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In this paper, we present a novel method for salient object detection in videos. Salient object detection 

methods based on background prior may miss salient region when the salient object touches the frame 

borders. To solve this problem, we propose to detect the whole salient object via the adjunction of virtual 

borders. A guided filter is then applied on the temporal output to integrate the spatial edge information 

for a better detection of the salient object edges. At last, a global spatio-temporal saliency map is ob- 

tained by combining the spatial saliency map and the temporal saliency map together according to the 

entropy. The proposed method is assessed on three popular datasets (Fukuchi, FBMS and VOS) and com- 

pared to several state-of-the-art methods. The experimental results show that the proposed approach 

outperforms the tested methods. 

© 2019 Elsevier Ltd. All rights reserved. 
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. Introduction 

The human vision system has an effective ability to easily rec-

gnize interesting regions from complex scenes, even if the fo-

used regions have similar colors or shapes as the background.

alient object detection aims to detect the salient object that at-

racts the most the visual attention. The output of the salient ob-

ect detection is a saliency map where the pixel values indicate the

robability of each pixel of belonging to the salient object. Higher

alue represents higher saliency. This topic has gained much at-

ention for its wide applications, such as image registration [1,2] ,

bject segmentation [3,4] , person identification [5] , spectral-spatial

econstruction [6] and etc. 

Existing salient object detection methods can be roughly di-

ided into two categories: traditional methods and deep learning-

ased methods, which are interesting and useful for different ap-

lications. For a given database, deep learning-based methods have

 better performance than many recent traditional methods. But

he premise is it should be trained with huge and rich train-

ng datasets, which is impossible for some applications where the

vailable data is small. Traditional methods are however intrinsi-

ally unassailable from such limitation. In this study, we will fo-

us on the traditional approach, but we will also show how the
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erformance of our proposed model can be further improved by

ntegrating a deep learning-based method. 

According to the type of source information, salient object de-

ection approaches can be broadly grouped into two categories:

mage salient object detection models and video salient object de-

ection models. Image salient object detection models the visual

nput viewing process based on the appearance of the scene. Since

he human vision system is sensitive to motions, video salient ob-

ect detection detects the salient object using cues in both spatial

omain and temporal domain and becomes much popular. How-

ver, due to the limitation of leverage of the saliency cues from

wo domains, video salient object detection is still challenging. In

his paper, we focus on video salient object detection. 

The “background prior” [7] assumption is widely used in salient

bject detection approaches. It assumes that a narrow border of

he image is the background region. This assumption is normally

rue because the important object is often located in the frame

enter by the photographers. Based on this assumption, the dis-

ance transform has been widely used for saliency computation.

raditionally, the distance transforms measure the distance of a

ixel and the seed set using different path cost functions. Since

ackground regions are assumed to be connected to image bor-

ers, the border pixels are initialized as the seed set and the dis-

ance transform detects a pixel’s saliency by computing the short-

st path from the pixel to the seed. The larger the shortest path

s, the higher the saliency is. It has achieved a success in salient

bject detection, but a few commonly observable issues still ex-

st. In the background prior, all the border pixels are regarded as

https://doi.org/10.1016/j.patcog.2019.106998
http://www.ScienceDirect.com
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Fig. 1. State-of-the-art saliency maps [8–10] . 

Fig. 2. State-of-the-art saliency maps [11–13] . 
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background. Thus, in the distance transform, all the border pixels

are set to be seed and their saliency values are thus zeros. When

the salient object pixels appear in the border, their saliency values

are consequently set to zeros. Though some methods [8–10] can

alleviate this problem, but not enough. Fig. 1 illustrates this prob-

lem by showing the saliency maps of some existing methods on

one example image. 

Video salient object detection detects the salient object from

both spatial domain and temporal domain. How to combine these

two saliencies together during the detection is complex. One usual

way (called “Feature fusion”) is to fuse the extracted spatial fea-

ture and extracted temporal feature together to give a spatio-

temporal feature. Considering the spatial gradient magnitudes and

fusing them with the temporal gradient magnitudes into spatio-

temporal edges is a popular Feature fusion way. The resulted

spatio-temporal edges may still give inaccurate salient object de-

tection. Another usual way (called “Map fusion”) is to combine

the spatial saliency map and the temporal saliency map together.

The existing simple linear or non-linear way is still insufficient to

decide the confidence weight for each saliency map. In order to

employ more video saliency information, these two techniques are

used together recently. However, in complex scenes, the methods

still could not fully make use of detected saliency from the two

domains. Some examples are shown in Fig. 2 . For models [11–13] ,

the salient object has been located but still with blur edges. Thus,

the fusion is still a much more challenging problem. 

Facing these open issues, we propose a new video salient object

detection algorithm by addressing: 

1) the problem of detecting a complete salient object con-

nected to borders using the distance transform with a virtual

border-based technique which consists of four steps which

are a) Frame Border Selection, b) Frame Border Division, c)

Representative Pixel Selection and d) Virtual Border Padding.

In spatial domain, the virtual border is added to the frame

aiming to detect the whole salient object. In temporal do-

main, it is also added to the color optical flow map in order

to detect the complete salient object motion and then obtain

the salient object by filtering the global motion out. 

2) the Feature fusion problem by using an edge-aware filter,

called the guided filter [14] . It is introduced to preprocess

the virtual border-based color optical flow map for enhanc-

ing object edges. 

3) the Map fusion problem by computing the entropy and the

standard deviations to decide the confidence level of the

spatial saliency map and the temporal saliency map. 
The remaining of this paper is organized as fol-

lows. Section 2 briefly describes the related work.

Section 3 presents the proposed method in detail. In

Section 4 , we conduct comparison experiments to evaluate

the performance of the proposed method. Section 5 con-

cludes the paper. 

. Related work 

This section introduces the recent works related to the video

alient object detection (SOD). SOD in videos is closely related

o SOD in images. Recent traditional methods for image SOD and

ideo SOD are introduced respectively. Then, deep learning-based

ethods are summarized. 

