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In this paper, we present a novel method for salient object detection in videos. Salient object detection
methods based on background prior may miss salient region when the salient object touches the frame
borders. To solve this problem, we propose to detect the whole salient object via the adjunction of virtual
borders. A guided filter is then applied on the temporal output to integrate the spatial edge information
for a better detection of the salient object edges. At last, a global spatio-temporal saliency map is ob-
tained by combining the spatial saliency map and the temporal saliency map together according to the
entropy. The proposed method is assessed on three popular datasets (Fukuchi, FBMS and VOS) and com-
pared to several state-of-the-art methods. The experimental results show that the proposed approach
outperforms the tested methods.

© 2019 Elsevier Ltd. All rights reserved.

1. Introduction

The human vision system has an effective ability to easily rec-
ognize interesting regions from complex scenes, even if the fo-
cused regions have similar colors or shapes as the background.
Salient object detection aims to detect the salient object that at-
tracts the most the visual attention. The output of the salient ob-
ject detection is a saliency map where the pixel values indicate the
probability of each pixel of belonging to the salient object. Higher
value represents higher saliency. This topic has gained much at-
tention for its wide applications, such as image registration [1,2],
object segmentation [3,4], person identification [5], spectral-spatial
reconstruction [6] and etc.

Existing salient object detection methods can be roughly di-
vided into two categories: traditional methods and deep learning-
based methods, which are interesting and useful for different ap-
plications. For a given database, deep learning-based methods have
a better performance than many recent traditional methods. But
the premise is it should be trained with huge and rich train-
ing datasets, which is impossible for some applications where the
available data is small. Traditional methods are however intrinsi-
cally unassailable from such limitation. In this study, we will fo-
cus on the traditional approach, but we will also show how the
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performance of our proposed model can be further improved by
integrating a deep learning-based method.

According to the type of source information, salient object de-
tection approaches can be broadly grouped into two categories:
image salient object detection models and video salient object de-
tection models. Image salient object detection models the visual
input viewing process based on the appearance of the scene. Since
the human vision system is sensitive to motions, video salient ob-
ject detection detects the salient object using cues in both spatial
domain and temporal domain and becomes much popular. How-
ever, due to the limitation of leverage of the saliency cues from
two domains, video salient object detection is still challenging. In
this paper, we focus on video salient object detection.

The “background prior” [7] assumption is widely used in salient
object detection approaches. It assumes that a narrow border of
the image is the background region. This assumption is normally
true because the important object is often located in the frame
center by the photographers. Based on this assumption, the dis-
tance transform has been widely used for saliency computation.
Traditionally, the distance transforms measure the distance of a
pixel and the seed set using different path cost functions. Since
background regions are assumed to be connected to image bor-
ders, the border pixels are initialized as the seed set and the dis-
tance transform detects a pixel’s saliency by computing the short-
est path from the pixel to the seed. The larger the shortest path
is, the higher the saliency is. It has achieved a success in salient
object detection, but a few commonly observable issues still ex-
ist. In the background prior, all the border pixels are regarded as
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Fig. 1. State-of-the-art saliency maps [8-10].

background. Thus, in the distance transform, all the border pixels
are set to be seed and their saliency values are thus zeros. When
the salient object pixels appear in the border, their saliency values
are consequently set to zeros. Though some methods [8-10] can
alleviate this problem, but not enough. Fig. 1 illustrates this prob-
lem by showing the saliency maps of some existing methods on
one example image.

Video salient object detection detects the salient object from
both spatial domain and temporal domain. How to combine these
two saliencies together during the detection is complex. One usual
way (called “Feature fusion”) is to fuse the extracted spatial fea-
ture and extracted temporal feature together to give a spatio-
temporal feature. Considering the spatial gradient magnitudes and
fusing them with the temporal gradient magnitudes into spatio-
temporal edges is a popular Feature fusion way. The resulted
spatio-temporal edges may still give inaccurate salient object de-
tection. Another usual way (called “Map fusion”) is to combine
the spatial saliency map and the temporal saliency map together.
The existing simple linear or non-linear way is still insufficient to
decide the confidence weight for each saliency map. In order to
employ more video saliency information, these two techniques are
used together recently. However, in complex scenes, the methods
still could not fully make use of detected saliency from the two
domains. Some examples are shown in Fig. 2. For models [11-13],
the salient object has been located but still with blur edges. Thus,
the fusion is still a much more challenging problem.

Facing these open issues, we propose a new video salient object
detection algorithm by addressing:

1) the problem of detecting a complete salient object con-
nected to borders using the distance transform with a virtual
border-based technique which consists of four steps which
are a) Frame Border Selection, b) Frame Border Division, c)
Representative Pixel Selection and d) Virtual Border Padding.
In spatial domain, the virtual border is added to the frame
aiming to detect the whole salient object. In temporal do-
main, it is also added to the color optical flow map in order
to detect the complete salient object motion and then obtain
the salient object by filtering the global motion out.

2) the Feature fusion problem by using an edge-aware filter,
called the guided filter [14]. It is introduced to preprocess
the virtual border-based color optical flow map for enhanc-
ing object edges.

3) the Map fusion problem by computing the entropy and the
standard deviations to decide the confidence level of the
spatial saliency map and the temporal saliency map.

[12] Ours

Fig. 2. State-of-the-art saliency maps [11-13].

