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Rules of physics in many real-life problems force some constraints to be satisfied. This paper deals with
nonlinear pattern recognition under non-negativity constraints. While kernel principal component
analysis can be applied for feature extraction or data denoising, in a feature space associated to the
considered kernel function, a pre-image technique is required to go back to the input space, e.g.,
representing a feature in the space of input signals. The main purpose of this paper is to study a
constrained pre-image problem with non-negativity constraints. We provide new theoretical results on
the pre-image problem, including the weighted combination form of the pre-image, and demonstrate
sufficient conditions for the convexity of the problem. The constrained problem is considered with the
non-negativity, either on the pre-image itself or on the weights. We propose a simple iterative scheme to
incorporate both constraints. A fortuitous side-effect of our method is the sparsity in the representation,
a property investigated in this paper. Experimental results are conducted on artificial and real datasets,
where many properties are investigated including the sparsity property, and compared to other methods
from the literature. The relevance of the proposed method is demonstrated with experimentations on
artificial data and on two types of real datasets in signal and image processing.

& 2013 Elsevier Ltd. All rights reserved.
1. Introduction

Many applications in real-life engineering problems require a
constrained solution, including pattern recognition problems. For
instance, denoising or deblurring a gray-level image should result
into an image of the same type [1]. In unmixing signals or images,
e.g., deconvolution, as well as in estimating some spectral features,
one may require the non-negativity of the extracted features [2].
This paper deals with a constrained nonlinear pattern recognition
problem. Here, pattern recognition includes applications such as
feature extraction and data denoising, where the well-known
(kernel) principal component analysis (kernel PCA) is considered
[3]. One may also consider other applications, such as dimension-
ality reduction or manifold learning. Nevertheless, it turns out that
these applications can be regarded as either feature extraction or
ll rights reserved.
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data denoising. Therefore, for clarity of presentation, we will only
distinguish the latter cases.

It turns out that the non-negative constraint is very essential in
many optimization problems [4]. This incorporates the mathema-
tical equivalence between non-negative constrained optimization
problems and non-positive ones. Only iterative methods can be
used to solve general constrained optimization problems. More-
over, an iterative scheme for non-negativity can serve as the
building block for more complex constrained optimization pro-
blems, such as the box-constrained optimization. Since the 1980s,
this was studied for signal deconvolution by Thomas [5] and Prost
et al. [6]. In the beginning of the 1990s, image deconvolution and
deblurring were studied respectively by Thomas et al. [7] and
Snyder et al. [8]. In the last decade, a general method for iterative
optimization under non-negativity constraints has been investi-
gated, initiated by Lantéri et al. [9], and more recently for online
learning [10], system identification [11] and distributed regression
[12]. Recently, such non-negativity has been introduced in [13] for
feature extraction of Event-Related Potential signals, and in [14,15]
to denoise images.

Most investigations in constrained solutions for pattern recog-
nition have been geared towards linear algorithms, such as the
PCA in [16–19]. In the last couple of decades or so, kernel machines
on the pre-image for pattern recognition with kernel machines,
.021i
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1 Unique, up to an isometry.
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have been increasingly used to solve nonlinear learning problems,
popularized since Vapnik's Support Vector Machines (SVM) [20].
While applied successfully to solve nonlinear classification, regres-
sion, and detection problems, it was not the case regarding pattern
recognition. This is essentially due to the concept of the kernel
trick, a “double-edged sword”. In fact, the kernel trick provides a
way to implicitly map data into some high-dimensional nonlinear
feature space, which allows us to construct nonlinear decision
rules with essentially the same computational cost as linear ones.
Nevertheless, one does not have access to most elements of the
feature space, e.g., features or denoised elements computed using
kernel PCA [21]. This is related to the fact that the implicit map
derived by the kernel is non-surjective, with most elements of the
feature space that do not have exact pre-images, and thus cannot
be exactly represented in the input space.

The pre-image problem consists of mapping the pattern back
from the feature space to the input space. Although the exact pre-
image may seldom exists, an approximate solution is constructed.
To this end, many methods have been presented in the literature,
starting with a fixed-point iterative algorithm proposed by Mika
et al. [22]. However, this technique was shown to be unstable, and
suffers from local minima. In [23], Kwok and Tsang presented a
pre-image technique based on a relationship between distances in
both input and feature space, using multi-dimensional scaling.
More recently, a regularized pre-image estimation with kernel PCA
has been introduced in [24]. Honeine et al. [25,26] proposed a
more direct method using relationship between inner products.
See [27] for a recent review of the pre-image estimation problem.
However, none of the aforementioned methods provide con-
strained solutions.

This paper deals with two types of non-negativity constraints,
by providing a unified framework. On the one hand, the non-
negativity is applied to the pre-image, and on the other hand, it is
considered regarding the weights in the model. In fact, the pre-
image can be written as a weighted combination of the training
data and thus the weights can be estimated under some con-
straints. A first attempt to constrain the weights is given in [28]
where a penalized problem is considered with a Laplacian penalty,
yielding a computationally expensive problem. In a general set-
ting, the linear combination includes both positive and negative
weights. Therefore, such weights represent contributions, without
any restrictions on the signs. However, many applications cannot
be interpreted by including subtracted parts within the model.
This is motivated by the rules of physics, with models involving
purely additive components, as illustrated for instance in [16,17]
for the PCA.

One of the useful properties of constraining the weights of the
model is the sparsity property. In fact, the unconstrained solution
can combine additive and subtractive contributions, a large part of
them neutralizing others in the linear combination. By setting
non-negativity constraints to these weights, it turns out that such
a balance will lead to a large number of inactive components, i.e.,
weights close to zero. This is the property of sparsity, contributing
to the widespread of Support Vector Machines algorithms [20] and
compressed sensing literature [29]. We emphasize on the fact that
this is a fortuitous side-effect of the non-negativity constraints, as
opposed to a main sparsity objective function, where one controls
the degree of sparsity of the solution. It is worth noting that
including explicitly the sparsity constraint, such as minimizing an
ℓ0 or an ℓ1 cost function, is computationally expensive (see for
instance [18] and references therein).

In this paper, we study a constrained solution to the pre-image
problem, for nonlinear pattern recognition. To the best of our
knowledge, pre-image techniques have only been applied for
denoising purpose. We propose a unified framework to solve the
pre-image problem for both feature extraction and denoising.
Please cite this article as: M. Kallas, et al., Non-negativity constraints
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We provide new theoretical results on the pre-image problem,
including the weighted combination form, and provide sufficient
conditions for the convexity of the problem. The constrained
problem is considered with the non-negativity, either on the
pre-image or on the weights. We propose a simple iterative
scheme to address both constraints, with expressions for a wide
range of kernel functions. Experiment results are conducted on
artificial and real datasets, where many properties are investigated
including the sparsity property, and compared to other methods
from the literature.

The rest of the paper is organized as follows. In the next
section, we present the main idea behind kernel machines, and
describe the kernel PCA technique where a unified framework for
pattern recognition is proposed. Section 3 describes the pre-image
problem and provides new theoretical results. In Section 4, we
solve the pre-image problem under non-negativity constraints,
either on the pre-image or on the weights. Finally, Section 5 gives
the experimental results illustrating the efficiency of the proposed
method on both artificial and real datasets.
2. Kernel machines and kernel PCA for pattern recognition

In recent years, kernel methods have been progressively used
more due, on the one hand, to the development of the statistical
learning theory, and on the other hand to the computational
efficiency of the corresponding algorithms. This is illustrated here
with the kernel PCA, the nonlinear version of the principal
component analysis.