.1. Traditional image SOD methods 

Image SOD methods are fully exploited in recent years. We will

ive examples of some important categories, including graph-based

pproaches, probabilistic models and cognitive methods. 

For graph-based approaches, Shan et al. [15] use background

eight map as propagating seeds and design a third-order smooth-

ess framework to improve the performance of manifold rank-

ng. Jiang et al. [10] propose a saliency detection via absorbing

arkovian chain. Zhang et al. [9] , Tu et al. [8] and Huang et al.

16] compute the saliency based on the minimum barrier dis-

ance transform. Lie et al. [17] improve the detection speed us-

ng the upsampling of random color distance map. For probabilis-

ic models, Aytekin et al. [18] adopt a probabilistic mass function

o encode the boundary connectivity saliency cue and smoothness

onstraints into a global optimization problem. Li et al. [19] pro-

ose an optimization model based on conditional random fields

nd geodesic weighted Bayesian model. For cognitive method, Yan

t al. [20] combine bottom-up and top-down attention mecha-

isms to focus on the salient object. Peng et al. [21] propose a

ree-structured sparsity-inducing norm, and introduce a Laplacian

egularization, and employ the high-level prior to detect the salient

bject. 

.2. Traditional video SOD methods 

According to different types of spatial and temporal information

o be fused, we roughly divide the traditional methods into three

ategories: “Feature fusion”, “Map fusion” and “Hybrid fusion”. 

As a “Feature fusion” method, Wang et al. [12] fuses the color

radient magnitude and optical flow gradient magnitude in a non-

inear way. Wang et al. [22] fuse the spatial edge to temporal op-
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based saliency detection methods. 
ical flow by using guided filter. Bhattacharya et al. [23] use a

eighted sum of the sparse spatio-temporal features. 

As a “Map fusion” method, Tu et al. [24] generate two types of

aliency maps based on a foreground connectivity saliency mea-

ure, and exploit an adaptive fusion strategy. Yang et al. [25] pro-

ose a confidence-guided energy function to adaptively fuse spatial

nd temporal saliency maps. 

“Hybrid fusion” can be considered as a combination of “Fea-

ure fusion” and “Map fusion”. Li et al. [26] fuse the spatial

nd temporal channel to generate saliency maps, and then use

aliency-guided stacked autoencoders to get the final saliency map.

hen et al. [27] obtain the motion saliency map with spatial cue,

hen use k-Nearest Neighbors-histogram based filter and Markov

andom field to eliminate the dynamic backgrounds. Kim et al.

11] detect the salient object based on the theory of random walk

ith restart. Liu et al. [13] obtain temporal saliency propagation

sing spatial appearance, which spatial propagation is performed

ia the temporal saliency map. Wang et al. [4,28] produce spatio-

emporal edge map to get the saliency map based on the geodesic

istance, which is then combined with global appearance models

nd with dynamic location models. Xi et al. [29] first get spatio-

emporal background priors, and then take the sum of appearance

nd motion saliency as the final saliency. Zhou et al. [30] pro-

ose localized estimation to generate the temporal saliency map,

nd deploy the spatio-temporal refinement to get the final saliency

ap, which is then used to update the initial saliency map. Chen

t al. [31] detect the motion cues and spatial saliency map to

et the motion energy term, which are combined with some con-

traints and formulated into the optimization framework. Ramadan

t al. [32] applies the pattern mining algorithm to detect spatio-

emporal saliency patterns. Guo et al. [33] select a set of salient

roposals via a ranking strategy. Chen et al. [34] get the tempo-

al saliency map to facilitate the color saliency computation. Chen

t al. [35] utilize Markov random field to conduct semantic label-

ng and learn multiple nonlinear feature transformations to enlarge

he feature difference between the salient object and backgrounds.

.3. Deep learning-based methods 

Recently, deep neural networks are more and more used in SOD

or their high efficiency and effectiveness. For image SOD, Liu et al.

36] use a hierarchical convolutional neural network to detect the

bject; Hou et al. [37] use deep multi-scale features instead of

and-crafted features; Lee et al. [38] combine hand-crafted fea-

ures and deep features together; Chen et al. [39] learn depth cue

o help saliency detection; Yuan et al. [40] propose a multiscale

nd multidepth network. For video SOD, Wang et al. [41] input

wo successive frames into the network to learn spatio-temporal

aliency; Tang et al. [42] employ a weakly-supervised network

ithout needing all training datasets with pixel-wise ground truth.

ompared with the above deep learning and image-based SOD, the

eep learning and video-based SOD has not been studied widely

et. This is due to the lack of the large-scale video salient object

ataset and the complexity of the spatial and temporal fusion. 

. Proposed algorithm 

The block-diagram of the proposed Virtual Border and Guided

ilter-based (VBGF) method is shown in Fig. 3 . Given an input

ideo sequence, in spatial saliency detection (SD), the virtual bor-

er is built for each frame. Then, the saliency is computed to get

he spatial saliency map (SSM). Secondly, in temporal saliency de-

ection (TD), the motion information is extracted from the input

ideo. Then the virtual border building, the Feature fusion and the

aliency computation are applied to obtain the temporal saliency

ap (TSM). At last, the two saliency maps are fused to get the
patio-temporal saliency map (STSM). The method is detailed in

he following parts. 

.1. Spatial saliency detection (SD) 

In this section, the virtual border-based distance transform in

patial domain is designed. 

.1.1. Virtual border building 

We propose to add the virtual border around the original frame

o obtain with-virtual-border frame. The virtual border is built as

hown in Fig. 4 . 

a) Frame Border Selection: one frame border is selected to build

the virtual border by two steps: 
• FastMBD [9] is applied to frame α to obtain the map M . 
• The frame border nearest to the non-zero region in the map

M is selected to build the virtual border. 

b) Frame Border Division: after one border selected, the corre-

sponding divided border is obtained from the original frame

border (with width u). The divided up border (DUB), divided

down border (DDB), divided left border (DLB) and divided right

border (DRB) are shown in the bottom left part in Fig. 4 . The

reason lying behind this division is that: the region in the frame

corner is often connected with two borders and its feature is

also related to these two borders. Thus, the irregular shape con-

necting three borders is used to calculate the virtual border.