Ground truth

The remaining of this paper is organized as fol-
lows. Section 2 briefly describes the related work.
Section 3 presents the proposed method in detail. In
Section 4, we conduct comparison experiments to evaluate
the performance of the proposed method. Section 5 con-
cludes the paper.

2. Related work

This section introduces the recent works related to the video
salient object detection (SOD). SOD in videos is closely related
to SOD in images. Recent traditional methods for image SOD and
video SOD are introduced respectively. Then, deep learning-based
methods are summarized.

2.1. Traditional image SOD methods

Image SOD methods are fully exploited in recent years. We will
give examples of some important categories, including graph-based
approaches, probabilistic models and cognitive methods.

For graph-based approaches, Shan et al. [15] use background
weight map as propagating seeds and design a third-order smooth-
ness framework to improve the performance of manifold rank-
ing. Jiang et al. [10] propose a saliency detection via absorbing
Markovian chain. Zhang et al. [9], Tu et al. [8] and Huang et al.
[16] compute the saliency based on the minimum barrier dis-
tance transform. Lie et al. [17] improve the detection speed us-
ing the upsampling of random color distance map. For probabilis-
tic models, Aytekin et al. [18] adopt a probabilistic mass function
to encode the boundary connectivity saliency cue and smoothness
constraints into a global optimization problem. Li et al. [19] pro-
pose an optimization model based on conditional random fields
and geodesic weighted Bayesian model. For cognitive method, Yan
et al. [20] combine bottom-up and top-down attention mecha-
nisms to focus on the salient object. Peng et al. [21] propose a
tree-structured sparsity-inducing norm, and introduce a Laplacian
regularization, and employ the high-level prior to detect the salient
object.

2.2. Traditional video SOD methods

According to different types of spatial and temporal information
to be fused, we roughly divide the traditional methods into three
categories: “Feature fusion”, “Map fusion” and “Hybrid fusion”.

As a “Feature fusion” method, Wang et al. [12] fuses the color
gradient magnitude and optical flow gradient magnitude in a non-
linear way. Wang et al. [22] fuse the spatial edge to temporal op-
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tical flow by using guided filter. Bhattacharya et al. [23] use a
weighted sum of the sparse spatio-temporal features.

As a “Map fusion” method, Tu et al. [24] generate two types of
saliency maps based on a foreground connectivity saliency mea-
sure, and exploit an adaptive fusion strategy. Yang et al. [25] pro-
pose a confidence-guided energy function to adaptively fuse spatial
and temporal saliency maps.

“Hybrid fusion” can be considered as a combination of “Fea-
ture fusion” and “Map fusion”. Li et al. [26] fuse the spatial
and temporal channel to generate saliency maps, and then use
saliency-guided stacked autoencoders to get the final saliency map.
Chen et al. [27] obtain the motion saliency map with spatial cue,
then use k-Nearest Neighbors-histogram based filter and Markov
random field to eliminate the dynamic backgrounds. Kim et al.
[11] detect the salient object based on the theory of random walk
with restart. Liu et al. [13] obtain temporal saliency propagation
using spatial appearance, which spatial propagation is performed
via the temporal saliency map. Wang et al. [4,28] produce spatio-
temporal edge map to get the saliency map based on the geodesic
distance, which is then combined with global appearance models
and with dynamic location models. Xi et al. [29] first get spatio-
temporal background priors, and then take the sum of appearance
and motion saliency as the final saliency. Zhou et al. [30] pro-
pose localized estimation to generate the temporal saliency map,
and deploy the spatio-temporal refinement to get the final saliency
map, which is then used to update the initial saliency map. Chen
et al. [31] detect the motion cues and spatial saliency map to
get the motion energy term, which are combined with some con-
straints and formulated into the optimization framework. Ramadan
et al. [32] applies the pattern mining algorithm to detect spatio-
temporal saliency patterns. Guo et al. [33] select a set of salient
proposals via a ranking strategy. Chen et al. [34] get the tempo-
ral saliency map to facilitate the color saliency computation. Chen
et al. [35] utilize Markov random field to conduct semantic label-
ing and learn multiple nonlinear feature transformations to enlarge
the feature difference between the salient object and backgrounds.

2.3. Deep learning-based methods

Recently, deep neural networks are more and more used in SOD
for their high efficiency and effectiveness. For image SOD, Liu et al.
[36] use a hierarchical convolutional neural network to detect the
object; Hou et al. [37] use deep multi-scale features instead of
hand-crafted features; Lee et al. [38] combine hand-crafted fea-
tures and deep features together; Chen et al. [39] learn depth cue
to help saliency detection; Yuan et al. [40] propose a multiscale
and multidepth network. For video SOD, Wang et al. [41] input
two successive frames into the network to learn spatio-temporal
saliency; Tang et al. [42] employ a weakly-supervised network
without needing all training datasets with pixel-wise ground truth.
Compared with the above deep learning and image-based SOD, the
deep learning and video-based SOD has not been studied widely
yet. This is due to the lack of the large-scale video salient object
dataset and the complexity of the spatial and temporal fusion.

3. Proposed algorithm

The block-diagram of the proposed Virtual Border and Guided
Filter-based (VBGF) method is shown in Fig. 3. Given an input
video sequence, in spatial saliency detection (SD), the virtual bor-
der is built for each frame. Then, the saliency is computed to get
the spatial saliency map (SSM). Secondly, in temporal saliency de-
tection (TD), the motion information is extracted from the input
video. Then the virtual border building, the Feature fusion and the
saliency computation are applied to obtain the temporal saliency
map (TSM). At last, the two saliency maps are fused to get the

spatio-temporal saliency map (STSM). The method is detailed in
the following parts.