2.1. Kernel machines

Let X⊂Rd be an input space with the canonical (Euclidean) dot
product xi � xj for any xi; xj∈X . Let κ : X � X↦R be a symmetric and
continuous function, i.e., a kernel. A kernel is positive definite if
and only if any matrix K with entries κðxi; xjÞ for any finite subset
of X is positive definite, that is ∑i;jαiαjκðxi; xjÞ≥0 for all αi; αj∈R and
all xi; xj∈X . Based on the Moore–Aronszajn theorem [30], any
positive definite kernel guarantees the existence of a unique1

feature space (or reproducing kernel Hilbert space) H where κ
defines an inner product. In other words, there exists a map
Φ : X↦H, from the input space to the feature space, such that

κðxi; xjÞ ¼ 〈ΦðxiÞ;ΦðxjÞ〉H; ð1Þ
for any xi; xj∈X , where 〈�; �〉H denotes the corresponding inner
product in H.

Therefore, the positive definite kernel, henceforth called
(reproducing) kernel, corresponds to a generalization of the
canonical dot product, and thus is a nonlinear measure of
similarity between data. It turns out that most linear data proces-
sing algorithms can be easily recast in terms of dot product in
input space. Substituting the dot product with a kernel offers
nonlinear extensions of classical algorithms. This is referred to as
the kernel trick, and can be done without the need to explicitly
compute the map Φ. Table 1 summarizes the most commonly used
kernel functions, grouped into two classes: projective kernels, of
the form

κðxi; xjÞ ¼ f ðxi � xjÞ; ð2Þ
and radial kernels, of the form

κðxi; xjÞ ¼ gð∥xi−xj∥2Þ: ð3Þ
It is worth noting that some kernels induce infinite-dimensional
feature spaces, such as the Gaussian kernel.
on the pre-image for pattern recognition with kernel machines,
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Table 1
Commonly used reproducing kernels in machine learning, with
parameters c; s40, and p∈Nþ .

Type General form

Projective
Monomial κmðxi ; xjÞ ¼ ðxi � xjÞp
Polynomial κpðxi; xjÞ ¼ ðc þ xi � xjÞp
Exponential

κEðxi; xjÞ ¼ exp
1
s
ðxi � xjÞ

� �
Sigmoid κSðxi ; xjÞ ¼ tanhðcðxi � xjÞ þ sÞ

Radial
Laplacian

κLðxi ; xjÞ ¼ exp
−1
s
∥xi−xj∥

� �
Gaussian

κGðxi ; xjÞ ¼ exp
−1
2s2

∥xi−xj∥2
� �

Multiquadratic κMQ ðxi ; xjÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∥xi−xj∥2 þ c

q
Rational κRðxi ; xjÞ ¼ 1− ∥xi−xj∥2

∥xi−xj∥2þs

2 We assume that data are centered inH; otherwise, we apply the algorithm by
substituting each ΦðxjÞ with ΦðxjÞ−ð1=nÞ∑n

i ¼ 1ΦðxiÞ.
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The following two propositions will be considered in this paper
to demonstrate new results, and are included here for complete-
ness. Let f ðkÞðζÞ be the k-th derivative of the function f with respect
to ζ. The following result is due to [31] (see also [32, Proposition
7.2]).

Proposition 1 (Radial kernels). A sufficient condition for a function
of the form κðxi; xjÞ ¼ gð∥xi−xj∥2Þ to be a positive definite kernel is its
complete monotonicity, i.e., its derivatives satisfies

ð−1ÞkgðkÞðζÞ≥0 ð4Þ
for any ζ40 and k≥0.

This is the case of the Gaussian kernel κGðxi; xjÞ ¼ gð∥xi−xj∥2Þ
with

gðkÞðζÞ ¼ −
1

2s2

� �k

gðζÞ: ð5Þ

For the projective kernels, the following result is given in [32,
Proposition 7.1].

Proposition 2 (Projective kernels). Three necessary conditions for a
function κðxi; xjÞ ¼ f ðxi � xjÞ to be a positive definite kernel are, for any
non-negative ζ:

f ðζÞ≥0
f ð1ÞðζÞ≥0
f ð1ÞðζÞ þ ζf ð2ÞðζÞ≥0 ð6Þ

2.2. Kernel PCA

The principal component analysis (PCA) is a powerful mathe-
matical tool to reveal patterns within a set of data. It is a non-
parametric approach, which does not incorporate any prior knowl-
edge of the model, except its linearity. The PCA considers the most
relevant eigenvectors of the data covariance matrix, i.e., eigenvec-
tors associated to the largest eigenvalues. These eigenvectors
constitute a set of orthonormal axes capturing most of the
variance within data. Let us consider a set of n (column-wise)
data fx1; x2;…; xn∈Xg. Then, consider the eigen-problem
λkvk ¼ Cvk, where C ¼ ð1=nÞ∑n

j ¼ 1xjx
T
j is the covariance matrix, data

assumed to be centered around the origin. Then the m eigenvec-
tors fv1; v2;…; vm∈Xg are chosen from the largest eigenvalues
λ1; λ2;…; λm, where each λk gives the amount of captured variance
in the direction of vk. Due to the linearity of the operations, each
eigenvector lies in the span of the data.
Please cite this article as: M. Kallas, et al., Non-negativity constraints
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The conventional PCA identifies only linear structures in a
given dataset. A more generalized technique has been introduced
to learn the nonlinearities using kernels, the so-called kernel PCA.
The kernel PCA can reveal nonlinear kernel principal components
that are more appropriate to complex and nonlinear data such as
face images, handwritten digits and natural signals. For this
purpose, data are (implicitly) mapped into a feature space, where
PCA is applied. Although the resulting eigenvectors are linear in
the feature space, they describe nonlinear relations in the input
space. In order to solve this nonlinear problem, it is more likely to
apply the kernel trick, and not to explicitly compute the map from
the input to the feature space. The concept of kernel trick is
illustrated here for kernel PCA [33,34].

To this end, the PCA algorithm is recast in terms of inner
product of data in feature space. Let Φ : X↦H be a nonlinear map,
and fΦðx1Þ;Φðx2Þ;…;ΦðxnÞ∈Hg the set of mapped data. We wish to
solve the (kernel) PCA, in terms of inner products in the feature
space, 〈ΦðxiÞ;ΦðxjÞ〉H, for i; j¼ 1;2;…;n. The covariance matrix2 in
H is CΦ ¼ ð1=nÞ∑n

j ¼ 1ΦðxjÞΦðxjÞT . The principal axes, φk∈H for
k¼ 1;2;…;m, correspond to the eigenvectors with the largest
eigenvalues λk satisfying the expression

λkφk ¼ CΦφk: ð7Þ

By analogy with the classical PCA, any solution φk lies in the span
of the Φ-images of the data. This implies that there exist some
coefficients α1; α2;…; αn such that

φk ¼ ∑
n

i ¼ 1
αk;iΦðxiÞ: ð8Þ

This is a more general result known as the representer theorem
[35,36] in kernel machines, where the solution of a (regularized)
learning problem can be written in terms of a linear combination
of the training data in the feature space.

