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Abstract--This paper describes parallel algorithms for the following operations on quadtrees--boolean 
operations (union, intersection, complement), collapsing a quadtree, and neighbor finding in an image 
represented by a quadtree. The architecture assumed in this paper is a hypercube with one processing 
element (PE) per hypercube node. It is assumed that the architecture is SIMD, i.e. all PEs work under 
the control of a single control unit. 

Quadtrees Hypercube algorithms Image processing 

1. INTRODUCTION 

A quadtree 0) is a tree representation of a sparse 
image (in general, any two-dimensional (2D) array). 
The root of the quadtree represents the entire image. 
If the portion of the image represented by any node 
does not have the same gray value, the node is 
asigned four children. Each child represents one of 
the four quadrants of the image portion represented 
by its parent. This continues recursively until all the 
leaf nodes represent portions of the image with the 
same gray value. 

Throughout this work we assume that the input 
image is binary. The algorithms can be extended to 
deal with gray-level/color images. 

1.1. Definitions 

The level of a quadtree node is its distance (in 
terms of number of links) from the root. The height 
of a quadtree is the greatest of the distances between 
the nodes of the quadtree and the root. The term 
node actually indicates a collection of pixels. A node 
at level l in a quadtree of height h represents a 
collection of 4 (h4) pixels. 

Every non-leaf node in the quadtree has exactly 
four children. Every leaf node is either filled (i.e. 
has a value of 1) or empty (i.e. has a value of 0). 

Nodes representing single pixels have the same 
index as the shuffled row-major index of the pixel 
they represent. The index of nodes representing a 
collection of pixels is the smallest of the indices of 
the pixels represented. Shuffled row-major indexing 
for an 8 × 8 image is shown in Fig. l (a) .  

A node X in tree 7'1 is said to cover a node Y in 
tree T2 if (i) there exists a node Z in T2 such that Z 
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is an ancestor of Y and index(Z) and level(Z) are 
equal to index(X) and level(X), respectively, or (ii) 
X is identical to Y. Node X in tree TI covers node 
Y in tree T2 iff the portion of the image represented 
by X occludes the portion of the image represented 
by Y. 

1.2. Representation of  the quadtree 

There are many ways in which a quadtree can be 
stored. The most expensive method is to store the 
actual tree including the values and the pointers at 
each node. A better way would be to store only the 
leaves of the quadtree along with the corresponding 
indices and values. Even this contains redundant 
information since information about empty leaves 
can be obtained given the information about filled 
leaves alone. We represent the quadtree using only 
its filled leaves. The advantage of our representation 
is that the number of processing elements (PEs) 
required to store the quadtree nodes is kept to a 
minimum. This makes load balancing easy, resulting 
in efficient processor utilization. Given a quadtree 

0 1 4 5 16 17 20 21 

2 3 6 7 18 19 22 23 

8 9 12 13 24 25 28 29 

10 11 14 15 26 27 30 31 

32 33 36 37 48 49 52 53 

34 35 38 39 50! 51 54! 55 

40 41 44 45 56 57 60 61 

42 43 46 47 58 59 62 63 

Fig. l(a). Shuffled row-major indexing for an 8 × 8 image. 
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Index: 12 26 27 40 41 48 

Level: 2 3 3 3 3 1 

Fig. l(b). A binary image and its 1D representation. 

---_... 

Fig. l(c). A quadtree for Fig. l(b). 

with N filled nodes, either LN/P] o r  FN/P] nodes 
are stored in each PE (P = number of PEs). The 
index, and level of each filled leaf are stored in the 
index and level registers. An additional value register 
is needed for gray level/color images. 

Figures l (b)  and (c) show a binary image, a 
quadtree for the same image, and the one-dimen- 
sional (1D) representation of the quadtree. The 1D 
representation of quadtrees is referred to as "linear 
quadtrees" in the literature. 