The parameters u and l are selected empirically. In this paper, u

is set to 5 and l is set to 18%. Preliminary experiments showed

that these values make the algorithm robust to various back-

ground complexities. 

c) Representative Pixel Selection: for the generated divided bor-

der, the sum of absolute differences (SAD) is com puted for each

pixel by summing all the absolute differences between this

pixel and other pixels in the divided border: 

SAD (x) = 

∑ 

x ′ ∈ DB 

∣∣I(x) − I(x ′ ) 
∣∣ (1) 

where DB ∈ {DLB, DUB, DUB, DDB}, I is the feature channel. The

pixel having the minimum SAD is selected to represent the di-

vided border. For color images, the SAD is computed by sum-

ming the three color channels: 

colorSAD (x) = 

∑ 

x ′ ∈ DB 

∑ 

i ∈{ r,g,b} 

∣∣I i (x) − I i (x ′ ) 
∣∣ (2) 

We have also considered using the mean or median value of the

borderâs intensities as the representative pixel value. Various

experiments conducted on different frames have shown that

the minimum SAD choice performs better than the mean and

the median values in most of the cases (cf. the 1st example im-

age in Fig. 4 where the representative pixel is chosen from the

salient object instead of the background when using the mean

value of the borderâs intensities). The same way, choosing the

median value of the border’s intensities as the representative

pixel value fails, which can be seen on the 2nd example image

in Fig. 4 . 

d) Virtual Border Padding: around the selected original frame bor-

der, we build the corresponding virtual border with the above

representative pixel. The virtual up border (VUB), the virtual

down border (VDB), the virtual left border (VLB) and the vir-

tual right border (VRB) are shown in the bottom right part in

Fig. 4 . Existing methods usually regard the border (with width

1) to be background and seed sizes are set to be 1. Here we set

the virtual border size v to 5, which helps the proposed “vir-

tual border building” to be applied to other distance transform



4 Q. Wang, L. Zhang and W. Zou et al. / Pattern Recognition 97 (2020) 106998 

Fig. 3. The proposed block-diagram. SD: spatial saliency detection; SSM: spatial saliency map; TD: temporal saliency detection; TSM: temporal saliency map; STSM: spatio- 

temporal saliency map. 

Fig. 4. Virtual border building: (1) two examples of map M obtained by applying FastMBD [9] on the frame; and then for each frame, the closest border to the salient 

region is selected to build the virtual border; (2) generating the divided border from the highlighted frame border (with width u ), h 1 is the frame height, w 1 is the frame 

width and l is set to 18%, four divided borders: divided up border (DUB), divided down border (DDB), divided left border (DLB), divided right border (DRB) are shown; (3) 

the red dotted line denotes the virtual border padded with the selected representative pixel; (4) building and padding the virtual border (with size v ) with representative 

pixel value, four virtual borders: virtual up border (VUB), the virtual down border (VDB), the virtual left border (VLB) and the virtual right border (VRB), are shown in four 

different textures. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 

Fig. 5. An example of the spatial saliency detection. The red dotted line denotes the virtual border. (For interpretation of the references to color in this figure legend, the 

reader is referred to the web version of this article.) 
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3.1.2. Saliency computation 

After the “virtual border building”, the spatial saliency map SSM

is obtained by apply the FastMBD [9] to the with-virtual-border

frame D and then remove the virtual border region from the re-

sulted map. One example is given to show the process of spatial

saliency detection in Fig. 5 . 

3.2. Temporal saliency detection (TD) 

Given an input video sequence, the movement information is

extracted from the whole video and then the salient object is de-

tected from this movement information. 

3.2.1. Movement extraction 

The optical flow vectors between pairs of successive frames are

obtained using a fast optical flow method [43] . Then the optical

flow vector is mapped to Munsell color system to produce the

color optical flow map E (an example image can be found in Fig. 6 ).
.2.2. Virtual border building 

Based on the background cue, the global motion is usually con-

ected to E borders. The global motion is mainly generated by the

ackground and camera motion. The distance of each pixel to the

order pixels of E calculated by the FastMBD [9] can indicate its

emporal saliency. The larger the distance, the higher the tempo-

al saliency value. As the same problem in the spatial saliency de-

ection, when the salient object touches frame borders, its move-

ent information also touches E borders. If we directly apply the

astMBD [9] on E , the salient object movement part connected to

 borders is hard to be detected. Thus, we add virtual borders on

 using the same procedure as described in Section 3.1.1 to obtain

he with-virtual-border color optical flow map F . 

.2.3. Feature fusion 

We propose a new Feature fusion way that fuses the spa-

ial edge with the temporal information, considering that: 1) the

alient object movement is often bigger than the background

ovement, thus the background and the salient object are often



Q. Wang, L. Zhang and W. Zou et al. / Pattern Recognition 97 (2020) 106998 5 

Fig. 6. An example of the temporal saliency detection: from two successive frames, the optical flow vector is extracted and mapped to be the color optical flow map E . The 

virtual border is built on map E to generate with-virtual-border color optical flow map F . The red dotted line denotes the virtual border. After guided filtering, the filtered 

image G is generated to produce the temporal saliency map. Ground truth is provided for comparison. (For interpretation of the references to color in this figure legend, the 

reader is referred to the web version of this article.) 
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hown in different colors in the color optical flow map; 2) if the

ovements within the salient object are different, the salient ob-

ect cannot be detected completely. If the spatial edges are added

nto F , the salient object edges will be enhanced. The pixel’s dis-

ance in blur edges will be increased if the pixel belongs to the

alient object or decreased if the pixel belongs to the background.

hus we performed the guided image filtering. The guided filter

14] is a linear filtering process, which involves a guidance image

 

1 , an input image C 2 and an output image C 3 . The C 3 at a pixel i

s computed using the filter kernel K which is a function of C 1 but

ndependent of C 2 . 