Replacing the expression of CΦ and the representer (8) into the
eigen-problem (7), we get the new eigen-problem in terms of
inner product with

nλkαk ¼Kαk; ð9Þ

where K is the n� n matrix of entries κðxi; xjÞ with (1) applied, and
αk ¼ ½αk;1αk;2…αk;n�T . Furthermore, two issues are considered in the
final kernel PCA algorithm. First, as mentioned earlier, data should
be centered in the feature space. This can be done by substituting
the matrix K by ðI−1nÞKðI−1nÞ, where I is the identity matrix and
1n is a n� n matrix of entries 1=n. Second, we normalize as in PCA
by requiring that the corresponding vectors inH be unit-norm, i.e.,
〈φk;φk〉H ¼ 1. This is done by rescaling the weight vectors αk such
that λkðαk � αkÞ ¼ 1, for k¼ 1;2;…;m.
2.3. Kernel PCA for pattern recognition

Roughly speaking, two main applications can be given with
conventional PCA: Either consider relevant principal axes as
extracted features, or project some noisy observations onto (the
subspace spanned by) these axes as a denoising scheme. Both
techniques are illustrated here in the feature space, using
kernel PCA.
2.3.1. Feature extraction
Kernel-PCA defines the set of most relevant axes in the feature

space. Let fφ1;φ2;…;φm∈Hg be the set of these axes. Then each φk
on the pre-image for pattern recognition with kernel machines,
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takes the form (8), namely

φk ¼ ∑
n

j ¼ 1
αk;jΦðxjÞ;

where αk;1; αk;2;…; αk;n are obtained from the eigenvector asso-
ciated to the k-th eigenvalue in (9). We also define the relevant
subspace of H as the one spanned by these axes. By analogy to the
conventional PCA, these axes (as well as the associated subspace)
capture most of the variance of the data. They can be regarded as
features extracted from the data, capturing the largest variations
and orthonormal to each others.
2.3.2. Denoising
Denoising is a technique applied in order to recognize patterns

corrupted by noise. Let x0∈X be a noisy sample. Then the
associated image Φðx0Þ is projected onto the relevant subspace
(described above), resulting into the denoised pattern. The latter is
expressed by the inner product of the mapped sample with the m
principal axes, as

φ¼ ∑
m

k ¼ 1
〈Φðx0Þ;φk〉Hφk:

Expanding this expression by (8) and applying the equivalence
between the inner product operator and the kernel function κ,
we get

φ¼ ∑
m

k ¼ 1
〈Φðx0Þ; ∑

n

i ¼ 1
αk;iΦðxiÞ〉H ∑

n

j ¼ 1
αk;jΦðxjÞ

¼ ∑
m

k ¼ 1
∑
n

i ¼ 1
αk;iκðx0; xiÞ ∑

n

j ¼ 1
αk;jΦðxjÞ:
2.3.3. A unifying view
Now, we propose a unified view to tackle both the above

pattern recognition problems. To this end, we write the extracted
feature and the denoised pattern as a linear combination of
the mapped training data, with φk ¼∑n

j ¼ 1αk;jΦðxjÞ and φ¼
∑n

j ¼ 1½∑m
k ¼ 1∑

n
i ¼ 1αk;iαk;jκðx0; xiÞ�ΦðxjÞ. Aggregating all these terms,

we get a unifying view of both cases, with

φ¼ ∑
n

j ¼ 1
γjΦðxjÞ: ð10Þ

On the one hand, the feature extraction is given as φ¼ φk with

γj ¼ αk;j;

and on the other hand, the denoising pattern with

γj ¼ ∑
m

k ¼ 1
∑
n

i ¼ 1
αk;iαk;jκðx0; xiÞ:

In the latter case, the coefficients γj depend on the noisy x0, which
can be either a new observation or one of the training data.
Summarized in Table 2, the unifying expression in (10) enables us
to define a general form in the optimization problem for both
feature extraction and denoising schemes.
Table 2
Unified view for the definition of γj in φ¼∑n

j ¼ 1γjΦðxjÞ.

Application γj

Feature extraction of φk αk;j
Denoising of x0 ∑

m

k ¼ 1
∑
n

i ¼ 1
αk;iαk;jκðx0; xiÞ

Please cite this article as: M. Kallas, et al., Non-negativity constraints
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3. The pre-image problem

Classically, the kernel PCA has shown its powerful ability in
supervised learning, as a pre-processing stage followed by a
discrimination rule. In these cases, for any given x0, the projection
of Φðx0Þ onto any φ∈H of the form (10), can be defined by
〈φ;Φðx0Þ〉H ¼∑n

j ¼ 1γjκðxj; x0Þ, and comparing it to a threshold gives
the decision rule. The problem can be easily solved, with the
coefficients computed using the kernel trick. However, in pattern
recognition such as feature extraction and denoising, we are
interested in the feature itself. More likely, we seek its counterpart
in the input space, the observation space. It is natural to have
extracted patterns of the same type as the data, i.e., identical input
space, since one often seeks for a signal as a pattern in signal
processing, or a denoised image in image processing. The pre-
image problem is illustrated in Fig. 1.

With the exception of the Φ-images of the training data, only a
very few elements in the feature space have pre-images, i.e., data
which maps into (10) for some given coefficients. In fact, this is an
ill-posed problem since the exact pre-image may not exist, and
even if it exists, it might be not unique. To solve this problem, we
seek an approximate solution, i.e., a xn∈X whose image ΦðxnÞ is as
close as possible to φ. The way back from the feature space to the
input space is called the pre-image problem.

Many techniques have been introduced in the literature in
order to solve this problem. The simplest one is the study of the
gradient of the cost function defined by (12). This technique seeks
for the minimum based on the opposite side of the gradient.
An iterative fixed-point method proposed by Mika et al. in [22] is
derived taking into consideration the kernel function used for
denoising purpose. The implementation of this technique requires
the choice of the starting point for the calculation, and a stopping
criterion. The results vary widely depending on the starting point.
Moreover, the fixed-point technique can be unstable and leads to
local minima, and sometimes may not converge. Issues related to
the iterative fixed-point technique are probably due to the absence
of an adaptation step size parameter to enable control of the
convergence of the algorithm.

In order to overcome these issues, many techniques have been
introduced. First, Kwok et al. in [23] introduced a new technique
based on a relationship between distances in both input and
feature spaces, using multi-dimensional scaling. Ideally, the dis-
tances in the input space and the feature space are preserved. Few
neighbors are taken into consideration in order to evaluate the
solution in the same spirit as the locally linear embedding scheme
in dimensionality reduction [37]. Another technique based on
preserving the inner product measures is studied by Honeine
et al. in [25]. This strategy consists of computing the solution by
preserving the angular measures. Therefore, a coordinate system is
created in the feature space having an isometry with the input
space. This technique can identify the pre-images of a set of
functions in the feature space.

Other techniques have been proposed in order to obtain a more
stable estimation of the pre-image as in [24]. In this method the
cost function is regularized by adding the distance in the input
space multiplied by some non-negative regularization parameter.
In the same spirit, another method has been introduced in [28]
with two penalization functions. First of all, a convexity constraint
is imposed during the training phase. After that, a penalized
function is integrated as part of the optimization function during
the learning process of the pre-images. In this paper, we propose
another technique in order to solve the pre-image problem.

It consists of solving the optimization problem

xn ¼ arg min
x∈X

1
2
∥φ−ΦðxÞ∥2H; ð11Þ
on the pre-image for pattern recognition with kernel machines,
.021i
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Fig. 1. Schematic illustration of the pre-image problem. Constructed in the feature space from some training data, principal axes are mapped back to the input space by
solving the pre-image problem, pre-imaging φ1 into xn here. Not every feature has a unique pre-image that is why the mapping back is not given by the inverse of the
function Φð�Þ, and there is no explicit function to map back the evaluation in the feature space to input space, therefore it is represented by the question mark “?”.
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where ∥ � ∥H denotes the norm in H, and thus provides a measure
of distance between elements in the feature space, with the norm
of their residue. Thanks to the unifying view given in (10) with
φ¼∑n

i ¼ 1γiΦðxiÞ, we consider the same optimization problem for
either feature extraction or denoising, with

xn ¼ arg min
x∈X

1
2
‖ ∑

n

i ¼ 1
γiΦðxiÞ−ΦðxÞ‖2H

The general form used for the calculation is described by

xn ¼ arg min
x

JðxÞ

where JðxÞ represents the resulting cost function, defined by

JðxÞ ¼ − ∑
n

i ¼ 1
γiκðxi; xÞ þ

1
2
κðx; xÞ ð12Þ

with γj given in Table 2. In this expression, the term
1
2∑

n
i ¼ 1∑

n
j ¼ 1γiγjκðxi; xjÞ has been removed since it is independent

of x.
This is a highly nonlinear optimization problem. To solve this

problem, one may study the gradient of the cost function JðxÞ with
respect to x. At an optimum, the gradient with respect to x
disappears, namely ∇xJðxÞ ¼ 0. The resulting gradient is given as

∇xJðxÞ ¼− ∑
n

i ¼ 1
γi∇xκðxi; xÞ þ

1
2
∇xκðx; xÞ: ð13Þ

This is the general form for all kernels, including for instance the
projective kernels of the form (2) such as the polynomial kernel.
Expressions (12) and (13) can be further simplified for the wide
class of radial kernels, of the form (3) such as the Gaussian kernel.
In such cases, κðx; xÞ is independent of x, for all x∈X , thus ∇xκðx; xÞ
equals to zero, and only the first term of (13) remains. See Table 1
for expressions of commonly used kernels.