The quadtree representation in a 1D array of PEs 
is said to be in standard form when (i) only filled leaf 
nodes are represented, (ii) the filled leaf nodes are 
arranged with their indices in increasing order, and 
(iii) every PE to the left of a PE having a filled leaf 
node has a filled leaf node of its own. All algorithms 
in this paper assume that the input is in standard 
form. The output of all algorithms is also in standard 
form. 

all image pixels (empty and filled) to processors, 
which in the case of sparse images would result in 
a lot of idle processors. Martin et al. (5) describe 
algorithms for a horizontally reconfigurable archi- 
tecture. Hung and Rosenfeld (6) consider a mesh con- 
nected computer. It appears that their intersection/ 
union algorithm assumes the availability of both 
empty as well as filled leaves, which represents 
redundant input. Our collapse algorithm is based on 
one of their quadtree building algorithms, while our 
neighbor finding algorithm is a modified version of 
their algorithm for the hypercube. Nandy et al. (7) 
describe linear quadtree algorithms for neighbor 
finding and boundary following on an MIMD hyper- 
cube. Their work does not give complexity analysis 
for the complete embedding of the quadtree. 

2. HYPERCUBE PRIMITIVES 

2.1. Concentrate 

In the Concentrate algorithm we start with a subset 
of the processing elements, each containing data in 
register D, and the PE's rank (that is, the number 
of selected PEs with lower index than self) in register 
R. The objective is to move the data in register D 
such that D(i) goes to the PE with index R(i). This 
primitive is used to bring the 1D representation of a 
quadtree into standard form. 

The Concentrate algorithm is described in ref- 
erence (8). Figure 2(a) illustrates the concentrate 
operation. The time complexity of the algorithm is 
O((N/P)  log P) where N is the size of the given input 
and P is the number of PEs. 

2.2. Merge 

Merging of two sorted arrays can be done on the 
hypercube using the bitonic merge algorithm. The 

D dl d4 d5 d6 
R ct 0 c~ ct 1 2 3 ct 

D(afterConeentrate) d I d 4 d 5 d 6 . . . .  

(a) Concentrate 

D d o d I d 2 d 3 . . . .  
R 2 3 6 7 ~ ct ~ ct 

D(afterGeneralize) d o d o d o d I d 2 d 2 d 2 d 3 

(b) Generalize 

1.3. Earlier work 

Sequential algorithms for processing pointer-less 
quadtrees are described in references (2, 3). Parallel 
quadtree algorithms for various architectures can 
be found in the literature. Mei and Liu (4) consider 
quadtree algorithms for a 2D shuffle exchange net- 
work. The paper also assumes a static allocation of 

D 7 9 4 6 8 2 1 5 
D(after+-scan) 7 16 20 26 34 36 37 42 

S I 0 0 1 0 0 1 0 
D(after segmented +-scan) 7 16 20 6 14 16 1 6 

(c) Non-segmented / Segmented Prefix Scan 

Fig. 2. Hypercube primitives. 
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hypercube algorithm is described in reference (9). 
The merge algorithm takes time O((N/P) log P). The 
merge primitive is used in the quadtree intersection/ 
union algorithm. 

2.3. Generalize 

In the Generalize algorithm we start with data in 
register D in the first k PEs. A detination PE index 
is available in register R and is such that 
R ( i - 1 ) < R ( i )  for 0~<i~<k. For convenience, 
assume R ( - 1 ) =  0. The objective is to move the 
data in register D such that D(i) goes to all the PEs 
with index k satisfying <R(i) and >~R(i- 1). This 
primitive is used to obtain the complement of a 
quadtree. 

The Generalize algorithm is described in reference 
(8). Figure 2(b) illustrates the generalize primitive. 
The time complexity of the algorithm is O((N/ 
P) log P). 

2.4. Segmented scans 

In the segmented prefix scan algorithm a lobit 
register S is used to indicate the start of a new 
segment when set to 1. Data is available in register 
D. A binary associative operator @ is specified. The 
objective is to obtain in PE i the quantity 
D(j) • D(j + 1) ~ .  • • D(i) where j satisfies the fol- 
lowing properties: (i) j ~< i, (ii) S(j) -- 1, and (iii) for 
all k satisfying j < k ~< i and S(k) = 0. Segmented 
scans are used in the quadtree union/intersection, 
collapse and in the neighbor finding algorithms. 

The segmented scan algorithm is a modified form 
of the prefix scan algorithm presented in reference 
(8). Figure 2(c) illustrates the scan primitive. The 
time complexity of the algorithm is O((N/ 
P) + log P). 

