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a b s t r a c t 

Visual ego-motion estimation is one of the longstanding problems which estimates the movement of 

cameras from images. Learning based ego-motion estimation methods have seen an increasing attention 

since its desirable properties of robustness to image noise and camera calibration independence. In this 

work, we propose a data-driven approach of learning based visual ego-motion estimation for a monocular 

camera. We use an end-to-end learning approach in allowing the model to learn a map from input im- 

age pairs to the corresponding ego-motion, which is parameterized as 6-DoF transformation matrix. We 

introduce a two-module Long-term Recurrent Convolutional Neural Networks called PoseConvGRU. The 

feature-encoding module encodes the short-term motion feature in an image pair, while the memory- 

propagating module captures the long-term motion feature in the consecutive image pairs. The visual 

memory is implemented with convolutional gated recurrent units, which allows propagating informa- 

tion over time. At each time step, two consecutive RGB images are stacked together to form a 6-channel 

tensor for feature-encoding module to learn how to extract motion information and estimate poses. The 

sequence of output maps is then passed through the memory-propagating module to generate the rela- 

tive transformation pose of each image pair. In addition, we have designed a series of data augmentation 

methods to avoid the overfitting problem and improve the performance of the model when facing chal- 

lengeable scenarios such as high-speed or reverse driving. We evaluate the performance of our proposed 

approach on the KITTI Visual Odometry benchmark and Malaga 2013 Dataset. The experiments show a 

competitive performance of the proposed method to the state-of-the-art monocular geometric and learn- 

ing methods and encourage further exploration of learning-based methods for the purpose of estimating 

camera ego-motion even though geometrical methods demonstrate promising results. 

© 2020 Elsevier Ltd. All rights reserved. 
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. Introduction 

The capability of self-localization during the movement for in-

elligent vehicles is especially important. The method, which can

stimate the position of the vehicle by integrating data of various

ensors, is called odometry. With the development of computer vi-

ion technology, more and more visual sensors are used for vehi-

le positioning and motion estimation. We refer to the problem of

btaining camera poses through vision as Visual Odometry (VO)

1] or visual ego-motion [2] . The visual sensor not only provides

ich sensory information but also has the advantages of low cost

nd tiny size. The mainstream visual ego-motion methods mainly
∗ Corresponding author. 

E-mail address: yongliu@iipc.zju.edu.cn (Y. Liu). 
1 Contribute equally to this work. 
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stimate camera poses based on the geometrical characteristics of

he objects in the images, so the images must contain a large num-

er of stable texture features. Once these methods proceed in the

cene with some obstacles or on a foggy day without other sensors

IMU, laser, etc.), the accuracy will be severely decreased. Since

he camera can capture rich information of the scene with a mod-

st hardware cost and can be more reliable than other sensors in

any instances, localization and ego-motion estimation techniques

ased on visual methods still have an immense potential for both

esearch and applications. 

Recently, researchers in various fields have paid much attention

o the deep learning study [3–5] . Developed to present days, those

eep learning approaches represented by convolutional neural net-

orks play significant roles in the field of computer vision [6,7] .

hese deep neural networks are more effective in extracting im-

ge features and finding potential patterns than traditional meth-

ds. Therefore, some related researchers consider applying deep

https://doi.org/10.1016/j.patcog.2019.107187
http://www.ScienceDirect.com
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learning in the field of visual ego-motion research, which is us-

ing the deep neural network directly to learn the geometric rela-

tionship through images and then to realize the end-to-end pose

estimation. This end-to-end process can completely eliminate the

steps of feature extraction, feature matching, camera calibration,

and graph optimization in the traditional methods, and directly ob-

tains the camera poses according to the input images. 

This paper mainly focuses on the problem of camera relative

pose estimation by deep learning, only considering the situation

of monocular VO. We introduce a novel Long-term Recurrent Con-

volutional Neural Networks, containing two modules, called PoseC-

onvGRU. The feature-encoding module extracts the short-term mo-

tion feature in an image pair, while the memory-propagating mod-

ule captures the long-term motion feature in the consecutive im-

age pairs to estimate camera poses. We use a regularization loss

term on the sequence of adjacent image pairs to improve the ac-

curacy of the estimation of camera poses and preserve temporal

consistency. We perform experiments on the KITTI Visual Odome-

try benchmark [8] and Malaga 2013 Dataset [9] . The main contri-

butions are as follows: 