3.1. Spatial saliency detection (SD)

In this section, the virtual border-based distance transform in
spatial domain is designed.

3.1.1. Virtual border building

We propose to add the virtual border around the original frame
to obtain with-virtual-border frame. The virtual border is built as
shown in Fig. 4.

a) Frame Border Selection: one frame border is selected to build
the virtual border by two steps:
e FastMBD [9] is applied to frame « to obtain the map M.
o The frame border nearest to the non-zero region in the map
M is selected to build the virtual border.

b) Frame Border Division: after one border selected, the corre-
sponding divided border is obtained from the original frame
border (with width u). The divided up border (DUB), divided
down border (DDB), divided left border (DLB) and divided right
border (DRB) are shown in the bottom left part in Fig. 4. The
reason lying behind this division is that: the region in the frame
corner is often connected with two borders and its feature is
also related to these two borders. Thus, the irregular shape con-
necting three borders is used to calculate the virtual border.
The parameters u and [ are selected empirically. In this paper, u
is set to 5 and [ is set to 18%. Preliminary experiments showed
that these values make the algorithm robust to various back-
ground complexities.

¢) Representative Pixel Selection: for the generated divided bor-
der, the sum of absolute differences (SAD) is computed for each
pixel by summing all the absolute differences between this
pixel and other pixels in the divided border:

SAD(x) = Y |I(x) —1(x)| (1)
x'eDB

where DB ¢ {DLB, DUB, DUB, DDB}, I is the feature channel. The

pixel having the minimum SAD is selected to represent the di-

vided border. For color images, the SAD is computed by sum-

ming the three color channels:

colorSAD(x) = Z Z ili(X)—li(X/)\ (2)
}

X' eDBie{r,g,b

We have also considered using the mean or median value of the
borderas intensities as the representative pixel value. Various
experiments conducted on different frames have shown that
the minimum SAD choice performs better than the mean and
the median values in most of the cases (cf. the 1st example im-
age in Fig. 4 where the representative pixel is chosen from the
salient object instead of the background when using the mean
value of the borderds intensities). The same way, choosing the
median value of the border’s intensities as the representative
pixel value fails, which can be seen on the 2nd example image
in Fig. 4.

d) Virtual Border Padding: around the selected original frame bor-
der, we build the corresponding virtual border with the above
representative pixel. The virtual up border (VUB), the virtual
down border (VDB), the virtual left border (VLB) and the vir-
tual right border (VRB) are shown in the bottom right part in
Fig. 4. Existing methods usually regard the border (with width
1) to be background and seed sizes are set to be 1. Here we set
the virtual border size v to 5, which helps the proposed “vir-
tual border building” to be applied to other distance transform
based saliency detection methods.
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Fig. 3. The proposed block-diagram. SD: spatial saliency detection; SSM: spatial saliency map; TD: temporal saliency detection; TSM: temporal saliency map; STSM: spatio-
temporal saliency map.
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Fig. 4. Virtual border building: (1) two examples of map M obtained by applying FastMBD [9] on the frame; and then for each frame, the closest border to the salient
region is selected to build the virtual border; (2) generating the divided border from the highlighted frame border (with width u), h; is the frame height, w; is the frame
width and [ is set to 18%, four divided borders: divided up border (DUB), divided down border (DDB), divided left border (DLB), divided right border (DRB) are shown; (3)
the red dotted line denotes the virtual border padded with the selected representative pixel; (4) building and padding the virtual border (with size v) with representative
pixel value, four virtual borders: virtual up border (VUB), the virtual down border (VDB), the virtual left border (VLB) and the virtual right border (VRB), are shown in four

different textures. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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Fig. 5. An example of the spatial saliency detection. The red dotted line denotes the virtual border. (For interpretation of the references to color in this figure legend, the

reader is referred to the web version of this article.)

3.1.2. Saliency computation

After the “virtual border building”, the spatial saliency map SSM
is obtained by apply the FastMBD [9] to the with-virtual-border
frame D and then remove the virtual border region from the re-
sulted map. One example is given to show the process of spatial
saliency detection in Fig. 5.

3.2. Temporal saliency detection (TD)

Given an input video sequence, the movement information is
extracted from the whole video and then the salient object is de-
tected from this movement information.

3.2.1. Movement extraction

The optical flow vectors between pairs of successive frames are
obtained using a fast optical flow method [43]. Then the optical
flow vector is mapped to Munsell color system to produce the
color optical flow map E (an example image can be found in Fig. 6).

3.2.2. Virtual border building

Based on the background cue, the global motion is usually con-
nected to E borders. The global motion is mainly generated by the
background and camera motion. The distance of each pixel to the
border pixels of E calculated by the FastMBD [9] can indicate its
temporal saliency. The larger the distance, the higher the tempo-
ral saliency value. As the same problem in the spatial saliency de-
tection, when the salient object touches frame borders, its move-
ment information also touches E borders. If we directly apply the
FastMBD [9] on E, the salient object movement part connected to
E borders is hard to be detected. Thus, we add virtual borders on
E using the same procedure as described in Section 3.1.1 to obtain
the with-virtual-border color optical flow map F.