2.5. Sort 

Bitonic sort can be used to sort an array on the 
hypercube. The sorting algorithm is described in 
reference (9). The bitonic sort algorithm takes time 
O(log 2 N) when P = N. A faster deterministic sort- 
ing algorithm that runs in nearly logarithmic time is 
presented in reference (10). The complexity of this 
sorting algorithm is O(log N(log log N) 2) when P = 
N. Sort (N, P) is used throughout this paper to 
indicate the time taken to sort N elements on a 
hypercube with P PEs. The Sort primitive is used in 
the neighbor finding algorithm. 

3. BOOLEAN OPERATIONS 

3.1. Intersection~union 

The intersection/union of two quadtrees T t and 
7"2 is a quadtree T such that the image represented 
by T is the intersection/union of the images repre- 
sented by Tl and 7"2. 

The intersection/union algorithm is outlined in 
Fig. 3. 

Figure 4 illustrates the intersection/union algor- 
ithm through an example. The Index, Level, and 
Tree-no registers are set by merging the given quad- 
trees as mentioned in step I of the algorithm. Initially 
the Cover register is set as described in step 2--a  "1" 
indicates a covering node, and "0" a node that has 
not been labeled yet. The contents of the Cover 
register are modified after determination of 
"leaders". The label "2" indicates a node covered by 
a filled leaf, and "3" a node covered by an empty 
leaf. The lines marked Coverl and Cover2 in Fig. 4 
show the contents of the cover register after step 2 
and step 5 of the algorithm, respectively. The 
resulting tree after the intersection and union opera- 
tions are obtained as described in step 5. These are 
available in registers Inter and Union. 

1. Merge trees T~ and T2 such that the merged tree is sorted by (index,level,tree-no). 
2. Let each node P examine its immediate successor X. The following cases may arise: 

a index(P) = index(X), level(P) = level(X), tree-no(P) < tree-no(X) 
b index(P) = index(X), level(P) < level(X) 
c index(P) < index(X). 

Case a P covers X and X covers P. Mark one of the nodes (say P, since P was the node that detected the covering) as 
"covering" and mark the other for deletion. 

Case b tree-no(P) must be different from tree-no(x) since no two filled leaves from the same tree will have identical 
indices. P covers X. Mark P as "covering" and X as "covered". 

Case c If index(X) < index(P) + size(P), then P covers X. Mark P as "covering" and X as "covered". 

3. Split the nodes into segments with the covering nodes determined so far marking the start of new segments. 
4. The index and level of the covering nodes (we will call these "leaders") are copied onto each node in the segment. 
5. Each node in the segment checks whether it is covered by its leader. If yes, leave as such for intersection and invalidate 
the leader. For union remove these. If not, it is covered by an empty node. Remove these for intersection. Leave as such 
for union. 
6. Concentrate to remove all nodes that were invalidated or marked for deletion. A Collapse algorithm will be required 
after union, to replace subtrees with all leaves filled, by a single node. 

Fig. 3. Algorithm for the intersection/union of two quadtrees. 
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Index: 2 3 4 8 10 12 14 Index 0 1 4 6 10 11 12 
Level: 2 2 1 2 2 2 2 Leoel 2 2 2 2 2 2 1 

(a) Tree T 1 (b) Tree T 2 

Index: 0 1 2 3 4 4 6 8 10 10 11 12 12 14 
Level: 2 2 2 2 1 2 2 2 2 2 2 1 2 2 
Tree-no: 1 I 0 0 0 1 1 0 0 1 1 1 0 0 
Coverl: 0 0 0 0 1 0 0 0 1 0 0 1 0 0 
Cover2: 3 3 3 3 1 2 2 3 1 2 3 1 2 2 
Inter: 0 0 0 0 0 1 1 0 0 1 0 0 1 1 
Union: 1 1 1 1 1 0 0 1 0 1 1 1 0 0 

(c) Steps in the Union/Intersection Algorithm. 

Index: 4 6 10 12 14 Index:O 4 8 10 11 12 
Level: 2 2 2 2 2 Level: 1 1 2 2 2 1 

(d) Tree T 1 n T 2 (e) Tree T 1 u T 2 

Fig. 4. Union/intersection. 