• We propose a novel framework named PoseConvGRU, a monoc-

ular approach of visual ego-motion estimation, which is data-

driven and fully trainable. 
• We design a series of data augmentation methods for avoid-

ing the overfitting problem and improve the performance of the

model when proceeding through challengeable scenarios to the

greatest extent such as high-speed or reverse situation. 
• Our proposed neural network does not matter with the optical

flow or other flow-like subspace, unlike other learning-based

ego-motion estimation algorithms, which need to spend plenty

of time to calculate the pre-processed dense optical flow be-

fore training the neural network [10] or use a pre-trained net-

work to estimate the optical flow with additional calculation

costs [11,12] . 
• Our method shows a competitive performance to state-of-the-

art monocular geometric and learning methods, encouraging

further research of learning-based methods. 

2. Related work 

2.1. Progress of visual odometry in geometric research 

Matthies et al. proposed to implement indoor robotic naviga-

tion through visual input. The leading research at that time was

based on the NASA Mars Exploration Program [13] . The real foun-

dation for the VO problem is a real-time visual odometry designed

by Nister et al. [1] , which builds its implementary framework. 

Based on this framework, the solution to the VO problem can

be further divided into two sorts of methods: feature-point meth-

ods and direct methods: 

Feature-point methods mainly extract the feature points in ad-

jacent frame images, extracting the geometric relationship of the

feature points by using multi-view geometry to estimate the rel-

ative camera poses, such as LIBVISO2 [14] , ORB-SLAM [15] . How-

ever, these methods are time-consuming when extracting features,

and only concern about the extracted feature points while ignor-

ing the abundant information of other pixels in images, so that

features extracted from images are not sufficient to restore visual

ego-motion if the image texture information captured by the cam-

era is severely scarce, and typically these methods will not work

properly. 

Direct methods based on the assumption of intensity value in-

variant can adapt more scenes. The apparent difference between

the direct methods and the feature-point methods is that the for-

mer ones use the luminance information of the pixels in the im-
ges to estimate the visual ego-motion directly rather than calcu-

ating the descriptors and the key points. These methods avoid the

rolonged calculation time of features and the problems caused by

he lack of features. According to the number of pixels used, the di-

ect methods can be further divided into three types: sparse ones,

ense ones, and semi-dense ones. Open-sourced projects using di-

ect methods such as SVO [16] , LSD-SLAM [17] , DSO [18] have grad-

ally become essential parts of the visual ego-motion algorithm. 

.2. Progress of visual odometry in deep learning 

Roberts et al. [19] proposed to study visual ego-motion prob-

ems by a traditional learning method. They map sparse optical

ow to velocity state by using n separate k-Nearest-Neighbors, but

his method did not achieve the camera 3-DoF position estimation

nd receives a substantial error additionally. The first use of deep

earning to study visual ego-motion problems is a method intro-

uced by Kishore et al. [20] . Their method bases on the two-staged

peration, using stereo images to estimate depth firstly and design-

ng two separate convolutional neural networks for learning dis-

rete velocity and direction angle. They subtly transform the pose

egression problems into classification problems, but the reliability

f the obtained result is modest since the massive error has been

enerated in the process of discretizing the direction angle and

elocity. The first method for end-to-end estimation of camera 6-

oF pose based on convolutional neural networks is PoseNet pro-

osed by Kendall et al. [21] . The neural network framework of this

ethod was modified from GoogLeNet [22] . Due to PoseNet’s inac-

urate estimation for handling scenes with some obstacles, Kendall

t al. [23] proposed a Bayesian Convolutional Neural Network to

ake the regression of the camera 6-DoF poses. The advantage of

sing a Bayesian Convolutional Neural Network is that it can mea-

ure uncertainties of the camera’s poses and use these uncertain-

ies to estimate the localization error and determine whether the

est images are repeated. Mohanty et al. proposed DeepVO [24] .

he CNN part of this method is based on AlexNet [25] . It inputs

wo adjacent RGB images and directly estimates the relative pose

etween the two images in an end-to-end way. For scenes that

ave not appeared in the training set before, the estimation results

re unsatisfactory. This work attempts to regard the FAST features

f the images as additional input information, but it cannot funda-

entally solve the scenario migration problem. On the basis of uti-

izing RGB images, there is a kind of method of using optical flow

o help obtain ego-motion. Costante et al. [10] proposed two CNN

tructures to estimate the frame-to-frame poses. Since this method

equires the input of optical flow images, pre-processing of optical

ow will cost more calculation resources, and the accuracy of opti-

al flow calculation has a great influence on the visual ego-motion

stimation, so this sort of method is difficult to be widely used. 

