4 4 4 1 4 4 4
NumPix: 16 1 1 1 4 4 1 1 4
Level1: 1 2 2 2 1 2 2 2 1
LSib: 0 1 2 3 4 8 2 3 12
Self+RSib: 64 3 2 1 12 8 2 1 4
Redun: 0 l 1 1 0 0 0 0 0

(a) Steps in Collapsing tree T 1 u T 2 from figure 4.

Index." 0 4 8 10 11 12
Level 1 I 2 2 2 I

(b) 1D Representation of Collapsed Tree Tne w

Fig. 8. Collapsing a tree.

lowing modification can be used. Let l l and l 2 be the
levels of nodes A and B. If 12 > 11 find the index of
the ancestor of B in level l l (call this ancestor C). A
notes down the level number ll along with the num-
ber of nodes be tween A and C, and level l 2 along
with the number of nodes to the left of B having C
as an ancestor. If l 1 ~ l 2 let D be the ancestor of A
at level 12. Now B notes down level 12 along with the
number of nodes be tween D and B and level 11 along
with number of nodes to the right of A having D as
an ancestor. A g e n e r a l i z e and a c o m p a c t can now be
done as in the earl ier case. The t ime complexity is
still O ((N / P) log P) al though the space required has
been reduced.

The first method is illustrated in Fig. 6.

3.3. D i f f e r e n c e

The difference operat ion be tween two trees can
be carried out by complement ing the second tree,
followed by an intersection be tween the resulting
tree and the first tree. The t ime taken by difference
is O ((N / P) l o g P).

4. COLLAPSING THE TREE

A quadtree needs to be collapsed when all the four
children of a non-leaf node have identical values.
Such nodes are redundant and can be removed after
the contents of their oa lue register is passed on to
their parent node.

Figure 7 gives the steps in the collapse algorithm.
Steps 1 and 4--6 of the collapse algorithm take

O (N / P) time. Steps 2 and 3 take t ime O ((N / P)

+ log P) and step 7 takes O ((N / P) log P) time. Thus,
the collapse algori thm has a worst case t ime com-
plexity of O ((N / P) log e) .

Figure 8 illustrates the collapse algorithm.

5. NEIGHBOR FINDING

Our standard form for the representat ion of the
quadtree stores the blocks in the image in Shuffled
Row Major (SRM) order. We begin with this rep-
resentation and compute the North , South, East ,
and West neighbors of each block. Note that any
node looks only for nodes smaller than itself. The
steps in the East neighbor finding algori thm are
outlined in Fig. 9. Modifications for North , South,
and West neighbor finding should be easy. The algor-
ithm can also be extended for 8-neighbor finding.

Index: 1 2 3 4 8 12 13 14
Level: 2 2 2 2 1 2 2 2
Data: 1 2 3 4 5 6 7 8
CMAdd: 4 1 5 8 2 10 14 11
CMAddl: 1 2 4 5 8 10 ll 14
Data1: 2 1 5 3 4 6 8 7
RMSucc 2 5 6 3 10 11 16 15
Begin: 8 5 9 12 10 14 16 15
End: 8 5 9 12 11 14 16 15
Neighb: 4 3 0 0 14 7 0 0

Fig. 10. Steps in the neighbor finding algorithm.

1. Each node computes its Column Major/Row major address from its index by bit shuffling. These are available in
registers C M A d d and R M A d d .
2. The nodes are then rearranged in increasing CM address order (Register C M A d d l) . Note that all the East neighbors
of any node will now appear as a continuous run. Each node just needs the Column Major addresses of its topmost and
bottommost East neighbors. These addresses can be used to select the segment of nodes representing its East neighbors.
3. The row major address of the topmost neighbor of any node X is the address of the immediate successor of X in Row
Major order. (This successor could be a filled or an empty node.) This is available in register RMSucc .

RMSucc(i) = R M A d d (i) + ~/(s ize(X)) .