 

3 
i = 

∑ 

j 

K i j ( C 
1 ) C 2 j , (3)

here i and j are pixel indexes, and 

 i j ( C 
1 ) = ( | ω k | ) −2 

∑ 

(i, j) ∈ ω k 
( 1 + ( C 1 i − μk )( C 

1 
j − μk ) ( σk 

2 + ε) −1 ) , 

(4) 

here ω k is the square window centered at the pixel k in C 1 , | ω k |

s the number of pixels in ω k , ε is a regularization parameter, and

k and σ 2 
k 

are the mean and the variance of C 1 in ω k . The main

ssumption of the guided filter is a local linear model between C 1 

nd C 3 . Thus, C 3 has an edge if C 1 has an edge. 

The proposed method use with-virtual-border frame D as the

uidance image and with-virtual-border color optical flow map F

s the input image to get the filtered image G as Eq. (5) , 

 i = 

∑ 

j 

| ω k | −2 
∑ 

(i, j) ∈ ω k 
( 1 + (D i − μk )(D j − μk ) ( σk 

2 + ε) −1 ) F j , (5) 

here i and j are pixel indexes, ω k is the square window centered

t the pixel k in D i , μk and σ k are the mean and the variance of D i 

n ω k . ε is set to be 10 −6 . | ω k | is decided by the frame size. Large

rame size needs large | ω k |. We use 20 × 20 for Fukuchi and FBMS

atasets, and use 60 × 60 for VOS dataset since VOS has larger av-

rage frame size than that of Fukuchi and FBMS [26,26,44] . 

.2.4. Saliency computation 

The FastMBD [9] is applied on the filtered image G and then the

irtual border region is removed to obtain the temporal saliency

ap TSM. One example is given to show the process of the tem-

oral saliency detection in Fig. 6 . 

.3. Map fusion 

Given the spatial saliency map SSM and the temporal saliency

ap TSM, the fusion is made to obtain spatio-temporal saliency

ap STSM by four steps: 
• SSM and TSM are firstly fused as Eq. (6) , where ratio 1 =
mu T / (mu S + mu T ) , ratio 2 = 1 − ratio 1 . 

STSM = ratio 1 × SSM + ratio 2 × TSM (6) 

where mu S and mu T are respectively the mean entropies of all

the spatial saliency maps and all the temporal saliency maps

for a video sequence (with ϰ the number of frames) as Eq. (7) . 

mu S = 

�∑ 

j=1 

( 

−
255 ∑ 

j ′ =1 

(
P rob S 

j 

j ′ × log 

(
P rob S 

j 

j ′ 

))) /
�

mu T = 

�∑ 

j=1 

( 

−
255 ∑ 

j ′ =1 

(
P rob T 

j 

j ′ × log 

(
P rob T 

j 

j ′ 

))) /
� (7) 

where P rob S 
j 

j ′ and P rob T 
j 

j ′ are respectively the normalized his-

togram of j th spatial saliency map and j th temporal saliency

map: P rob j ′ = num j ′ / (h 1 × w 1 ) , num j ′ is the number of pixel

(equal to j ′ ) in saliency map. Here, the idea is that mu i ( i = S, T )

are used to decide the confidence of SSM and TSM. The disor-

der degree of saliency map reflects the difficulty degree to de-

tect the salient objects. If mu i ( i ∈ { S, T }) is larger, the saliency

detection in this domain is worser. 
• STSM is optimized using Eq. (8) 

STSM = SSM if mu S < mu T (8) 

The frame is often more complex than the color optical flow

map, which results in that the disorder degree of SSM is usually

larger than that of TSM. If mu S is smaller than mu T , it means it

is difficult to detect the salient object in TSM. Thus, SSM has a

high confidence. 
• STSM is optimized using Eq. (9) 

STSM = SSM if σS > σT (9) 

σ S and σ T are respectively the standard deviations of non-zero

regions in two grayscale images H S and H T , which are gener-

ated by the following steps: firstly, converting frame α from

RGB to HSI color space, then eliminating the hue and saturation

information while retaining the luminance to get the grayscale

images α′ ; secondly, using a threshold δ to neglect the pixels

with low saliency value from the images SSM and TSM as in

Eq. (10) 

H S i j 
= 

{
0 i f SSM ij < δ
α′ 

i j 
otherwise 

H T i j 
= 

{
0 i f TSM ij < δ
α′ 

i j 
otherwise 

(10) 

where i and j are pixel indexes in the images. The appear-

ance of the wrongly detected background is mostly different

from the salient object in the grayscale image, which results in

that H ( i ∈ {S,T}) contains more luminance values and thus σ
i i 
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( i ∈ {S,T}) is smaller. If σ S is bigger than σ T , it means SSM has a

high confidence. 
• Low saliency value (lower than δ) in STSM is decreased to 0.1

times. 

The pixels with low saliency value in saliency map are unim-

portant for visual saliency but have a large influence in com-

puting the detection confidence. Thus, δ is used to decrease

their affection and set to 70 in all this paper. 

4. Experiments and analyses 

In this section, the performance of the proposed method is as-

sessed and discussed. 

4.1. Performance evaluation 

Three metrics are used to measure the similarity between the

generated saliency map (SM) and the Ground truth (GT): 

• Precision-recall (P-R) curve [7] : the saliency map is normalized

to [0, 255] and converted to a binary mask (BM) via a threshold

that varies from 0 to 255. The precision and the recall are: 

Precision = 

∣∣∣BM 

⋂ 

GT 

∣∣∣/ | BM | , Recall = 

∣∣∣BM 

⋂ 

GT 

∣∣∣/ | GT | (11)

For each threshold, a pair of (Precision, Recall) values are com-

puted and used for plotting P-R curve. The curve closest to the

top right corner (1.0, 1.0) corresponds to the best performance. 
• F -measure [45] : higher F -measure means better performance. 