3.2.3. Feature fusion

We propose a new Feature fusion way that fuses the spa-
tial edge with the temporal information, considering that: 1) the
salient object movement is often bigger than the background
movement, thus the background and the salient object are often
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Fig. 6. An example of the temporal saliency detection: from two successive frames, the optical flow vector is extracted and mapped to be the color optical flow map E. The
virtual border is built on map E to generate with-virtual-border color optical flow map F. The red dotted line denotes the virtual border. After guided filtering, the filtered
image G is generated to produce the temporal saliency map. Ground truth is provided for comparison. (For interpretation of the references to color in this figure legend, the

reader is referred to the web version of this article.)

shown in different colors in the color optical flow map; 2) if the
movements within the salient object are different, the salient ob-
ject cannot be detected completely. If the spatial edges are added
onto F, the salient object edges will be enhanced. The pixel’s dis-
tance in blur edges will be increased if the pixel belongs to the
salient object or decreased if the pixel belongs to the background.
Thus we performed the guided image filtering. The guided filter
[14] is a linear filtering process, which involves a guidance image
(', an input image C? and an output image C3. The C3 at a pixel i
is computed using the filter kernel K which is a function of C! but
independent of C2.

Ci=> K;(CchHezy, (3)
J
where i and j are pixel indexes, and

K@) = (oD Y 1+ (€= ) (€ = ) (o +€)7),

(i, j)ewy
(4)

where wy, is the square window centered at the pixel k in C1, |wy|
is the number of pixels in wy, € is a regularization parameter, and
L and akz are the mean and the variance of C! in w;. The main
assumption of the guided filter is a local linear model between (!
and C3. Thus, C3 has an edge if C! has an edge.

The proposed method use with-virtual-border frame D as the
guidance image and with-virtual-border color optical flow map F
as the input image to get the filtered image G as Eq. (5),

Gi=Y loel™ Y. (1 + D — w)D; — (o +€)HE, (5)
J

(i.j)ewy

where i and j are pixel indexes, wj is the square window centered
at the pixel k in D;, iy and o are the mean and the variance of D;
in wy. € is set to be 1076, |wy| is decided by the frame size. Large
frame size needs large |wy|. We use 20 x 20 for Fukuchi and FBMS
datasets, and use 60 x 60 for VOS dataset since VOS has larger av-
erage frame size than that of Fukuchi and FBMS [26,26,44].

3.2.4. Saliency computation

The FastMBD [9] is applied on the filtered image G and then the
virtual border region is removed to obtain the temporal saliency
map TSM. One example is given to show the process of the tem-
poral saliency detection in Fig. 6.

3.3. Map fusion
Given the spatial saliency map SSM and the temporal saliency

map TSM, the fusion is made to obtain spatio-temporal saliency
map STSM by four steps:

e SSM and TSM are firstly fused as Eq. (6), where ratio; =
muy/(mus + mur), ratio, = 1 — ratio;.

STSM = ratio; x SSM + ratio, x TSM (6)

where mug and mur are respectively the mean entropies of all
the spatial saliency maps and all the temporal saliency maps
for a video sequence (with » the number of frames) as Eq. (7).

% 255 ) .
mug = Z - Z (Prob?f x log <PTOb‘j-f>) /}f

i
x 255 ) )

mur =Y (=) (Prob]T,J x log (ProbJT-/)) /}f (7)
=1\ =1

where Prob?f and ProbjT.f are respectively the normalized his-
togram of jth spatial saliency map and jth temporal saliency
map: Proby =numy/(h; x wy), numj is the number of pixel
(equal to j’) in saliency map. Here, the idea is that mu; (i =S, T)
are used to decide the confidence of SSM and TSM. The disor-
der degree of saliency map reflects the difficulty degree to de-
tect the salient objects. If mu; (ie{S, T}) is larger, the saliency
detection in this domain is worser.
e STSM is optimized using Eq. (8)

STSM = SSM if mus < mur (8)

The frame is often more complex than the color optical flow
map, which results in that the disorder degree of SSM is usually
larger than that of TSM. If mug is smaller than mur, it means it
is difficult to detect the salient object in TSM. Thus, SSM has a
high confidence.

e STSM is optimized using Eq. (9)

SISM=SSM  if o5 > o7 (9)

o and o7 are respectively the standard deviations of non-zero
regions in two grayscale images Hs and Hp, which are gener-
ated by the following steps: firstly, converting frame o from
RGB to HSI color space, then eliminating the hue and saturation
information while retaining the luminance to get the grayscale
images «’; secondly, using a threshold § to neglect the pixels
with low saliency value from the images SSM and TSM as in
Eq. (10)

0 if SSM; <6
HSU- = { o f i =

otherwise T = { o (10)

i i otherwise
where i and j are pixel indexes in the images. The appear-
ance of the wrongly detected background is mostly different
from the salient object in the grayscale image, which results in

that H; (ie{S,T}) contains more luminance values and thus o;
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(ie{S,T}) is smaller. If o is bigger than o, it means SSM has a
high confidence.

o Low saliency value (lower than §) in STSM is decreased to 0.1
times.
The pixels with low saliency value in saliency map are unim-
portant for visual saliency but have a large influence in com-
puting the detection confidence. Thus, § is used to decrease
their affection and set to 70 in all this paper.