For the in tersect ion/union algorithm to work cor- 
rectly we only need to correctly mark all the filled 
leaves in the given trees as "covering", "covered by 
a filled leaf" or "covered by an empty node".  This is 
because we can retain all nodes covered by an empty 
leaf and remove those covered by a filled leaf for 
quadtree union.  For intersection, we can retain all 
nodes covered by a filled leaf while removing the 
filled cover of those nodes and also remove nodes 
covered by an empty leaf. 

The correctness of the union/ in tersect ion algor- 
ithm can be proved as follows. In step 2, cases a-c  
mark the covering nodes in the input  quadtree cor- 
rectly. Steps 3-5 mark the quadtree nodes that are 
covered by a filled leaf. We claim that the nodes in 
the given quadtrees that have not  been marked so 
far are all covered by an empty leaf. This is true 
since all nodes covered by any leaf X appear as a 
continuous run of nodes after X in the sorted 
ordering described in step 1. 

This is because empty covering nodes are not  
available in our  representat ion.  Further ,  all nodes 
covered by P were not  marked as "covered" in cases 
b and c. 

A node X is covered by its leader Y iff index(Y) = 
i n d e x ( X ) -  index(X) m o d 4  height-level(Y). In step 5, 

invalidation of the leader can be done by the leader 
itself. 

The merge in step 1 and the concentrate in step 6 
take time O ( ( N / P )  log P). The prefix scan in steps 4 
and 5 take O ( ( N / P )  + log P) time. Steps 2 and 3 also 
take O ( ( N / P )  + log P) time. Thus the intersect ion/  
union algorithm has an O ( ( N / P ) I o g P )  time 
complexity. 

3.2. C o m p l e m e n t  

The complement  algorithm is outl ined in Fig. 5. 
Let N 1 be the number  of filled leaves in the given 

quadtree. Step 1 takes O ( ( N 1 / P  ) + log P) t ime and 

1. Each node looks at its immediate successor and finds out the number of empty pixels between them. 
2. The generalize algorithm is used to spread the empty nodes across the available processing elements. 
3. A collapse algorithm is run to group empty nodes together and to bring the result to standard form. 

Fig. 5. The Complementing algorithm. 
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(a) Tree T 3 (b) Complement of T 3 

Index: 
Level: 
I1: 
12: 
NumEmpty: 
I ndOfEmpty: 

Index 
Level 

Index: 4 12 13 22 28 32 48 54 
Level: 2 3 3 3 3 1 2 3 

(c) 1D Repesentation of T 3 

4 12 13 22 28 32 48 54 
3 3 3 3 3 1 2 3 
4 12 13 22 28 32 48 54 (64) 

(-1) 7 12 13 22 28 47 51 54 
4 4 0 8 5 3 0 2 9 
0 1 2 3 8 9 10 11 14 15 16 17 18 20 21 23 
24 25 26 27 29 30 31 52 55 56 57 58 60 61 62 63 

(d) Steps in the Complement Algorithm 

0 8 14 15 16 20 21 23 24 29 30 31 52 53 55 56 60 
2 3 3 3 2 3 3 3 2 3 3 3 3 3 3 2 2 

(e) 1D Representation of complement of T 3 

Fig. 6. Complement algorithm. 

s t eps  2 and  3 t ake  O ( ( N / P )  log P )  t ime ,  w h e r e  N is 
the  s u m  o f  s izes (in p ixels )  o f  t h e  e m p t y  leaves  in t he  
given q u a d t r e e .  T h e  en t i r e  c o m p l e m e n t  a lgo r i t hm 
has  an  O ( ( N / P )  log  P)  t ime  complex i t y .  T h e  

a lgo r i t hm,  h o w e v e r ,  has  a h igh  wor s t - ca se  space  

complex i ty .  
T h e  n u m b e r  o f  e m p t y  n o d e s  is d e t e r m i n e d  as 

fol lows:  let  A and  B be  t h e  two  leaf  n o d e s  b e t w e e n  

which  we wish to  f ind t h e  n u m b e r  o f  e m p t y  n o d e s .  