F − measure = ( 1 + β2 ) × ( Precision × Recall ) 

× (β2 × Precision + Recall ) −1 (12)

β2 is often set to 0.3. Average precision (the average of preci-

sion values at all ranks) and average recall (the average of recall

values at all ranks) are used. 
• Mean Absolute Error (MAE) [7] : smaller MAE means higher

similarity and better performance. 

MAE = (h1 × w1) −1 
h1 ×w1 ∑ 

i=1 

| GT (i) − SM (i) | (13)

For each tested dataset, we compute the average metric for each

video sequence and then compute the average metric for all the

videos. 

4.2. Test datasets 

Three datasets with various contents and various conditions are

used for models’ performance evaluation and comparison. 

4.2.1. Datasets with many salient objects connected to the frame 

border 

Fukuchi dataset [44] includes 10 sequences. The salient ob-

ject touches the frame border in most video sequences. All tested

methods hardly detect the salient object for the video “BR128T”.

As in [34] , the video “BR128T” is excluded in the test. 

4.2.2. Datasets with complex backgrounds 

FBMS dataset [26] is with 59 heterogeneous video sequences.

The GT is available for only a part of frames. We use the test

set that contains 30 videos with provided GT for evaluation. The

global motion with high complexity exists in most of the video se-

quences. 
.2.3. Datasets with large daily videos 

VOS dataset [26] , proposed for video salient object detection,

ontains 200 indoor/outdoor videos (64 min, 116,103 frames). The

T is available for part of frames. VOS-E and VOS-N are two

ubsets: VOS-E contains 97 easy videos and VOS-N contains 103

ideos (the background is cluttered and salient object is highly dy-

amic). This large-scale dataset is used to benchmark models with

he evaluation metrics: MAE, Precision, Recall and F -measure. Note

hat for the calculation of metrics, an adaptive threshold (com-

uted as the minimum value between “maximum pixel value of

aliency map” and “twice the average values of saliency map”) is

sed for converting the saliency map to a binary mask (BM). Ex-

ept for MAE, the author denotes other three metrics in the bench-

ark [26] as the mean Average Precision (MAP), mean Average Re-

all (MAR) and FBeta. 

.3. Results and discussions 

Two experimental parts with assorted aims are shown for anal-

sis. Firstly, the proposed method (based on traditional image-

ased salient object detection [9] ) in Section 3 , denoted as VBGF,

s evaluated in Section 4.3.1 . The performance of each compo-

ent of the model is shown to demonstrate our contributions. The

BGF’s performance is then compared with nine state-of-the-art

raditional salient object detection methods. Secondly, the VBGF

s further improved by integrating a deep learning based image

alient object detection method [36] and denoted as VBGFd. In

ection 4.3.2 , the contributions are shown by analyzing the per-

ormance of each component. Then performance benchmarking of

ur approaches (VBGF and VBGFd) and 13 state-of-the-art mod-

ls is reported. Finally, the run-time complexity is compared in

ection 4.3.3 . 

.3.1. Performance of the VBGF 

Nine state-of-the-art saliency models are tested: MST16 [8] ,

astMBD15 [9] , AMC13 [10] , TGFV17 [22] , SGSP16 [13] , RWR15 [11] ,

F15 [12] , SAG15 [28] , FD17 [34] on Fukuchi and FBMS dataset. For

ll the methods, the experimental results are obtained using the

ource codes or saliency results provided by the authors. 

1) Contributions of each proposed component to the perfor-

ance 

a) Contribution of the proposed virtual border building 

The method (based on the “background prior”) may miss the

alient object connected to the image borders and the proposed

irtual border aims to improve this problem. Since MST16 [8] ,

astMBD15 [9] and AMC13 [10] detect the salient object in im-

ge domain based on the “background prior”, we compare the

roposed spatial saliency map with them by using the Fukuchi

ataset, in which many salient objects connected to the frame bor-

er. Quantitative performance can be found in Fig. 7 . The proposed

patial saliency detection has a better performance since it can de-

ect salient objects more completely. 

b) Contribution of the proposed Feature fusion 

The proposed Feature fusion employ the guided filter to fuse

he spatial edges with the information in temporal domain. We

ompare the performance of the proposed temporal saliency map

ith guided filtering and without guided filtering. In the Fukuchi

ataset the salient object motion is small, and in the FBMS dataset,

he global motion varies largely. These two different datasets are

oth used. Quantitative performance can be found in Figs. 8 and 9 .

e can see that fusing the spatial salient object edges to the tem-

oral information by using guided filtering can improve the de-

ection accuracy. It help to optimize the salient object edges and

emove the background part from the saliency region. 
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Fig. 7. Quantitative comparisons between our proposed spatial saliency map (proSSM) and three image salient object detection models over the Fukuchi dataset. Some 

state-of-the-art methods, including: MST16 [8] , FastMBD15 [9] and AMC13 [10] . The left parts show the Precision-Recall curves, the right parts shows the F -measure ↑ scores. 

Fig. 8. Precision-Recall (P-R) curves of the proposed temporal saliency map (proTSM) with guided filtering and without guided filtering over the Fukuchi dataset and the 

FBMS dataset. 