4. Experiments and analyses

In this section, the performance of the proposed method is as-
sessed and discussed.

4.1. Performance evaluation

Three metrics are used to measure the similarity between the
generated saliency map (SM) and the Ground truth (GT):

o Precision-recall (P-R) curve [7]: the saliency map is normalized
to [0, 255] and converted to a binary mask (BM) via a threshold
that varies from 0 to 255. The precision and the recall are:

Precision = ‘BM N GT‘/|BM|, Recall = ‘BM ﬂGT‘/|GT| (11)

For each threshold, a pair of (Precision, Recall) values are com-
puted and used for plotting P-R curve. The curve closest to the
top right corner (1.0, 1.0) corresponds to the best performance.
F-measure [45]: higher F-measure means better performance.

F — measure = (14 82) x (Precision x Recall)
x (B2 x Precision + Recall)™! (12)

B2 is often set to 0.3. Average precision (the average of preci-
sion values at all ranks) and average recall (the average of recall
values at all ranks) are used.

e Mean Absolute Error (MAE) [7]: smaller MAE means higher
similarity and better performance.

h1xwl
MAE = (h1 x w1)~" »" |GT(i) — SM(i)| (13)
i=1

For each tested dataset, we compute the average metric for each
video sequence and then compute the average metric for all the
videos.

4.2. Test datasets

Three datasets with various contents and various conditions are
used for models’ performance evaluation and comparison.

4.2.1. Datasets with many salient objects connected to the frame
border

Fukuchi dataset [44] includes 10 sequences. The salient ob-
ject touches the frame border in most video sequences. All tested
methods hardly detect the salient object for the video “BR128T".
As in [34], the video “BR128T” is excluded in the test.

4.2.2. Datasets with complex backgrounds

FBMS dataset [26] is with 59 heterogeneous video sequences.
The GT is available for only a part of frames. We use the test
set that contains 30 videos with provided GT for evaluation. The
global motion with high complexity exists in most of the video se-
quences.

4.2.3. Datasets with large daily videos

VOS dataset [26], proposed for video salient object detection,
contains 200 indoor/outdoor videos (64 min, 116,103 frames). The
GT is available for part of frames. VOS-E and VOS-N are two
subsets: VOS-E contains 97 easy videos and VOS-N contains 103
videos (the background is cluttered and salient object is highly dy-
namic). This large-scale dataset is used to benchmark models with
the evaluation metrics: MAE, Precision, Recall and F-measure. Note
that for the calculation of metrics, an adaptive threshold (com-
puted as the minimum value between “maximum pixel value of
saliency map” and “twice the average values of saliency map”) is
used for converting the saliency map to a binary mask (BM). Ex-
cept for MAE, the author denotes other three metrics in the bench-
mark [26] as the mean Average Precision (MAP), mean Average Re-
call (MAR) and FBeta.

4.3. Results and discussions

Two experimental parts with assorted aims are shown for anal-
ysis. Firstly, the proposed method (based on traditional image-
based salient object detection [9]) in Section 3, denoted as VBGEF,
is evaluated in Section 4.3.1. The performance of each compo-
nent of the model is shown to demonstrate our contributions. The
VBGF's performance is then compared with nine state-of-the-art
traditional salient object detection methods. Secondly, the VBGF
is further improved by integrating a deep learning based image
salient object detection method [36] and denoted as VBGFd. In
Section 4.3.2, the contributions are shown by analyzing the per-
formance of each component. Then performance benchmarking of
our approaches (VBGF and VBGFd) and 13 state-of-the-art mod-
els is reported. Finally, the run-time complexity is compared in
Section 4.3.3.

4.3.1. Performance of the VBGF

Nine state-of-the-art saliency models are tested: MST16 [8],
FastMBD15 [9], AMC13 [10], TGFV17 [22], SGSP16 [13], RWR15 [11],
GF15 [12], SAG15 [28], FD17 [34] on Fukuchi and FBMS dataset. For
all the methods, the experimental results are obtained using the
source codes or saliency results provided by the authors.

1) Contributions of each proposed component to the perfor-
mance

a) Contribution of the proposed virtual border building

The method (based on the “background prior”) may miss the
salient object connected to the image borders and the proposed
virtual border aims to improve this problem. Since MST16 [8],
FastMBD15 [9] and AMC13 [10] detect the salient object in im-
age domain based on the “background prior”, we compare the
proposed spatial saliency map with them by using the Fukuchi
dataset, in which many salient objects connected to the frame bor-
der. Quantitative performance can be found in Fig. 7. The proposed
spatial saliency detection has a better performance since it can de-
tect salient objects more completely.

b) Contribution of the proposed Feature fusion

The proposed Feature fusion employ the guided filter to fuse
the spatial edges with the information in temporal domain. We
compare the performance of the proposed temporal saliency map
with guided filtering and without guided filtering. In the Fukuchi
dataset the salient object motion is small, and in the FBMS dataset,
the global motion varies largely. These two different datasets are
both used. Quantitative performance can be found in Figs. 8 and 9.
We can see that fusing the spatial salient object edges to the tem-
poral information by using guided filtering can improve the de-
tection accuracy. It help to optimize the salient object edges and
remove the background part from the saliency region.
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¢) Contribution of the proposed Map fusion method