Ronald et al. proposed VINet [26] . It not only integrates IMU

nformation into the deep neural network to study visual ego-

otion problems but also applies sequence learning to consider

he pose relationship among multiple frames of images. This pa-

er provides a novel approach to Visual Inertial Odometry (VIO)

eld, and the combination of CNN and LSTM for sequence learn-

ng has contributed dramatically to subsequent research. The au-

hors above also propose VidLoc [27] , using CNN and LSTM to es-

imate the global poses of consecutive frames, which achieves a

ignificant improvement over PoseNet [21] . In the same year, an-

ther author of the paper published a new version of DeepVO

28] , and further proposed ESP-VO [29] . DeepVO uses the image se-

uences as input. Firstly, the image features are extracted by CNN,

ut into the RNN to learn the geometry relationship among succes-

ive frames, and then the relative poses of multi-frame are directly

utput. The relative transformation poses between the images are

ositive compared to all the previous research work. Iyer et al. [30]
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Fig. 1. Our proposed end-to-end framework PoseConvGRU can estimate visual ego- 

motion by extracting geometrical feature among adjacent monocular RGB images. 

We can draw the trajectory after obtaining all the absolute poses. 
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Table 1 

CNN parameters. We can see the size of kernels decreases more as the depth of 

the network going deeper and the size of the feature maps decreases further. 

Layer Kernel size Stride Weights Tensor size 

Input - - - 1280 × 384 × 6 

Conv1 7 × 7 2 6 × 64 640 × 192 × 64 

Conv2 5 × 5 2 64 × 128 320 × 96 × 128 

Conv3 5 × 5 2 128 × 256 160 × 48 × 256 

Conv3_1 3 × 3 1 256 × 256 160 × 48 × 256 

Conv4 3 × 3 2 256 × 512 80 × 24 × 512 

Conv4_1 3 × 3 1 512 × 512 80 × 24 × 512 

Conv5 3 × 3 2 512 × 512 40 × 12 × 512 

Conv5_1 3 × 3 1 512 × 512 40 × 12 × 512 

Conv6 3 × 3 2 512 × 1024 20 × 6 × 1024 

Conv6_1 3 × 3 1 1024 × 1024 20 × 6 × 1024 

Max-pooling 2 × 2 2 – 10 × 3 × 1024 
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chieves an unsupervised paradigm for deep visual ego-motion

earning. 

The existing visual ego-motion estimation methods based on

NN are far less effective than the geometry-based methods. How-

ver, most methods based on the geometric model cannot bene-

t from continuously increased datasets. In addition, some tradi-

ional visual methods cannot proceed with challenging scenes (like

alaga dataset) since they estimate poses by detecting the mo-

ion of the feature points or pixels in images, which are susceptible

o the surrounding environment and dynamic objects, while deep

earning methods learn to extract intrinsic correlation of inter-

rames or videos by completing pose-regression missions, hope-

ully avoiding problems caused in traditional methods. 

. Methodology 

The visual ego-motion problems are quite different from those

f classification, tracking: 

Firstly, visual ego-motion estimation based on deep learning is

 regression problem. It is not possible to accurately obtain the rel-

tive pose of two adjacent frames by simply identifying or detect-

ng the objects in the images; 

Secondly, visual odometry problem needs to process two im-

ges at the same time, and it is especially related to the order of

he images as the relative poses between the two images can be

umerically reverse from each other based on their respective ref-

rences, so that we can obtain two different results. 

Therefore, we can not merely use the popular neural network

rameworks such as VGGNet [31] or DenseNet [32] to solve this

stimation problem, but should adopt the structure that can learn

he geometric features of the images. The overall framework is

hown in Fig. 1 . 

.1. The structure of PoseConvGRU 

Feature-encoding module: In order to use the effective CNN

tructure to learn the geometric relationship from two adjacent

mages automatically, our approach leverages the network struc-

ure proposed by Dosovitskiy et al. - FLowNetSimple [33] but

gnores the decoder part in the network, only focusing on the

ront convolution encoder. In DeepVO, the output feature maps

f Conv6-1 are directly input into subsequent modules, which not

nly hugely increases network parameters and magnifies the stor-

ge of GPU, but also makes the training complexity of the net-

ork expanded. To alleviate this problem, we add a layer of Max-
ooling behind the Conv6-1 layer to reduce dimensions of the fea-

ure maps. 