Let us now write the pre-image using a linear combination of
the available data, that is xn ¼∑n

i ¼ 1β
n

i xi. To the best of our
knowledge, this is the first time that a proof of this statement is
derived, while it has been exploited and validated by many pre-
image techniques from the literature [23,25,28].

Theorem 1. Any pre-image xn can be written as a linear combina-
tion of the available data, namely

xn ¼ ∑
n

i ¼ 1
βn

i xi ð14Þ

where βn

i are weights to be determined.
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Proof. To prove this, we consider separately the two classes of
kernels: projective and radial kernels (see Table 1). We consider
the expression of the gradient of a composition of two functions.
Let h2 be a function of real values in R and h1 a function of real
values over X (we consider in particular either h1ðxÞ ¼ 〈xi � x〉 or
h1ðxÞ ¼ ∥xi−x∥2). Under mild conditions of differentiability of the
function h2 with respect to h1ðxÞ, we have

∇xðh2Jh1Þx¼ hð1Þ
2 ðh1ðxÞÞ∇xh1ðxÞ;

where hð1Þ
2 ðζÞ is the first derivative of the function h2 over ζ, namely

hð1Þ2 ðζÞ ¼ ∂h2ðζÞ
∂ζ

:

Let us begin with the projective kernels, of the form (2). In this
case

∇xf ð〈xi � x〉Þ ¼ f ð1Þðxi � xÞ∇xðxi � xÞ

where the gradient ∇xðxi � xÞ is given by the vector whose k-th
component is

∂〈xi � x〉
∂½x�k

¼ ∑
dimðX Þ

j ¼ 1
½xi�j

½x�j
∂½x�k

¼ ∑
dimðX Þ

j ¼ 1
½xi�jδjk ¼ ½xi�k;

where δjk is the Kronecker symbol. In other words, ∇xðxi � xÞ ¼ xi,
and therefore

∇xf ðxi � xÞ ¼ f ð1Þðxi � xÞxi:
On the other side, it is easy to demonstrate that

∇xf ðx � xÞ ¼ 2f ð1Þðx � xÞx;

since

∂ðx � xÞ
∂½x�k

¼ ∂∥x∥2

∂½x�k
¼ 2½x�k:

We have at the optimum ∇xJðxnÞ ¼ 0, namely

∑
n

i ¼ 1
γi∇xnκðxi; xnÞ ¼ 1

2
∇xnκðxn; xnÞ: ð15Þ

Thus, the left-hand-side of this equation can be written as

∑
n

i ¼ 1
γi∇xnκðxi; xnÞ ¼ ∑

n

i ¼ 1
γi∇xn f ðxi � xnÞxi;
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and its right-hand-side can be expressed as

1
2
∇xnκðxn; xnÞ ¼ 1

2∇xn f ðxn � xnÞ2xn:

The gradient (13) is thus given by

∇xJðxÞ ¼− ∑
n

i ¼ 1
γif

ð1Þðxi � xÞxi þ f ð1Þðx � xÞx:

Combining both expressions, Eq. (15) becomes

xn ¼ ∑
n

i ¼ 1
γi
f ð1Þðxi � xnÞ
f ð1Þðxn � xnÞ

xi; ð16Þ

of the form xn ¼∑n
i ¼ 1β

n

i xi.
We now study the class of radial kernels, defined by expression (3).

In such a case, the term ∂κðx; xÞ=∂x vanishes. Thus, we get

∇xgð∥xi−x∥2Þ ¼ gð1Þð∥xi−x∥2Þ∇xð∥xi−x∥2Þ:

In this case, it is easy to demonstrate that the k-th component of the
gradient ∇xð∥xi−x∥2Þ is
∂ð∥xi−x∥2Þ

∂½x�k
¼−2ð½xi�k−½x�kÞ;

thereby, we can write ∇xð∥xi−x∥2Þ ¼ −2ðxi−xÞ, and consequently

∇xgð∥xi−x∥2Þ ¼ −2gð1Þð∥xi−x∥2Þðxi−xÞ:

The gradient (13) is thus given by

∇xJðxÞ ¼− ∑
n

i ¼ 1
γig

ð1Þð∥xi−x∥2Þðxi−xÞ:

At the optimum (15), the gradient can be written as

∑
n

i ¼ 1
γi∇xnκðxi; xnÞ ¼ 0;

with the left-hand-side given as

∑
n

i ¼ 1
γi∇xnκðxi; xnÞ ¼ ∑

n

i ¼ 1
γi∇xngð∥xi−xn∥2Þ2ðxn−xiÞ:

The final result of (15) can thus be expressed as

xn ¼ ∑
n

i ¼ 1
γi

gð1Þð∥xi−xn∥2Þ
∑n

j ¼ 1γjg
ð1Þð∥xj−xn∥2Þ xi; ð17Þ

again of the form xn ¼∑n
i ¼ 1β

n

i xi. □

The following result provides new insight into the connection
between the weights in both feature and input spaces.

Corollary 1. When input data are non-negative, if the weights in the
feature space are non-negative, i.e., γ1; γ2;…; γn≥0, then the weights
of the corresponding pre-image are also non-negative, i.e.,
βn

1; β
n

2;…; βn

n≥0. Moreover, the non-negativity of the data is not
required for radial kernels.
Table 3

Gradient of the cost function (12) for most commonly used kernels, with r

Type ∇xJðxÞ

Polynomial
− ∑

n

i ¼ 1
γipκp−1ðxi ; xÞxi þ pκp−1ðx; xÞx

Sigmoid
− ∑

n

i ¼ 1
γið1−κ2S ðxi ; xÞÞcxi þ cð1−κ2S ðx; xÞÞx

Exponential
−
1
s

∑
n

i ¼ 1
γiκEðxi ; xÞxi þ

1
s
κEðx; xÞx

Gaussian
−
1
s2

∑
n

i ¼ 1
γiκGðxi ; xÞðxi−xÞ
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Proof. For the projective kernels, we have from (16)

βn

i ¼ γi
f ð1Þðxi � xnÞ
f ð1Þðxn � xnÞ

:

When all input data are non-negative, the above derivatives are
non-negative due to Proposition 2. The same proof can be applied
for the radial kernels by applying Proposition 1 to (17) with

βn

i ¼ γi
gð1Þð∥xi−xn∥2Þ

∑n
j ¼ 1γjg

ð1Þð∥xj−xn∥2Þ : □

The above results are based on the first derivative of the cost
function (12). Its second derivative provides a deeper insight on its
convexity, as derived in the following theorem.

Theorem 2. For the class of radial kernels, a sufficient condition for
the convexity of the cost function is given by the non-negativity of the
coefficients γ1; γ2;…; γn.