Our proposed method first generates spatial saliency map
(cf. Section 3.1), then generates the temporal saliency map (cf.
Section 3.2), finally generates the spatio-temporal saliency map (cf.
Section 3.3). Therefore, we separately test the performance of each
proposed saliency map, then compared quantitative results can be
found in Figs. 10 and 11. For the Fukuchi dataset, the salient ob-
ject motion is slow while the salient object and the background
are in high contrast. Compared with the spatial saliency map, the
detected temporal saliency has a lower confidence. The proposed

fusion can still get a good performance by retaining the spatial
saliency map while neglecting the temporal detection influence.
For the FBMS dataset, the low contrast and the complex back-
ground in the spatial domain make the spatial saliency detection
inaccurate. Though the global motion is intricacy, the temporal
saliency map is still better than the spatial saliency map. The pro-
posed fusion method takes advantages of results from both do-
mains and gives a higher overall performance.

2) Comparison of the proposed method with state-of-the-art
methods
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a) Quantitative comparison with video salient object detection
models

We compare our proposed method with several video salient
object detection models with the Fukuchi dataset and the FBMS
dataset respectively.

For the Fukuchi dataset, six compared models are: TGFV17 [22],
SGSP16 [13], RWR15 [11], GF15 [12], SAG15 [28], FD17 [34]. The P-
R curves, F-measure and MAE values are drawn in Fig. 12, from
which we can see that the proposed method has the best P-R
curve, the highest F-measure and the smallest MAE values. The de-
tailed MAE and F-measure scores over four video sequences are
shown in Table 1 and the proposed method achieves the best per-
formance. These four video sequences are selected with different
cases: in “AN119T”, the salient object locates in the frame cen-
ter; in “DO01_013", all the salient object touch the frame border
and in “DO01_055" and “D002_001" part of salient objects touch
frame border. In the Fukuchi dataset, the contrast between the
salient object and the background is large and the salient object
movement is slow. Spatial saliency detection thus can already pro-
vide a high confidence, while the wrong detections in the tempo-
ral domain may influence the final saliency map. Compared with
methods TGFV17 [22], SGSP16 [13], RWR15 [11], GF15 [12], SA15
[28], and FD17 [34], the proposed fusion method can better select
higher confidence spatial saliency information from two domains.

For the FBMS dataset, five compared models are TGFV17 [22],
SGSP16 [13], RWR15 [11], GF15 [12], SAG15 [28]. Fig. 13 reports
the P-R curves, F-measure and MAE values. We can see that our

Table 1

A table comparing the proposed method and six video salient object
detection models in Mean Absolute Error and F-measure scores over 4
video sequences chosen from the Fukuchi dataset.

Mean absolute error| scores

Method

ANT19T DO001_013 DO001_055 D002_001
TGFV17 [22] 0.0119 0.0084 0.0462 0.0324
SGSP16 [13] 0.0772 0.0675 0.0996 0.1463
RWR15 [11] 0.0692 0.0773 0.052 0.0826
GF15 [12] 0.0312 0.0306 0.0334 0.0378
SAG15 [28] 0.0264 0.0247 0. 026 0.0162
FD17 [34] 0.0062 0.0086 0. 0165 0.0113
Ours 0.0027 0.0052 0.0053 0.0014
Method F-measure? scores

AN119T D0O01_013 DO01_055 D002_001
TGFV17 [22] 0.9069 0.704 0.7228 0.808
SGSP16 [13] 0.7318 0.6343 0.5411 0.5925
RWR15 [11] 0.4878 0.5379 0.6533 0.6182
GF15 [12] 0.8659 0.6842 0.7417 0.8292
SAG15 [28] 0.8432 0.5486 0.7393 0.8348
FD17 [34] 0.9449 0.685 0.7852 0.8656
Ours 0.9516 0.801 0.8051 0.9322

The Bold number indicates the best result.

proposed method performs the best, while all the methods get
lower performances on this dataset since it is the most challenging
one. Five videos with difficult cases (the salient object is similar to
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Table 2

A table comparing the proposed method and five video salient object de-
tection models in Mean Absolute Error and F-measure scores over 5 video
sequences chosen from the FBMS dataset.

Mean absolute error|, scores

Method

Cars5 Cars10 Cats03 Horses04 Horses05
TGFV17 [22] 0.0205 0.0248 0.0536 0.0454 0.0363
SGSP16 [13] 0.0708 0.0599 0.1089 0.0964 0.0877
RWR15 [11] 0.1905 0.1485 0.1471 0.1175 0.0968
GF15 [12] 0.0438 0.0388 0.1148 0.1049 0.0598
SAG15 [28] 0.0486  0.034 0. 0941 0.1427 0.0689
Ours 0.0161 0.0218  0.0103 0.0243 0.0215
Method F-measuret scores

Cars5 Cars10 Cats03 Horses04 Horses05
TGFV17 [22] 0.751 0.6494 0.6573 0.7021 0.6018
SGSP16 [13] 0.6359  0.6595 0.6558 0.6476 0.6105
RWR15 [11] 0.3485 0.4056 0.2219 0.3389 0.3666
GF15 [12] 0.5877 0.6339 0.2762 0.6415 6067
SAG15 [28] 0.4964  0.584 0.3532 0.3797 0.6495
Ours 0.7712  0.7281 0.7184 0.7294 0.6593

The Bold number indicates the best result.