The parameters of the CNN are shown in Table 1 . As shown in

ig. 2 , the convolutional neural network contains a total of 10 con-

olutional layers, and each layer is followed by a nonlinear acti-

ation function - Rectified linear unit (ReLU). The number of con-

olution kernels increases gradually as the depth of the network

xpands so that more feature maps can be obtained, which can

epresent more abstract features, and the decreasing of the feature

ap size means that the CNN is paying more attention to large-

cale and significant features. The size of the convolution kernel is

lso gradually reduced from 7 × 7 to 5 × 5 and finally to 3

3 for capturing local features. The input of CNN is the origi-

al continuous multi-frame RGB images, resized to 1280 × 384.

ssuming that sequence’s length is n + 1, we can obtain n sets of

mage pairs when adjacent two frames are combined in a sliding

indow. These image pairs are respectively subjected to 10 con-

olutional layers and the last Max-pooling layer to obtain feature

aps of 10 × 3 × 1024 size. For multiple pairs of images gen-

rated by the same time series, we refer to the structure of the

iamese network [34] , using different branches to deal with simi-

ar problems, but will keep the CNN parameters weight-shared in

he same time series, i.e., all the images of a sequence perform the

eature extraction through the same CNN layer. We do not perform

ny pre-processing operation such as random clipping and rotating

o change the geometric relationship of the objects in the images

o that the original information of the images can be used for ac-

urate pose estimation. 

Memory-propagating module: The memory module builds a “vi-

ual memory” in the video clip, i.e., a long-term joint visual repre-

entation of all the clip frames to generate the transformation pose

f each pair since it allows the neural network to automatically

earn the intrinsic relationship among successive poses, module

tructure shown in Fig. 3 . We use a stacked Convolutional Gated

ecurrent Units (ConvGRU) [35] as our memory-propagating mod-

le, the mathematical expression shown in the Eq. (3.1) [36] : 

 t = σ ( W hz ∗ h t−1 + W xz ∗ x t + b z ) 
 t = σ ( W hr ∗ h t−1 + W xr ∗ x t + b r ) 

ˆ 
 t = �( W h ∗ ( r t � h t−1 ) + W x ∗ x t + b ) 

 t = ( 1 − z t ) � h t−1 + z t � ˆ h t 

(1) 

ere, r t and z t are the output of gates. h t and h t−1 is the hidden

tate and the former of last moment. � means Hadamard Prod-

ct with 

∗ standing for convolution. In our case, x t is the input of

ur memory module on behalf of the feature map output from the

ncoding module. The reason why we take advantage of ConvGRU

o construct our memory module can be divided into two aspects.

n the one hand, ConvGRU can remember the states of historical

oments firstly, such as the geometric relationship coming from
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Fig. 2. Feature-encoding module. We map RGB images temporally into this module to get output feature maps for estimating ego-motion further. 

Fig. 3. Memory-propagating module. We pass feature maps obtained from the feature-encoding module into the stacked ConvGRU to propagate the long-term memory from 

video clips for camera poses regression. 
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the previous frames of images, and then estimate the pose of the

current moment utilizing the geometric constraint within multi-

ple frames; on the other hand, we choose ConvGRU rather than

ConvLSTM as our memory module since it is shown that GRU has

similar performance to LSTM but with reduced number of gates

thus fewer parameters [37] . The image sequence is extracted by

our feature-encoding module to obtain multiple 10 × 3 × 1024

tensors propagated into the stacked ConvGRU. In order to further

improve the presentation capability and dynamic characteristics of

the whole framework, 3 cells of ConvGRU are used in practice. The

end output, used for pose regression, will be a 6-dimensional pose

vector, which respectively represents the relative poses ( �x , �y ,

�z , �ψ , �χ , �φ) between adjacent two images. Finally, we trans-

form obtained pose vectors to SE(3) and calculate the absolute ego-

motion. 