F ind  the  i ndex  i I o f  t he  r i g h t m o s t  n o d e  at t h e  l owes t  
level o f  t he  s u b t r e e  r o o t e d  at  A a n d  t h e  index  i 2 o f  
the  l e f t mos t  n o d e  at t h e  lowes t  level  o f  t he  s u b t r e e  

r o o t e d  at B. (i2 - il - 1) g ives  t h e  n u m b e r  o f  e m p t y  
n o d e s  b e t w e e n  A and  B. ( M i n o r  mod i f i ca t i ons  can  
be  m a d e  for  t he  first and  t h e  last  leaf  n o d e s . )  

To  r educe  the  a m o u n t  o f  space  r e q u i r e d  the  fol- 

1. Each node determines the maximum number of pixels (filled or empty) it can represent. This is stored in register 
NumPix. 
NumPix(i) = 4 NTzp~il where NTZP(i) is the number of trailing zero-pairs in node index i. 
2. The filled leaves of the quadtree are split into segments. A 1-bit register segment in each node is used to indicate 
whether that node is the beginning of a segment. Register segment is set to true if the index of the node being considered 
minus the index of the last pixel of the immediately preceding node is greater than 1. The index of the last pixel in any 
node = index of node + size of node - 1 where size of a node = 4 (he'ght- leoell. 
3. Each node obtains the number of pixels preceding it in the same segment and stores it in register position. This is just 
a segmented sum scan of the size of each node. 1 + the position of the last node in a segment gives the segment 's  length. 
A segmented backward copy scan makes this value available to each node in the segment in register length. 
4. Each node stores in register follow the number of pixels following it (including self) in the same segment. This is just 
length - position. Followl is set to the largest power of 4 ~< the contents of the follow register in the same node. 
5. The minimum of NumPix and fol lowl in each node gives the size of the largest block of filled leaves represented by 
that node. This is available in the register MaxBlkFL. The register leoell is set based on the contents of MaxBlkFL. 
6. Nodes that are redundant need to be deleted. A node is redundant when it represents only a subset of the pixels 
represented by another node. Using the index and level information each node first finds the number of its sibling nodes 
that have higher indices than self and the number of siblings with lower indices. By comparing this with the contents of 
the position and follow registers the node can determine whether it is redundant or not. If it is redundant it is marked 
for deletion. 
7. Concentrate to remove nodes that were marked for deletion. 

PR 2517-F 

Fig. 7. Quadtree Collapse algorithm. 
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Index: 0 1 2 3 4 8 10 11 12 
Level: 1 2 2 2 I 2 2 2 1 
Size: 1 l 1 1 4 1 1 1 4 
Seg: 1 0 0 0 0 0 1 0 0 
Position: 0 1 2 3 4 8 0 1 2 
Follow: 9 8 7 6 5 1 6 5 4 
MaxBkSz: 4 I 1 1 4 1 1 1 4 
Follow1: 4 4 4 4 4 1 4 4 4 
NumPix: 16 1 1 1 4 4 1 1 4 
Level1: 1 2 2 2 1 2 2 2 1 
LSib: 0 1 2 3 4 8 2 3 12 
Self+RSib: 64 3 2 1 12 8 2 1 4 
Redun: 0 l 1 1 0 0 0 0 0 

(a) Steps in Collapsing tree T 1 u T 2 from figure 4. 

Index." 0 4 8 10 11 12 
Level 1 I 2 2 2 I 

(b) 1D Representation of Collapsed Tree Tne w 

Fig. 8. Collapsing a tree. 

lowing modification can be used. Let  l l  and l 2 be the 
levels of nodes A and B. If 12 > 11 find the index of 
the ancestor of  B in level l l  (call this ancestor  C). A 
notes down the level number  ll along with the num- 
ber of nodes be tween A and C, and level l 2 along 
with the number  of nodes to the left of B having C 
as an ancestor. If l 1 ~ l 2 let D be the ancestor of A 
at level 12. Now B notes down level 12 along with the 
number  of nodes be tween D and B and level 11 along 
with number  of nodes to the right of A having D as 
an ancestor. A g e n e r a l i z e  and a c o m p a c t  can now be 
done as in the earl ier  case. The  t ime complexity is 
still O ( ( N / P )  log P) al though the space required has 
been reduced. 