Proof. Taking the second derivative of the cost function (12) with
respect to x, we get

∇2
x JðxÞ ¼∇x 2 ∑

n

i ¼ 1
γiðxi−xÞgð1Þð∥xi−x∥2Þ

" #

¼ 2 ∑
n

i ¼ 1
γið−gð1Þð∥xi−x∥2Þ þ 2ðxi−xÞ2gð2Þð∥xi−x∥2ÞÞ:

The term between parentheses is positive, due to Proposition 1.
Therefore, a sufficient condition for the second derivative to be
non-negative, and thus for the convexity of (12), is that all the
coefficients γi are non-negative. □

The non-negativity of the coefficients γi 's is a condition
imposed by the SVM for classification and regression, as well as
some other machine learning methods. However, this is not the
case in general, with the kernel PCA for instance. In this paper, we
will not limit ourselves to the convex problem, but consider the
more general non-convex problem.

From Theorem 1, the form xn ¼∑n
i ¼ 1β

n

i xi provides a fixed-point
iterative method to solve the pre-image problem, where the βi 's
depend on xn. For the Gaussian kernel, we have

κGðxi; xjÞ ¼ gð∥xi−xj∥2Þ ¼ exp
−1
2s2

∥xi−xj∥2
� �

thus

gð1Þð∥xi−xj∥Þ ¼−
1

2s2
κGðxi; xjÞ

From expression (17), we get the fixed-point iterative method for
the Gaussian kernel

xn ¼ ∑n
i ¼ 1γiκGðxi; xnÞxi

∑n
i ¼ 1γiκGðxi; xnÞ : ð18Þ
espect to either x (second column) or β from x¼ XTβ (third column).

∇βJðXTβÞ

− ∑
n

i ¼ 1
γipκp−1ðxi ;XTβÞXxi þ pκp−1ðXTβ;XTβÞXXTβ

− ∑
n

i ¼ 1
γicð1−κ2S ðxi;XTβÞÞXxi þ cð1−κ2S ðXTβ;XTβÞÞXXTβ

−
1
s

∑
n

i ¼ 1
γiκEðxi ;XTβÞXxi þ

1
s
κEðXTβ;XTβÞXXTβ

−
1
s2

∑
n

i ¼ 1
γiκGðxi ;XTβÞXðxi−XTβÞ
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Fig. 2. Schematic illustration of the pre-image problem under the non-negativity constraints. A given noisy data x0 is mapped into Φðx0Þ, then projected into the subspace
spanned by the most relevant principal axes φ1 ;φ2;…;φm . The denoised pattern φ is mapped back to the input space, into xn . Not every feature has a unique pre-image that is
why the mapping back is not given by the inverse of the function Φð�Þ, and there is no explicit function to map back the evaluation in the feature space to input space,
therefore it is represented by the question mark “?”.
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When the polynomial kernel is applied, with

κpðxi; xjÞ ¼ f ðxi � xjÞ ¼ ðcþ xi � xjÞp;

then

f ð1Þðxi � xjÞ ¼ pκp−1ðxi; xjÞ;

where κp−1ðxi; xjÞ ¼ f ðxi � xjÞ ¼ ðcþ xi � xjÞp−1. From expression (16),
we get the fixed-point iterative method for the polynomial kernel

xn ¼ ∑n
i ¼ 1γiκp−1ðxi; xnÞxi
κp−1ðxn; xnÞ :

Table 3(second column) illustrates the diversity of the gradient
expressions for different kernels. Such fixed-point iterative algo-
rithm suffers from instabilities and even may not converge at all,
as illustrated in [22] where only the Gaussian kernel was used.
Moreover, results widely vary for different starting points in
practice. These issues are likely due to two factors: First, the
absence of a stepsize parameter, which allows us to control the
convergence of the algorithm. Second, the unconstrained solution,
as the hypothesis space corresponds to the whole input space.
Both issues will be addressed in the next section.
4. The pre-image under non-negativity constraints

In many applications in pattern recognition, one seeks non-
negativity in the solution. In image processing for instance,
training data are images or patches within an image, i.e., data
which are non-negative for gray-level images. To get a feature
extracted or a denoised version of the same type (same input
space with non-negativity of each pixel), one should impose non-
negativity constraints on the pre-image. However, the constraints
are applied either on the data itself, or on the weights model using
the linear combination of (14).
3 A more general form can be given using a function expressing the constraints,
gðxÞ, with the Lagrangian expression JðxÞ−μT gðxÞ [9]. For clarity of this paper, this
function is substituted with its simplest form, x.
4.1. Non-negativity constraint on the data itself

In this section, we consider the general problem of solving the
pre-image problem under non-negativity constraint. With the cost
function Jð�Þ defined in (12), we study the constrained optimization
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problem

xn ¼ arg min
x

JðxÞ subject to x≥0; ð19Þ

where expression x≥0 refers to the non-negativity of all entries of
the vector x. The gradient of Jð�Þ is given in Table 3 for several
kernel types. Next, we derive an iterative updating rule that leads
to the non-negativity of pre-image. Fig. 2 illustrates the concept of
this constrained pre-image.

A general form of the pre-image problem under non-negativity
constraints is defined in (19). Consider the Lagrangian function
associated to this constrained optimization problem, with3

JðxÞ−μTx;
where μ represents the vector of non-negative Lagrange multi-
pliers. At the optimum solution xn, corresponding to the optimal
multiplier vector μn, the first-order (Karush–)Kuhn–Tucker optim-
ality conditions are satisfied, with

∇x½JðxnÞ−μnTxn� ¼ 0
μn

i x
n

i ¼ 0 for all i¼ 1;2;…

where xni (resp. μn

i ) is the i-th component of xn (resp. μn), and ∇x is
the gradient with respect to x. We can easily see that the first
condition can be written as ∇x½JðxnÞ�i−½μn�i ¼ 0 for all i, where ½��i
denotes the i-th component. Combining all these equality condi-
tions by removing the Lagrangian multipliers, we get for each
i¼ 1;2;…, either xni ¼ 0 (active constraint) or ½∇xJðxnÞ�i ¼ 0 (inac-
tive constraint with xni 40).

In order to solve this equation, we consider an iterative scheme.
The updating expression at iteration t þ 1 of all xiðt þ 1Þ from
previous xi(t) is given by

xiðt þ 1Þ ¼ xiðtÞ þ ηiðtÞxiðtÞ½−∇xJðxðtÞÞ�i;
where ηiðtÞ is a stepsize factor to control convergence and impose
the non-negativity, and the minus sign illustrates a gradient
descent scheme. A condition on ηiðtÞ should be satisfied to insure
the non-negativity of all components xiðt þ 1Þ of xðt þ 1Þ. To this
end, we write the above expression as

xiðt þ 1Þ ¼ xiðtÞð1þ ηiðtÞ½−∇xJðxðtÞÞ�iÞ;
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4 The banana dataset is defined by a parabola having ðx; x2 þ ξÞ as coordinates,
where x on the x-axis is uniformly distributed within the interval ½0:5;2:5�, and ξ is
normally distributed with a standard deviation of ν¼ 0:2. The donut dataset is
given by data from a circle of radius 0.9, corrupted by a uniformly distributed noise
on ½−ν; ν�, with ν¼ 0:4. The frame dataset is defined by a square of four lines, each of
length 2, where the length 2 is chosen randomly. The data were uniformly
randomly drawn within these lines and corrupted by a uniformly distributed noise
on ½−ν; ν�, with ν¼ 0:2.
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and thus this translates into a condition on the non-negativity
of 1þ ηiðtÞ½−∇xJðxðtÞÞ�i. Two cases can be distinguished: If
½∇xJðxðtÞÞ�i≤0, no restriction is applied on the value of the stepsize;
otherwise, when ½∇xJðxðtÞÞ�i40, then we have to crop the value of
the stepsize such that

ηiðtÞ≤
1

½∇xJðxðtÞÞ�i
:

In practice, one may use a stepsize independent of i, which
satisfies the following inequality:

ηðtÞ≤min
i

1
½∇xJðxðtÞÞ�i

:

Written in a matrix form, the final updating rule is defined by

xðt þ 1Þ ¼ xðtÞ−ηðtÞ diag½xðtÞ�∇xJðxðtÞÞ; ð20Þ
where diag½�� is the diagonal operator, namely diag½xðtÞ� is the
diagonal matrix whose entries are xi(t). In this expression,
−diag½xðtÞ�∇xJðxðtÞÞ corresponds to the direction of descent.