Fig. 9. F -measure ↑ scores of the proposed temporal saliency map: (a) with guided filtering and (b) without guided filtering over the Fukuchi dataset and the FBMS dataset. 
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c) Contribution of the proposed Map fusion method 

Our proposed method first generates spatial saliency map

cf. Section 3.1 ), then generates the temporal saliency map (cf.

ection 3.2 ), finally generates the spatio-temporal saliency map (cf.

ection 3.3 ). Therefore, we separately test the performance of each

roposed saliency map, then compared quantitative results can be

ound in Figs. 10 and 11 . For the Fukuchi dataset, the salient ob-

ect motion is slow while the salient object and the background

re in high contrast. Compared with the spatial saliency map, the

etected temporal saliency has a lower confidence. The proposed
usion can still get a good performance by retaining the spatial

aliency map while neglecting the temporal detection influence.

or the FBMS dataset, the low contrast and the complex back-

round in the spatial domain make the spatial saliency detection

naccurate. Though the global motion is intricacy, the temporal

aliency map is still better than the spatial saliency map. The pro-

osed fusion method takes advantages of results from both do-

ains and gives a higher overall performance. 

2) Comparison of the proposed method with state-of-the-art

ethods 
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Fig. 10. Precision-Recall (P-R) curves of proSSM, proTSM and proSTSM over the Fukuchi dataset and FBMS dataset. proSSM: proposed spatial saliency map; proTSM: proposed 

temporal saliency map; proSTSM: proposed spatio-temporal saliency map. 

Fig. 11. F -measure ↑ scores of proSSM, proTSM and proSTSM over the Fukuchi dataset and the FBMS dataset. proSSM: proposed spatial saliency map; proTSM: proposed 

temporal saliency map; proSTSM: proposed spatio-temporal saliency map. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 1 

A table comparing the proposed method and six video salient object 

detection models in Mean Absolute Error and F -measure scores over 4 

video sequences chosen from the Fukuchi dataset. 

Method 

Mean absolute error ↓ scores 

AN119T DO01_013 DO01_055 DO02_001 

TGFV17 [22] 0.0119 0.0084 0.0462 0.0324 

SGSP16 [13] 0.0772 0.0675 0.0996 0.1463 

RWR15 [11] 0.0692 0.0773 0.052 0.0826 

GF15 [12] 0.0312 0.0306 0.0334 0.0378 

SAG15 [28] 0.0264 0.0247 0. 026 0.0162 

FD17 [34] 0.0062 0.0086 0. 0165 0.0113 

Ours 0.0027 0.0052 0.0053 0.0014 

Method F -measure ↑ scores 

AN119T DO01_013 DO01_055 DO02_001 

TGFV17 [22] 0.9069 0.704 0.7228 0.808 

SGSP16 [13] 0.7318 0.6343 0.5411 0.5925 

RWR15 [11] 0.4878 0.5379 0.6533 0.6182 

GF15 [12] 0.8659 0.6842 0.7417 0.8292 

SAG15 [28] 0.8432 0.5486 0.7393 0.8348 

FD17 [34] 0.9449 0.685 0.7852 0.8656 

Ours 0.9516 0.801 0.8051 0.9322 

The Bold number indicates the best result. 

p  

l  
a) Quantitative comparison with video salient object detection

models 

We compare our proposed method with several video salient

object detection models with the Fukuchi dataset and the FBMS

dataset respectively. 

For the Fukuchi dataset, six compared models are: TGFV17 [22] ,

SGSP16 [13] , RWR15 [11] , GF15 [12] , SAG15 [28] , FD17 [34] . The P-

R curves, F -measure and MAE values are drawn in Fig. 12 , from

which we can see that the proposed method has the best P-R

curve, the highest F -measure and the smallest MAE values. The de-

tailed MAE and F -measure scores over four video sequences are

shown in Table 1 and the proposed method achieves the best per-

formance. These four video sequences are selected with different

cases: in “AN119T”, the salient object locates in the frame cen-

ter; in “DO01_013”, all the salient object touch the frame border

and in “DO01_055” and “DO02_001” part of salient objects touch

frame border. In the Fukuchi dataset, the contrast between the

salient object and the background is large and the salient object

movement is slow. Spatial saliency detection thus can already pro-

vide a high confidence, while the wrong detections in the tempo-

ral domain may influence the final saliency map. Compared with

methods TGFV17 [22] , SGSP16 [13] , RWR15 [11] , GF15 [12] , SA15

[28] , and FD17 [34] , the proposed fusion method can better select

higher confidence spatial saliency information from two domains. 

For the FBMS dataset, five compared models are TGFV17 [22] ,

SGSP16 [13] , RWR15 [11] , GF15 [12] , SAG15 [28] . Fig. 13 reports

the P-R curves, F -measure and MAE values. We can see that our

o  
roposed method performs the best, while all the methods get

ower performances on this dataset since it is the most challenging

ne. Five videos with difficult cases (the salient object is similar to
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Fig. 12. Quantitative comparisons between our method and six video salient object detection models over the Fukuchi dataset. The upper parts show the Precision-Recall 

curves, the left below shows the F -measure ↑ scores and the right below shows the Mean Absolute Error (MAE) ↓ scores. Some state-of-the-art methods, including: TGFV17 

[22] , SGSP16 [13] , RWR15 [11] , GF15 [12] , SAG15 [28] , FD17 [34] . 

Table 2 

A table comparing the proposed method and five video salient object de- 

tection models in Mean Absolute Error and F -measure scores over 5 video 

sequences chosen from the FBMS dataset. 

Method 

Mean absolute error ↓ scores 

Cars5 Cars10 Cats03 Horses04 Horses05 

TGFV17 [22] 0.0205 0.0248 0.0536 0.0454 0.0363 

SGSP16 [13] 0.0708 0.0599 0.1089 0.0964 0.0877 

RWR15 [11] 0.1905 0.1485 0.1471 0.1175 0.0968 

GF15 [12] 0.0438 0.0388 0.1148 0.1049 0.0598 

SAG15 [28] 0.0486 0.034 0. 0941 0.1427 0.0689 

Ours 0.0161 0.0218 0.0103 0.0243 0.0215 

Method F -measure ↑ scores 

Cars5 Cars10 Cats03 Horses04 Horses05 

TGFV17 [22] 0.751 0.6494 0.6573 0.7021 0.6018 

SGSP16 [13] 0.6359 0.6595 0.6558 0.6476 0.6105 

RWR15 [11] 0.3485 0.4056 0.2219 0.3389 0.3666 

GF15 [12] 0.5877 0.6339 0.2762 0.6415 6067 

SAG15 [28] 0.4964 0.584 0.3532 0.3797 0.6495 

Ours 0.7712 0.7281 0.7184 0.7294 0.6593 

The Bold number indicates the best result. 
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(

a  

i  
he background or the clustering background is complex) are se-

ected and the detailed corresponding MAE and F -measure scores

re shown in Table 2 , in which the proposed method is always the

est method. In the FBMS dataset, on one hand, the global mo-

ion exists in many sequences and is with high complexity which

ake the temporal detection more difficult. On the other hand, the

alient object appearance is similar to that of the background and

he clustering background is complex which makes the spatial de-
ection more difficult. Among methods TGFV17 [22] , SGSP16 [13] ,