the background or the clustering background is complex) are se-
lected and the detailed corresponding MAE and F-measure scores
are shown in Table 2, in which the proposed method is always the
best method. In the FBMS dataset, on one hand, the global mo-
tion exists in many sequences and is with high complexity which
make the temporal detection more difficult. On the other hand, the
salient object appearance is similar to that of the background and
the clustering background is complex which makes the spatial de-

tection more difficult. Among methods TGFV17 [22], SGSP16 [13],
RWR15 [11], GF15 [12] and SAG15 [28], TGFV17 [22] gets a better
result since they put emphasize on the temporal saliency detec-
tion. However, compared with TGFV17 [22], the proposed method
leverage the spatial saliency and fuse them in a more confidence
way to obtain better result.

b) Subjective comparison with 3 image salient object detection
models and 5 video salient object detection models

To evaluate the overall performances and disparities between
our method and the state-of-the-art methods, we also show a sub-
jective comparison in Fig. 14, (a), (e), (f) and (g) are chosen from
the Fukuchi dataset; (b), (c), (d), (h), (i), (j) and (k) are from the
FBMS dataset. We can see that RWR15 [11] tends to detect salient
object edges rather than the whole salient object. Methods: MST16
[8], FastMBD15 [9], AMC13 [10], TGFV17 [22], SGSP16 [13], GF15
[12], SAG15 [28] can detect salient object region located in the
frame center but not the salient part close to frame borders. By
visually comparing on this figure, we can see that the proposed
method can detect the salient object more completely and more
accurately.

4.3.2. Performance of the VBGFd

It may be worthy to look at the performance of the VBGF with
an integration of a deep learning based method, named VBGFd.
In VBGF, the “Saliency computation” part adopts the traditional
method [9], and the “Virtual border building” part is proposed to
solve the problem appeared in this type of traditional methods
(cf. Fig. 3). For the VBGFd, we replace the “Saliency computation”
and “Virtual border building” parts in both “SD” and “TD” blocks
in Fig. 3 by a deep-salient detection method proposed in [36] -
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Table 3

Comparison of the proposed VBGFd componets’ performance on dataset VOS, VOS-
E, VOS-N. proSSM: proposed spatial saliency map; proTSM: proposed temporal
saliency map; proSTSM: proposed spatio-temporal saliency map.

Dataset Metrics  Proposed VBGFd components
proSSM  proTSM without ~ proTSM with proSTSM
guided filtering  guided filtering

VOS-E  MAPt  0.863 0.398 0.528 0.881
MARY  0.905 0.380 0.480 0.877

FBetat 0.872 0.394 0.516 0.880

MAE|  0.049 0.189 0.154 0.046

VOS-N  MAPt  0.649 0.407 0.407 0.690
MARt  0.851 0.389 0.392 0.806

FBetat 0.686 0.403 0.403 0.714

MAE|  0.055 0.136 0.132 0.059

VoS MAP?  0.753 0.403 0.466 0.783
MART  0.877 0.385 0.435 0.840

FBetat 0.778 0.399 0.458 0.795

MAE|  0.052 0.162 0.143 0.053

The Bold number indicates the best result in each line.

DHSNet (because of the availability of its source code). Besides, the
first two steps in the “Map fusion” part in Fig. 3 change to use the
ratio between the entropies for each frame in Eq. (6), instead of
using the ratio between mean entropies for the whole video se-
quence. In this section, the large-scale video salient object detec-
tion dataset VOS and its two subsets VOS-E, VOS-N are used.

(1) Contributions of the proposed components

In Table 3, we list the performances of the VBGFd with different
components. We can see that its performance is better for all per-
formance evaluation metrics with the “guided filtering” by com-

paring the 4th and 5th columns in Table 3 (contribution (2)); and
its performance is better for most performance evaluation metrics
when the spatial and the temporal information is fused by com-
paring the 3rd, 5th and 6th columns in Table 3 (contribution (3)).

(2) Performance benchmarking of our approach

In Table 4, we inserted the performance of our proposed mod-
els into the benchmarking table (cf. Table III in the paper [26]) pro-
vided with the VOS dataset. Note that here we only list 13 state-
of-the-art models (image-based deep learning and video-based un-
supervised models) reported in [26], not the image-based clas-
sic non-deep learning models (because we have already compared
with some classic models in Section 4.3.1). We can see that among
the tested 15 models, the VBGFd has the best score for 7 times,
when the best benchmarked model DHSNet has the best score for
5 times. Thus in general, we can say that the VBGFd performs the
best among the tested models.

4.3.3. Time

A PC with Intel Core i7 4910 2.9 GHz CPU and 16GB RAM is
used for testing the speed of traditional methods, and the deep
learning method is performed on a NVIDIA 1080 GPU. Note that
the video (Fukuchi and FBMS datasets) with original resolution is
used. For different models that tested in Section 4.3.1 (except the
model FD17 [34] with the unpublished code), the average run-time
is listed in Table 5. Video-based method SFCN and 3 image-based
models have low computation costs. Others have higher computa-
tion costs since the optical flow estimation is usually time consum-
ing. The proposed VBGF and VBGFd models are among the three
fastest video-based detection models, and the average run-time per
frame of each element can be found in Table 6 in detail.
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Table 4
Performance benchmarking of our approach and 13 state-of-the-art models on the dataset VOS and two subsets VOS-E and VOS-N. These models are categorized
into two parts: [I+D] for deep learning and image-based, [V+U] for video-based and unsupervised, [V+D] for deep learning and video-based.