4.2. Non-negativity constraint on the model weights

By virtue of Theorem 1, the pre-image can be expressed in
terms of a linear combination of the available data, namely
xn ¼∑n

i ¼ 1β
n

i xi, for some weights βn

i to be determined. Therefore,
we seek the optimal pre-image of the matrix form

xn ¼ XTβn;

where X ¼ ½x1x2⋯xn�T and βn ¼ ½βn

1β
n

2⋯βn

n�T is the vector of
unknown coefficients. This allows us to present another strategy
to tackle the pre-image problem, by imposing a constraint on the
coefficients in the above expression. We define the constrained
pre-image problem as

xn ¼ arg min
x

JðxÞ subject to β≥0;

with x¼ XTβ.
The corresponding cost function (12) can be written as

JðXTβÞ ¼ − ∑
n

i ¼ 1
γiκðxi;XTβÞ þ 1

2
κðXTβ;XTβÞ: ð21Þ

Taking the gradient of the above expression with respect to β, we
get

∇βJðXTβÞ ¼ X∇xJðxÞ; ð22Þ
where x¼ XTβ. Table 3 (third column) gives the gradient with
respect to β of the most commonly used kernels. The relationship
between these expressions and the gradient with respect to x
(second column in Table 3) is given in expression (22).

By deriving this analogy with the constrained optimization
problem (19) (non-negativity on the pre-image), we revisit the
latter in order to impose the non-negativity on the weights βn in
the expansion xn ¼ XTβn. This yields the following optimization
problem:

βn ¼ arg min
β

JðXTβÞ subject to β≥0:

In this expression Jð�Þ is defined as in (21), with its gradient with
respect to β given in (22). From (20), the updating rule of these
weights is given as

βðt þ 1Þ ¼ βðtÞ−ηðtÞ diag½βðtÞ�X∇xJðxÞ;
where x¼ XTβ. The final weights βn

1; β
n

2;…; βn

n determine the pre-
image with xn ¼∑n

i ¼ 1β
n

i xi. From this expression, we can see that in
the case of non-negative training data, x1; x2;…; xn≥0, the result-
ing pre-image xn will be also non-negative.

By imposing non-negativity of the weights, we get a beneficial
side-effect with the sparseness of the solution. This means that a
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large number of the weights is close to zero, or in other words,
only a small number of training data contributes to the final
solution. This property is probably due to the non-uniqueness of
the unconstrained solution, where redundancy in data may result
into additive and subtract components that neutralize their con-
tributions. Sparseness is a very desirable property in pattern
recognition and machine learning, contributing to a better under-
standing of the results, in bioinformatics for instance. It is
illustrated in the next section on artificial and real datasets.
5. Experiments

Three applications of the proposed method are investigated in
this section: two applications for data denoising and one on
feature extraction. In the first application, two-dimensional artifi-
cial data are studied, providing an illustration of the behavior of
the algorithm, for two cases: restricting the solution to be non-
negative, or forcing the weights to be non-negative, and therefore
studying the sparsity of the solution. In the second application,
real images from the MNIST database are used to illustrate the
efficiency of the proposed method with kernel PCA for denoising.
In the third application, we study nonlinear feature extraction
from real signals. Signals are based on the event-related potentials
of the brain activity from the electroencephalograph.

5.1. Artificial datasets: denoising scheme

Let us start with the artificial datasets. For illustration purpose,
we consider a two-dimensional space, and apply the denoising
scheme separately on three different shapes4: a banana, a donut
and a frame. For each example, a set of n samples, given in Fig. 3
(upper row), was generated to learn the m eigenvectors. With its
quadratic form, we set m¼2 for the banana dataset, while m¼4
for the more complicated shape of the frame. Another set of N
samples was generated from the same distributions, as given by
the (very small) blue dots in Fig. 3. Values of the parameters used
for each dataset are given in Table 4. It is obvious that these
nonlinear shapes cannot be denoised properly using a linear
approach, such as the conventional PCA.

First, we compared the non-negative pre-image approach with
other unconstrained techniques, including the fixed-point techni-
que defined by (18) and the regularized pre-image estimation [24].
To this end, we considered a setting where all algorithms should
give comparable results: all the samples are non-negative. This
was done by translating the samples into the positive quadrant, as
illustrated in Fig. 3 (upper row). For all these algorithms, the noisy
version of the data was used at initialization, i.e., xðtÞ for t¼0,
given by (very small) blue dots in Fig. 3. After different experi-
ments, we found that 20 iterations were sufficient to denoise the
samples. Therefore, we fixed the maximum number of iterations
fixed to tmax ¼ 20 for iterative algorithms. The denoised samples
obtained by these pre-image techniques are represented by red
dots. The trajectories obtained at each iteration are represented by
green lines (except for the regularized pre-image estimation which
is not an iterative technique). As we can see with the length of
these lines, the fixed-point algorithm (second row) has slower
convergence as opposed to the proposed approach (last row).
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Fig. 3. Denoising artificial datasets, for the three shapes: banana (left column), donut (middle column) and frame (right column). A set of training data ( in the upper row)
is used for constructing the relevant subspace using the kernel PCAwith the Gaussian kernel. Another set of data (designated by ) is denoised (into ) using either the fixed-
point (second row), the regularized pre-image estimation method (third row) and the proposed (lower row) algorithms. The evolution of the solution for the iterative
methods for the 20 iterations is given with the paths (shown with ). (For interpretation of the references to color in this figure legend, the reader is referred to the web
version of this article.)

Table 4
Values of the parameters for the three datasets.

Parameters Datasets

Banana Donut Frame

Noise parameter ν 0.2 0.4 0.2
Number of training data n 800 500 550
Number of eigenvectors m 2 4 4
Bandwidth of the Gaussian kernel s 0.7 0.8 0.5
Number of denoised data N 200 100 510
Value of the stepsize parameter η 0.3 0.3 0.3
Number of iterations tmax 20 20 20
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This is mainly due to the use of the stepsize η, set here to a fixed
value of η¼ 0:3 for the three datasets. One may take into
consideration optimized stepsize values, either with an optimal
value for each dataset using a line search technique, or with a
stepsize value decreasing at each iteration, i.e., ηðt þ 1ÞoηðtÞ.
These optimization schemas are beyond the scope of this paper.
It is worth noting that the results obtained from the regularized
pre-image estimation show that one may get into local minima.

We turn now to the approach where the weights are con-
strained to be non-negative. No restrictions on the data were
required in this case, and thus no translation was operated as
given above, with samples having positive as well as negative
values. We compared three types of kernels: the Gaussian kernel
on the pre-image for pattern recognition with kernel machines,
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Fig. 4. Denoising with constraints on the model weights, of the banana dataset for a single iteration (upper row), and after t¼100 iterations (lower row). Three different
kernels are compared: Gaussian (left column), polynomial (middle column), and exponential (right column) kernels.