WR15 [11] , GF15 [12] and SAG15 [28] , TGFV17 [22] gets a better

esult since they put emphasize on the temporal saliency detec-

ion. However, compared with TGFV17 [22] , the proposed method

everage the spatial saliency and fuse them in a more confidence

ay to obtain better result. 

b) Subjective comparison with 3 image salient object detection

odels and 5 video salient object detection models 

To evaluate the overall performances and disparities between

ur method and the state-of-the-art methods, we also show a sub-

ective comparison in Fig. 14 , (a), (e), (f) and (g) are chosen from

he Fukuchi dataset; (b), (c), (d), (h), (i), (j) and (k) are from the

BMS dataset. We can see that RWR15 [11] tends to detect salient

bject edges rather than the whole salient object. Methods: MST16

8] , FastMBD15 [9] , AMC13 [10] , TGFV17 [22] , SGSP16 [13] , GF15

12] , SAG15 [28] can detect salient object region located in the

rame center but not the salient part close to frame borders. By

isually comparing on this figure, we can see that the proposed

ethod can detect the salient object more completely and more

ccurately. 

.3.2. Performance of the VBGFd 

It may be worthy to look at the performance of the VBGF with

n integration of a deep learning based method, named VBGFd.

n VBGF, the “Saliency computation” part adopts the traditional

ethod [9] , and the “Virtual border building” part is proposed to

olve the problem appeared in this type of traditional methods

cf. Fig. 3 ). For the VBGFd, we replace the “Saliency computation”

nd “Virtual border building” parts in both “SD” and “TD” blocks

n Fig. 3 by a deep-salient detection method proposed in [36] -
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Fig. 13. Quantitative comparisons between our method and five video salient object detection models over the FBMS dataset. The upper parts show the Precision-Recall 

curves, the left below shows the F -measure ↑ scores and the right below shows the Mean Absolute Error (MAE) ↓ scores. Some state-of-the-art methods, including: TGFV17 

[22] , SGSP16 [13] , RWR15 [11] , GF15 [12] and SAG15 [28] . 

Table 3 

Comparison of the proposed VBGFd componets’ performance on dataset VOS, VOS- 

E, VOS-N. proSSM: proposed spatial saliency map; proTSM: proposed temporal 

saliency map; proSTSM: proposed spatio-temporal saliency map. 

Dataset Metrics Proposed VBGFd components 

proSSM proTSM without 

guided filtering 

proTSM with 

guided filtering 

proSTSM 

VOS-E MAP ↑ 0.863 0.398 0.528 0.881 

MAR ↑ 0.905 0.380 0.480 0.877 

FBeta ↑ 0.872 0.394 0.516 0.880 

MAE ↓ 0.049 0.189 0.154 0.046 

VOS-N MAP ↑ 0.649 0.407 0.407 0.690 

MAR ↑ 0.851 0.389 0.392 0.806 

FBeta ↑ 0.686 0.403 0.403 0.714 

MAE ↓ 0.055 0.136 0.132 0.059 

VOS MAP ↑ 0.753 0.403 0.466 0.783 

MAR ↑ 0.877 0.385 0.435 0.840 

FBeta ↑ 0.778 0.399 0.458 0.795 

MAE ↓ 0.052 0.162 0.143 0.053 

The Bold number indicates the best result in each line. 
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DHSNet (because of the availability of its source code). Besides, the

first two steps in the “Map fusion” part in Fig. 3 change to use the

ratio between the entropies for each frame in Eq. (6) , instead of

using the ratio between mean entropies for the whole video se-

quence. In this section, the large-scale video salient object detec-

tion dataset VOS and its two subsets VOS-E, VOS-N are used. 

(1) Contributions of the proposed components 

In Table 3 , we list the performances of the VBGFd with different

components. We can see that its performance is better for all per-

formance evaluation metrics with the “guided filtering” by com-
aring the 4th and 5th columns in Table 3 (contribution (2)); and

ts performance is better for most performance evaluation metrics

hen the spatial and the temporal information is fused by com-

aring the 3rd, 5th and 6th columns in Table 3 (contribution (3)). 

(2) Performance benchmarking of our approach 

In Table 4 , we inserted the performance of our proposed mod-

ls into the benchmarking table (cf. Table III in the paper [26] ) pro-

ided with the VOS dataset. Note that here we only list 13 state-

f-the-art models (image-based deep learning and video-based un-

upervised models) reported in [26] , not the image-based clas-

ic non-deep learning models (because we have already compared

ith some classic models in Section 4.3.1 ). We can see that among

he tested 15 models, the VBGFd has the best score for 7 times,

hen the best benchmarked model DHSNet has the best score for

 times. Thus in general, we can say that the VBGFd performs the

est among the tested models. 