VOS-E VOS-N VoS
Models [MAPT  MAR{  FBeta} MAE|] [MAP} MAR  FBeta} MAE|] [MAP{ MAR{  FBetal MAE}]
[4D]  LEGS 0820 0685 0784 0193 0556 0593 0564 0215  0.684 0638 0673 0204
MCDL 0831 0787 0821 0081 0570 0645 0586 0085 0697 0714 0701 0083
MDF 0.740 0848 0762 0100 0527 0742 0565 0098  0.630 0793  0.661  0.099
ELD 0790 0884 0810 0060 0569 0838 0615 0081 0676 081 0712  0.071
DCL 0.864 0735 0830 0084 0583 0809 0624 0079 0719 0773 0731  0.081
RFCN 0834 0820 0831 0075 0614 0783 0646 0080 0721 0801 0738 0078
DHSNet 0863  0.905 0872 0049 0649 0.851 0686  0.055 0753  0.877 0778  0.052
[V4U] SV 0693 0543 0651 0204 0451 0523 0466 0201 0568 0533 0560  0.203
FST 0781 0903 0806 0076 0619 0691 0634 0117 0697 0794 0718  0.097
NLC 0439 0421 0435 0204 0561 0610 0572 0123 0502 0518 0505  0.162
SAG 0709 0814 0731 0129 0354 0742 0402 0150 0526 0777 0568  0.140
GF 0712 0798 0730 0153 0346 0738 0394 0331 0523 0767 0565 0244
SSA[26] 0875 0776 0850 0062 0660  0.682  0.665  0.103 0764 0728 0755  0.083
VBGF 0797 0773 0791 0085 0558 0688 0583 0130 0674 0729 0686  0.108
[V4D]  SFCN [41] 0806 0842 0814 0063 0577 0815 0619 0086 0688 0829 0716  0.075
VBGFd 0.881 0877 0.880 0.046 0.690 0806  0.714 0059  0.783 0840  0.795 0.053

The best three scores in each column are marked in red, green and blue, respectively.
13 state-of-the-art models (LEGS,MCDL,MDFELD,DCL,RFCN,DHSNet,SIV,FST,NLC,SAG,GF) can be referenced from the paper [26]. For SFCN, the result is generated
using the provided source code.
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Table 5

Average run time (per frame) of the compared models (MST16 [8], FastMBD15 [9], AMC13 [10],
TGFV17 [22], SGSP16 [13], RWR15 [11], GF15 [12], SAG15 [28]), SFCN [41]).

Image_based  MST FastMBD  AMC - - - -
Time(s)|, 0.200 0.018 0.153 - - - -
Video_based SGSP RWR GF SAG TGFV SFCN VBGF VBGFd
Time(s)| 1537 14.25 13.50 1538 33.17 0.072 3.56 3.14
Table 6 ) ) [3] X. Zhi, H. Shen, Saliency driven region-edge-based top down level set evolution
Average run time (per frame) of each component in the proposed models. reveals the asynchronous focus in image segmentation, Pattern Recognit. 80
(2018) 241-255.
c ¢ VBGF VBGFd [4] W. Wang, ]. Shen, R. Yang, F. Porikli, Saliency-aware video object segmentation,
omponen
p Time(s) Ratio(%) Time(s) Ratio(%) IEEE Trans. Pattern Anal. Mach. lntel]. 40 '(1) (}20]8)20}—33. )
[5] Z. Zhao, B. Zhao, F. Su, Person re-identification via integrating patch-based
Virtual border building 0.50 14.04 - - metric learning and local salience learning, Pattern Recognit. 75 (2018) 90-98.
Saliency detection 0.07 1.97 0.15 4.78 [6] W. Xie, Y. Shi, Y. Li, X. Jia, J. Lei, High-quality spectral-spatial reconstruction
Optical flow computation 2.80 78.65 2.80 89.17 using saliency detection and deep feature enhancement, Pattern Recognit. 88
Feature fusion(guided filtering)  0.07 1.97 0.07 2.23 (2019) 139-152. . o . ) .
Map fusion 0.12 337 0.12 3.82 [7] A. Borji, M. Cheng, H. Jiang, ]. Li, Salient object detection: a survey, arXiv:1411.

5. Conclusion

In this paper, a novel video salient object detection method
(the VBGF) and its extension integrating deep representations (the
VBGFd) are proposed. Using virtual border concept has helped to
address the problem of distance transform employed for saliency
computation in previous approaches. The guided filter-based Fea-
ture fusion and the Map fusion are efficiently used for fusing spa-
tial and temporal information together by applying appropriate
balance. When tested on various video databases, the proposed ap-
proach yields satisfactory performance and even outperforms the
state-of-the-art methods.

The virtual border can be used as an optimization operation
for salient object detection methods that are based on background
prior. The guided filter-based Feature fusion helps to remove back-
ground regions for moving object detection and segmentation. The
Map fusion provides a new way to combine various individual
saliency maps into a more robust one. However, the proposed fu-
sion can lead to information loss as the used hand-crafted features
are not robust in some complex cases, which may be improved
with more informative features; so there is still a room for im-
provement. Hence for the future work, we intend to explore deep-
learning based methods for salient object detection in videos. We
also plan to improve the above fusion by training deep networks
to learn more useful deep representations.
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