5 This MNIST database is available at http://yann.lecun.com/exdb/mnist/.
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with bandwidth s¼ 0:7 as above, the polynomial quadratic kernel
with p¼2 and c¼1, and the exponential kernel with s¼ 1 (see
Table 1). For all these kernels, the initial value for β given a noisy
data x0 was set to the solution of x0 ¼ XTβ by retaining only non-
negative weights, namely using a pseudo-inverse with

βð0Þ ¼ ðXXT Þ−1Xx0; ð23Þ

for non-negative values; otherwise, it was set to zero. Even with
only one iteration (t¼1) and a small stepsize value of η¼ 0:1, the
proposed algorithm yielded a good denoised pre-image result, as
shown in Fig. 4 (upper row). In this case, where the non-negative
constraints are on the weights, we set the maximum number of
iterations to t¼100, the three kernels gave comparable results
reflecting the shape of the banana manifold, as shown in Fig. 4
(lower row). This result is in opposition with the previous results
observed in [23], where Kwok and Tsang claimed that only the
Gaussian kernel can be pre-imaged with their work. By constrain-
ing the solution to only non-negative weights, as studied in this
paper, we see that other kernels provide relevant results.

Now, we turn to the analysis of the model weights, and the
sparsity of the solution. This experiment deals with the banana
dataset. To this end, we consider the distribution of the weights
β1; β2;…; βn for each of the N¼200 new samples to be denoised
(given in Table 4). Fig. 5 shows the histogram of such distribution,
where each color in the color bars corresponds to a denoised
sample. While we represent here the results of a single iteration,
similar results are obtained for larger number of iterations. These
results illustrate the fact that the weights are non-negative as
expected, lying between 0 and 0.018. Moreover, most of them are
close to zero, namely below 0.002. This is the property of sparsity,
well established and often required by a large class of algorithms
in machine learning community.
Please cite this article as: M. Kallas, et al., Non-negativity constraints
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5.2. Denoising images

We applied the denoising scheme on real handwritten digits,
taken from the MNIST database.5 From the dataset, we have
chosen images of the digit “0”. Each image is defined by 28�28
gray-level pixels, i.e., pixels have values between 0 and 255. Thus,
each image can be written as a 784-dimensional vector. The
images were corrupted by adding a salt-and-pepper noise, with
density 0:1;0:25 and 0.5. The images were denoised under the
non-negativity of the data, as defined by (19) (see also [14]).

The relevance of the proposed method is now demonstrated for
image denoising, and compared to different techniques: the fixed-
point iterative method [22], the multi-dimensional scaling method
[23], the regularized pre-image estimation [24], and the penalized
pre-image [28]. For this purpose, we used the Gaussian kernel
with a bandwidth set to s¼ 500, fixed for all pre-image techni-
ques. A set of 500 images was used to train the kernel PCA with 50
eigenvectors. Another set of 10 images, shown in Fig. 6 (first row),
corrupted by the same noise settings, was used for denoising
(second row). Different techniques are applied in order to denoise
the digits. As we can see in Fig. 6, where the density is set to 0.1,
the proposed method presents the best denoising results among
all the others. We evaluate the mean absolute error (MAE) for each
denoised image using the several pre-image techniques with

MAE¼ 1
28� 28

∑
28

i ¼ 1
∑
28

j ¼ 1

���xn

i;j−xi;j
���;

where xn

i;j is the i; j�th pixel of the image xn evaluated with a pre-
image technique and xi;j is the i; j�th pixel of the initial corre-
sponding image without noise. Tables 5–7 show the MAE for every
on the pre-image for pattern recognition with kernel machines,
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Fig. 5. Distribution of the model weights for each of the 200 noisy data from the banana dataset, after only one iteration of our algorithm, corresponding to results given in
Fig. 4 (upper row). All denoised data (each represented by a color within the color bars) enjoy the sparsity property, with a large number of weights close to zero.
(For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 6. A set of 10 “0”-digit images (first row) corrupted by a salt-and-pepper noise of density 0.1 (second row), on which we applied the kernel PCA for data denoising.
The pre-image results using the fixed-point iterative algorithm [22] are illustrated (third row), the MDS technique [23] (fourth row), the penalized pre-image learning
method [28] (fifth row), the regularized pre-image estimation technique [24] (sixth row), and the non-negative pre-image with the iterative schema (20) (last row).

Table 5
The mean absolute error for each technique evaluated on every denoised image where the density is 0.1.

Image number 1st 2nd 3rd 4th 5th 6th 7th 8th 9th 10th Mean

Fixed-point 52.75 13.55 21.77 13.04 10.45 50.95 9.57 54.67 11.02 57.23 29.50
MDS technique 31.31 30.49 25.15 20.83 27.89 25.87 24.92 24.86 24.04 25.85 26.12
Penalized pre-image 34.70 42.99 40.86 38.70 41.75 34.18 29.15 37.60 35.51 36.62 37.21
Regularized pre-image 176.43 13.55 144.77 145.07 42.00 284.03 17.23 236.62 54.63 20.85 113.52
Our method 21.29 13.55 19.46 145.07 42.00 16.18 71.59 126.24 54.63 17.90 52.79

Table 6
The mean absolute error for each technique evaluated on every denoised image where the density is 0.25.

Image number 1st 2nd 3rd 4th 5th 6th 7th 8th 9th 10th Mean

Fixed-point 34.26 76.81 28.99 30.76 31.79 70.89 54.25 67.97 54.55 67.05 51.73
MDS technique 47.56 47.73 41.34 44.13 63.94 44.81 52.43 43.91 58.12 47.39 49.13
Penalized pre-image 53.11 66.21 43.41 63.68 65.27 57.65 52.76 54.67 46.38 63.97 56.71
Regularized pre-image 34.26 213.43 28.99 30.76 31.79 175.21 124.61 314.11 148.77 156.04 125.80
Our method 34.26 30.93 28.99 30.76 31.79 33.25 32.83 30.80 35.77 32.10 32.15
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Table 7
The mean absolute error for each technique evaluated on every denoised image where the density is 0.5.

Image number 1st 2nd 3rd 4th 5th 6th 7th 8th 9th 10th Mean

Fixed-point 77.8 93.51 72.51 60.92 72.86 80.57 77.25 90.47 75.78 60.29 76.20
MDS technique 75.37 73.82 78.55 88.09 65.35 69.75 116.35 71.39 70.86 87.98 79.75
Penalized pre-image 82.51 91.71 75.82 75.90 86.30 83.39 80.85 87.02 83.15 88.68 83.53
Regularized pre-image 142.89 272.87 62.22 60.92 158.47 58.71 109.55 63 403.75 60.29 139.27
Our method 57.61 67.83 62.22 60.92 63.04 58.71 71.82 63 62.37 60.29 62.78

Table 8
The peak signal-to-noise ratio for each technique evaluated on every denoised image where the density is 0.1.

Image number 1st 2nd 3rd 4th 5th 6th 7th 8th 9th 10th Mean

Fixed-point 12.91 12.89 7.45 8.94 7.61 7.37 13.44 14.21 9.23 7.99 10.20
MDS technique 12.30 11.48 14.83 13.37 14.78 13.90 13.95 12.26 12.84 14.72 13.44
Penalized pre-image 10.50 7.80 8.10 8.15 7.89 9.78 8.80 9.57 9.09 9.71 8.94
Regularized pre-image 14.04 12.95 −0.43 15.12 15.10 16.60 14.00 13.10 3.86 2.68 10.70
Our method 15.27 12.97 14.04 8.61 15.16 6.71 14.22 14.52 8.26 12.80 12.26

Table 9
The peak signal-to-noise ratio for each technique evaluated on every denoised image where the density is 0.25.