The first method  is illustrated in Fig. 6. 

3.3. D i f f e r e n c e  

The difference operat ion be tween two trees can 
be carried out by complement ing  the second tree,  
followed by an intersection be tween the resulting 
tree and the first tree.  The  t ime taken by difference 
is O ( ( N / P ) l o g  P). 

4. COLLAPSING THE TREE 

A quadtree  needs to be collapsed when all the four  
children of  a non-leaf  node have identical values. 
Such nodes are redundant  and can be removed  after 
the contents  of  their oa lue  register is passed on to 
their parent  node. 

Figure 7 gives the steps in the collapse algorithm. 
Steps 1 and 4--6 of  the collapse algorithm take 

O ( N / P )  time. Steps 2 and 3 take t ime O ( ( N / P )  

+ log P) and step 7 takes O ( ( N / P )  log P) time. Thus, 
the collapse algori thm has a worst case t ime com- 
plexity of  O ( ( N / P )  log e ) .  

Figure 8 illustrates the collapse algorithm. 

5. NEIGHBOR FINDING 

Our standard form for the representat ion of  the 
quadtree stores the blocks in the image in Shuffled 
Row Major  (SRM) order.  We begin with this rep- 
resentation and compute  the North ,  South,  East ,  
and West  neighbors of  each block. Note  that any 
node looks only for nodes smaller than itself. The 
steps in the East  neighbor finding algori thm are 
outlined in Fig. 9. Modifications for North ,  South,  
and West  neighbor finding should be easy. The  algor- 
ithm can also be extended for 8-neighbor finding. 

Index: 1 2 3 4 8 12 13 14 
Level: 2 2 2 2 1 2 2 2 
Data: 1 2 3 4 5 6 7 8 
CMAdd: 4 1 5 8 2 10 14 11 
CMAddl: 1 2 4 5 8 10 ll  14 
Data1: 2 1 5 3 4 6 8 7 
RMSucc 2 5 6 3 10 11 16 15 
Begin: 8 5 9 12 10 14 16 15 
End: 8 5 9 12 11 14 16 15 
Neighb: 4 3 0 0 14 7 0 0 

Fig. 10. Steps in the neighbor finding algorithm. 

1. Each node computes its Column Major/Row major address from its index by bit shuffling. These are available in 
registers C M A d d  and R M A d d .  
2. The nodes are then rearranged in increasing CM address order (Register C M A d d l ) .  Note that all the East neighbors 
of any node will now appear as a continuous run. Each node just needs the Column Major addresses of its topmost and 
bottommost East neighbors. These addresses can be used to select the segment of nodes representing its East neighbors. 
3. The row major address of the topmost neighbor of any node X is the address of the immediate successor of X in Row 
Major order. (This successor could be a filled or an empty node.) This is available in register RMSucc .  

RMSucc( i )  = R M A d d ( i )  + ~/(s ize(X)) .  

4. The row major addresses in R M S u c c  are converted into column major addresses and stored in Begin. 
5. The highest possible column major address an East neighbor could have is computed and stored in End.  
6. The computed column major addresses from steps 4 and 5 are sorted, tagged, and merged with the sorted sequence 
from step 2. Segmented scans can now be used to collect information from the data registers of the East neighbors. 

Fig. 9. Neighbor finding algorithm. 
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Time complexity of steps i and 3-5 of the neighbor 
finding algorithm is O(N/P).  Steps 2 and 6 involve 
sorting and hence the neighbor finding algorithm 
takes O((N/P) + Sort(N, P)) time. 

The neighbor finding algorithm is illustrated in 
Fig. 10. 

6. CONCLUSIONS 

In this paper we developed parallel algorithms 
for the following operat ions on quad t rees - -boo lean  
operations (union,  intersection, complement) ,  col- 
lapsing a quadtree,  and neighbor finding in an image 
represented by a quadtree.  We presented optimal or 
near optimal algorithms for an SIMD hypercube 
architecture for the above problems. 

Acknowledgement--The authors would like to thank Ravi 
Ponnusamy for his help with this work and for his comments 
on earlier versions of this paper. 
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