.3.3. Time 

A PC with Intel Core i7 4910 2.9 GHz CPU and 16GB RAM is

sed for testing the speed of traditional methods, and the deep

earning method is performed on a NVIDIA 1080 GPU. Note that

he video (Fukuchi and FBMS datasets) with original resolution is

sed. For different models that tested in Section 4.3.1 (except the

odel FD17 [34] with the unpublished code), the average run-time

s listed in Table 5 . Video-based method SFCN and 3 image-based

odels have low computation costs. Others have higher computa-

ion costs since the optical flow estimation is usually time consum-

ng. The proposed VBGF and VBGFd models are among the three

astest video-based detection models, and the average run-time per

rame of each element can be found in Table 6 in detail. 
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Fig. 14. Comparison of the saliency maps. (a)–(k) are 11 different video sequences. Some state-of-the-art methods, including: MST16 [8] , FastMBD15 [9] , AMC13 [10] , TGFV17 

[22] , SGSP16 [13] , RWR15 [11] , GF15 [12] , SAG15 [28] . GT: Ground truth. 

Table 4 

Performance benchmarking of our approach and 13 state-of-the-art models on the dataset VOS and two subsets VOS-E and VOS-N. These models are categorized 

into two parts: [I + D] for deep learning and image-based, [V + U] for video-based and unsupervised, [V + D] for deep learning and video-based. 

Models 

VOS-E VOS-N VOS 

[MAP ↑ MAR ↑ FBeta ↑ MAE ↓ ] [MAP ↑ MAR ↑ FBeta ↑ MAE ↓ ] [MAP ↑ MAR ↑ FBeta ↑ MAE ↓ ] 
[I + D] LEGS 0.820 0.685 0.784 0.193 0 556 0.593 0.564 0.215 0.684 0.638 0.673 0.204 

MCDL 0.831 0.787 0.821 0.081 0.570 0.645 0.586 0.085 0.697 0.714 0.701 0.083 

MDF 0.740 0.848 0.762 0.100 0.527 0.742 0.565 0.098 0.630 0.793 0.661 0.099 

ELD 0.790 0.884 0.810 0.060 0.569 0.838 0.615 0.081 0.676 0.861 0.712 0.071 

DCL 0.864 0.735 0.830 0.084 0.583 0.809 0.624 0.079 0.719 0.773 0.731 0.081 

RFCN 0.834 0.820 0.831 0.075 0.614 0.783 0.646 0.080 0.721 0.801 0.738 0.078 

DHSNet 0.863 0.905 0.872 0.049 0.649 0.851 0.686 0.055 0.753 0.877 0.778 0.052 
[V + U] SIV 0.693 0.543 0.651 0.204 0.451 0.523 0.466 0.201 0.568 0.533 0.560 0.203 

FST 0.781 0.903 0.806 0.076 0.619 0.691 0.634 0.117 0.697 0.794 0.718 0.097 

NLC 0.439 0.421 0.435 0.204 0.561 0.610 0.572 0.123 0.502 0.518 0.505 0.162 

SAG 0.709 0.814 0.731 0.129 0.354 0.742 0.402 0.150 0.526 0.777 0.568 0.140 

GF 0.712 0.798 0.730 0.153 0.346 0.738 0.394 0.331 0.523 0.767 0 565 0.244 

SSA [26] 0.875 0.776 0.850 0.062 0.660 0.682 0.665 0.103 0.764 0.728 0.755 0.083 

VBGF 0.797 0.773 0.791 0.085 0.558 0.688 0.583 0.130 0.674 0.729 0.686 0.108 

[V + D] SFCN [41] 0.806 0.842 0.814 0.063 0.577 0.815 0.619 0.086 0.688 0.829 0.716 0.075 

VBGFd 0.881 0.877 0.880 0.046 0.690 0.806 0.714 0.059 0.783 0.840 0.795 0.053 

The best three scores in each column are marked in red , green and blue , respectively. 

13 state-of-the-art models (LEGS,MCDL,MDF,ELD,DCL,RFCN,DHSNet,SIV,FST,NLC,SAG,GF) can be referenced from the paper [26] . For SFCN, the result is generated 

using the provided source code. 
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Table 5 

Average run time (per frame) of the compared models (MST16 [8] , FastMBD15 [9] , AMC13 [10] , 

TGFV17 [22] , SGSP16 [13] , RWR15 [11] , GF15 [12] , SAG15 [28] ), SFCN [41] ). 

Image_based MST FastMBD AMC – – – –

Time(s) ↓ 0.200 0.018 0.153 – – – –

Video_based SGSP RWR GF SAG TGFV SFCN VBGF VBGFd 

Time(s) ↓ 15.37 14.25 13.50 15.38 33.17 0.072 3.56 3.14 

Table 6 

Average run time (per frame) of each component in the proposed models. 

Component 

VBGF VBGFd 

Time(s) Ratio(%) Time(s) Ratio(%) 

Virtual border building 0.50 14.04 – –

Saliency detection 0.07 1.97 0.15 4.78 

Optical flow computation 2.80 78.65 2.80 89.17 

Feature fusion(guided filtering) 0.07 1.97 0.07 2.23 

Map fusion 0.12 3.37 0.12 3.82 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

5. Conclusion 

In this paper, a novel video salient object detection method

(the VBGF) and its extension integrating deep representations (the

VBGFd) are proposed. Using virtual border concept has helped to

address the problem of distance transform employed for saliency

computation in previous approaches. The guided filter-based Fea-

ture fusion and the Map fusion are efficiently used for fusing spa-

tial and temporal information together by applying appropriate

balance. When tested on various video databases, the proposed ap-

proach yields satisfactory performance and even outperforms the

state-of-the-art methods. 

The virtual border can be used as an optimization operation

for salient object detection methods that are based on background

prior. The guided filter-based Feature fusion helps to remove back-

ground regions for moving object detection and segmentation. The

Map fusion provides a new way to combine various individual

saliency maps into a more robust one. However, the proposed fu-

sion can lead to information loss as the used hand-crafted features

are not robust in some complex cases, which may be improved

with more informative features; so there is still a room for im-

provement. Hence for the future work, we intend to explore deep-

learning based methods for salient object detection in videos. We

also plan to improve the above fusion by training deep networks

to learn more useful deep representations. 
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