Image number 1st 2nd 3rd 4th 5th 6th 7th 8th 9th 10th Mean

Fixed-point 8.93 5.75 9.61 9.39 9.19 6.03 7.33 6.31 7.38 6.29 7.62
MDS technique 9.98 9.86 11.90 11.33 7.99 10.39 10.28 9.01 9.40 10.25 10.04
Penalized pre-image 7.63 6.49 8.40 6.60 6.39 7.09 7.54 7.41 8.22 6.49 7.23
Regularized pre-image 8.93 −1.05 9.61 9.39 9.19 0.63 3.39 −4.61 2.27 1.58 3.93
Our method 8.93 9.41 9.61 9.39 9.19 8.97 9.14 9.32 8.80 9.11 9.19

Table 10
The peak signal-to-noise ratio for each technique evaluated on every denoised image where the density is 0.5.

Image number 1st 2nd 3rd 4th 5th 6th 7th 8th 9th 10th Mean

Fixed-point 5.58 4.75 5.87 6.43 5.85 5.40 5.61 4.87 5.72 6.40 5.65
MDS technique 7.29 7.87 6.89 6.36 9.24 8.53 3.98 7.59 7.70 6.22 7.17
Penalized pre-image 5.31 4.87 5.66 5.67 5.04 5.20 5.43 5.07 5.26 4.93 5.24
Regularized pre-image 2.88 −2.36 6.30 6.43 1.36 6.55 4.93 6.27 −5.92 6.40 3.28
Our method 6.70 5.99 6.30 6.43 6.24 6.55 5.67 6.27 6.32 6.40 6.29

Fig. 7. Some ERP signals recorded from the Cz channel. The diversity of these
signals is shown, with some signals not having a positive component around
300 ms (see for instance the signal shown with the dashed bold signal).
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image using the several pre-image techniques with density equals
to 0.1, 0.25 and 0.5 respectively. We also evaluate the peak signal-
to-noise ratio (PSNR) for each denoised image using the several
Please cite this article as: M. Kallas, et al., Non-negativity constraints
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pre-image techniques with

PSNR¼ 10� log10
2552

1
28�28∑

28
i ¼ 1∑

28
j ¼ 1jxn

i;j−xi;jj2

 !
;

where xn

i;j is the i; j�th pixel of the image xn evaluated with a pre-
image technique and xi;j is the i; j�th pixel of the initial corre-
sponding image without noise. Tables 8–10 show the MAE for
every image using the several pre-image techniques with density
equals to 0.1, 0.25 and 0.5 respectively. It is worth noting that
when the salt-and-pepper noise has a density of 0.5, it is difficult
to denoise the images using any technique due to the presence of
important noise.

5.3. Feature extraction

We considered feature extraction with an application to real
signals, and more specifically recordings measuring brain activity.
The feature extraction under non-negativity is the constraint
applied on the weights of the model [13]. Event-related potentials
(ERP) refer to the electrical activity in the brain due to a response
to a specific stimulus, measured with electroencephalograph
(EEG). There is a strong consensus on the components of an ERP
recoding, independent of either the participants or the stimulus
type. Such signal includes a negative wave deflection (called N200
on the pre-image for pattern recognition with kernel machines,
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Fig. 8. Feature extraction of the ERP data, with the algorithm initialized to the
initial signal (upper figure). By pre-imaging the first principal axe of kernel PCA, we
get the feature (lower figure).

Fig. 9. Distribution of the model weights from the first iteration (upper figure)
to the fifth iteration (lower figure). This illustrates the evolution of the weights
towards a sparse distribution.

M. Kallas et al. / Pattern Recognition ∎ (∎∎∎∎) ∎∎∎–∎∎∎ 13
or N2) followed by a positive one (called P300 or P3), occurring
respectively around 200 ms and 300 ms after stimulus onset.
Within the brain activity, such a single response is not usually
visible in these recordings. To circumvent this, many trials are
often performed using the same stimulus. In practice, one takes
the average of these responses, which gives a first-order moment
statistic of the ERP recordings. In this paper, we give another
statistic taking into account the variance of these signals, by
combining kernel PCA with the Gaussian kernel on the one hand,
and the proposed pre-image technique on the other.

For experimentations, we used the ERP signals available here6;
for more information, see also [38,39]. The auditory stimulus is
composed of a series of two alternating tone signals, randomly
played with a time between stimuli (also called Inter-Stimulus
Interval or ISI) of 1 s. These stimuli correspond to either a tone at
the frequency 800 Hz or another tone at 560 Hz, played within the
ratio 85% of the first signal and 15% of the second one. The ERP
6 The dataset of ERP recordings are available from the University of Kuopio,
Finland and Mika Tarvainen's page http://venda.uku.fi/opiskelu/kurssit/LSA/.
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signals are recordings from a 64-channel EEG, where only the
midline central channel Cz is used for its high reliability in
potential detection. The recording captured within the Cz channel
are segmented into signals in order to view the reaction of the
subject to the stimulus by using a window [0, 600] ms, where
0 corresponds to the instance of onset stimulus. Such window is
appropriate to extract both N200 and P300 components of the
ERP. A set of 87 signals of length 600 ms is collected, with 151
samples each, as illustrated in Fig. 7 where only 10 randomly
selected signals are shown to display the variety of these signals.

We applied the kernel PCA to extract the first principal axe of
these data, in the feature space associated with the Gaussian
kernel. The pre-image approach allowed us to go back to the initial
space, that is, the signal space. Because signals have negative
components,7 we applied the pre-image technique with the non-
negative constraints on the weights. Following some preliminary
experimentations, the Gaussian kernel was used, with the band-
width set to s¼ 500, and the stepsize value to the value η¼ 0:1.
Next, we study the influence of the initialization on the algorithm,
based on two different initializations.

First, the algorithm was initialized using a random input data,
namely x1 without loss of generality and shown in Fig. 8 (upper
figure). Then βð0Þ ¼ ðXXT Þ−1Xx0 for non-negative values, and zero
7 To be more precise, measurements of brain activity are always positive.
However, practitioners calibrate these measurements, resulting into zero-mean
signals.
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Fig. 10. Feature extraction of the ERP data, with the algorithm initialized to the
uniform contribution of all available signals, corresponding to t¼5 in Fig. 9 (lower
figure).

Fig. 11. The average of 10 signals (upper figure) as initialization signal and the
corresponding feature extracted (lower figure).
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otherwise. Applying the algorithm for t¼100 iterations gave the
feature illustrated in Fig. 8 (lower figure). We can easily see both
important components of the ERP, the N200 and P300 waves.
Moreover, variations of features of interest are opposed to the
highly fluctuating initial signal.

In order to study the evolution of the weights at each iteration,
we considered the initialization case where all the weights are
equal, i.e., βk ¼ 1=n for all k¼ 1;2;…;n. This corresponds to the
average of the data, where the solution results from a uniform
contribution of all the available data. The evolution of the
distribution of these weights over the first five iterations is given
in the histograms of Fig. 9. This shows that the proposed algorithm
resulted into sparse representations, with sparsity increasing at
each iteration. The resulting feature is given in Fig. 10, which
shows both N200 and P300 components, even within the first few
iterations. By comparing this technique to the average of some
signals in Fig. 11 (upper figure) and to all signals in Fig. 11 (lower
figure), we see that we need all the signals to find the N200 and
P300, however, using our method, we only have to use a few
signals.
6. Conclusion and future work

In this paper, we derived several new theoretical results, and
proposed an iterative method to solve the pre-image problemwith
non-negativity constraints. These constraints were either on the
pre-image itself, or on the weights of the model. In this case, we
investigated experimentally the sparsity of the representation.
Compared to other techniques, simulations showed the effective-
ness of the proposed method.

As for future work, we would like to incorporate box con-
straints, where upper and lower bounds must be satisfied, such as
processing gray-level images. We suggest further investigations on
other methods that involve pre-image techniques, such as an
autoregressive model.
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