4. The row major addresses in R M S u c c are converted into column major addresses and stored in Begin.
5. The highest possible column major address an East neighbor could have is computed and stored in End.
6. The computed column major addresses from steps 4 and 5 are sorted, tagged, and merged with the sorted sequence
from step 2. Segmented scans can now be used to collect information from the data registers of the East neighbors.

Fig. 9. Neighbor finding algorithm.

Hypercube algorithms for operations on quadtrees 747

Time complexity of steps i and 3-5 of the neighbor
finding algorithm is O(N/P). Steps 2 and 6 involve
sorting and hence the neighbor finding algorithm
takes O((N/P) + Sort(N, P)) time.

The neighbor finding algorithm is illustrated in
Fig. 10.

6. CONCLUSIONS

In this paper we developed parallel algorithms
for the following operat ions on quad t rees - -boo lean
operations (union, intersection, complement) , col-
lapsing a quadtree, and neighbor finding in an image
represented by a quadtree. We presented optimal or
near optimal algorithms for an SIMD hypercube
architecture for the above problems.

Acknowledgement--The authors would like to thank Ravi
Ponnusamy for his help with this work and for his comments
on earlier versions of this paper.

REFERENCES

1. G. M. Hunter and K. Steiglitz, Operations on images
using quadtrees, IEEE Trans. Pattern Analysis Mach.
lntell. 1, 145-153 (1979).

2. I. Gargantini, An effective way to represent quadtrees,
Commun. ACM 25, 905-910 (1982).

3. I. Gargantini, Translation, rotation, and superim-
position of quadtrees, Int. J. Man-Machine Studies 18,
253-263 (1983).

4. G. G. Mei and W. Liu, Parallel processing for quadtree
problems, Proc. Int. Conf. on Parallel Processing,
pp. 452--454 (1986).

5. M. Martin, D. M. Chiarulli and S. S. Iyengar, Parallel
processing of quadtrees on a horizontally recon-
figurable architecture computing system, Proc. Int.
Conf. on Parallel Processing, pp. 895-902 (1986).

6. Y. Hung and A. Rosenfeld, Parallel processing of linear
quadtrees on a mesh-connected computer, J. Parallel
Distributed Computing 7, 1-27 (1989).

7. S. K. Nandy, R. Moona and S. Rajagopalan, Linear
Quadtree algorithms on the hypercube, Proc. Int.
Conf. on Parallel Processing, pp. 227-229 (1988).

8. D. Nassimi and S. Sahni, Data broadcasting in SIMD
computers, IEEE Trans. Computers 30(2), 1(}1-107
(1981).

9. S. Ranka and S. Sahni, Hypercube Algorithms for
Image Processing and Pattern Recognition. Springer,
Berlin (1990).

10. G. Plaxton and R. Cypher, Deterministic sorting in
nearly logarithmic time, Proc. ACM Syrup. on Theory
of Computing, pp. 193-203 (1990).

11. T. Bestul, A general technique for creating SIMD algor-
ithms on parallel pointer-based quadtrees, Technical
Report CS-TR-2181, University of Maryland, College
Park (1989).

About the Author--RAVl V. SHANKAR is a doctoral candidate in computer science at Syracuse University.
He received his B.E. in computer science and engineering from Anna University, Madras, India, in
1987. His research interests are in the areas of computer vision, image processing, and parallel algorithms
in vision and robotics.

About the Author--SAN JAY RANKA completed his B.Tech. in computer science and engineering from
Indian Institute of Technology, Kanpur, in May 1985 and Ph.D. in computer and information science
from the University of Minnesota, Minneapolis, in August 1988. Since August 1988, he has been an
Assistant Professor in the School of Computer Science at Syracuse University. He spent the summer of
1991 as an Academic Visitor at IBM T. J. Watson Research Center. His main areas of interest are
parallel and distributed computing, algorithms and neural networks. He is interested in applications in
Artificial Intelligence, computer vision, pattern recognition and VLSI. He has co-authored a monograph
on Hypercube Algorithms for Pattern Analysis and Machine Intelligence published by Springer. He is
also a guest editor of a special issue (February 1992) of IEEE Computer.