3.2. Loss function for PoseConvGRU 

Visual ego-motion estimation problem can be regarded as a

conditional probability problem: Given an image sequence X = ( X 1 ,

X 2 , ..., X n +1 ), we aim to calculate the appearance probability of the

poses Y = ( Y 1 , Y 2 , ..., Y n ) between two adjacent images in this se-

ries. 

p(Y | X ) = p ( Y 1 , Y 2 , . . . , Y n | X 1 , X 2 , . . . , X n +1 ) (2)

The problem needed to be solved here is how to decide the op-

timal network parameters w 

∗ to maximize the above probability.

w 

∗ = argmax 
w 

p(X | Y ; w ) (3)
o for M sequences, Mean Squared Error (MSE) is used as the er-

or evaluation function, and the loss function that needs to be op-

imized finally can be obtained as 

 

∗ = argmax 
w 

1 

MN 

M ∑ 

i =1 

N ∑ 

j=1 

∥∥P i j − ˆ P i j 

∥∥2 

2 
+ β

∥∥�i j − ˆ �i j 

∥∥2 

2 
(4)

 ̂

 P i j , ˆ �i j ) represents the position and orientation ground truth of

he image at the j th moment in the i th sequence relative to the

mage at the next moment in the sequence while β is a scale factor

sed to maintain the balance between the position error and the

rientation error. ‖ · ‖ 2 represents l2 normalization. 

.3. Mirror-like constraints through data augmentation 

We further add some constraints into the network by process-

ng data augmentation along the training step, aiming to perform

etter in tests. 

Data preparation: We take the sequences 00, 01, 02, 08 and

9 in KITTI’s experiment as adopted in [28] and sequences 01,

4, 06, 07, 08, 10 and 11 in Malaga’s experiment as adopted in

12] respectively for training, which can not satisfy realistic re-

uirements such as high-velocity, velocity-variable, or even reverse

riving situations, so it is necessary to augment data for facing

hallenges above. Our data augmentation is performed on the fly.

e augment the training data by randomly skipping frames to

imulate the first and second challenge, which results in a better

erformance. Randomly temporal flipping of the sequences is also

erformed to alleviate influences caused by the vehicle-reversing

hallenge. 
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Fig. 4. Constraints in practice. The structure of whole framework presents a mirror- 

like symmetric construction. All CNNs in this model are weight-shared. 
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Table 2 

The components of split dataset. 

KITTI Malaga 

Dataset Sequence Dataset Sequence 

Trainval 00 01 02 08 09 Trainval 01 04 06 07 08 10 11 

Test 03 04 05 06 07 10 Test 02 03 09 

Fig. 5. The structure of Ours-onlyCNN. We leverage the FlowNetSimple structure, 

adding an extra max-pooling layer to estimate poses directly. Details can be seen in 

4.3 . 
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Advanced mirror-like constraints: PoseConvGRU-cons increases 

he accuracy of camera relative ego-motion estimation by adding

ome advanced constraints. Fig. 4 shows the framework and spe-

ific implementation. 

The left half is the same as PoseConvGRU. Image sequences pass

hrough the feature-encoding module and memory-propagating

odule to obtain outputs which represent the relative poses be-

ween two adjacent frames. The right half and the left half are en-

irely symmetrical, except that the input of image sequences is in

he reverse order. The loss function based on MSE of all output

oses expresses as 

oss = 

1 
MN 

M ∑ 

i =1 

N ∑ 

j=1 

∥∥P 1 i j − ˆ P 1 i j 

∥∥2 

2 
+ β1 

∥∥�1 i j − ˆ �1 i j 

∥∥2 

2 

+ 

∥∥P 2 i j − ˆ P 2 i j 

∥∥2 

2 
+ β2 

∥∥�2 i j − ˆ �2 i j 

∥∥2 

2 

(5) 

 ̂

 P 1 i j , ˆ �1 i j ) represents the position and orientation ground truth of

he image at the j th moment of the forward input in the i th se-

uence relative to the image at the next moment in the sequence

hile ( ̂  P 2 i j , 
ˆ �2 i j ) represents the position and orientation ground

ruth of the image at the j th moment of the backward input in the

 th sequence relative to the image at the previous moment in the

riginal sequence. β1 and β2 separately represent the scale factors

f the position error and the orientation error in the forward se-

uence input and the backward sequence input. ‖ · ‖ 2 represents

2-loss we use. 

. Experiment 

In this section, we validate our proposed framework on the

ITTI Visual Odometry / SLAM Evaluation Dataset [8] and Malaga

013 Dataset [9] . In the KITTI dataset, only the first 11 sequences

ave the ground truth data (sequences 00–10), so quantitative ex-

eriments can be performed in these 11 scenarios to compare the

dvantages and disadvantages of the various methods. In terms

f the Malaga dataset, there is no extremely precise pose ground

ruth only raw GPS position nodes without orientational informa-

ion, so we follow the rule as in [12] , using the poses produced

rom stereo ORB-SLAM(-S) [15] as our regression targets. 

We manually split the training set, validation set and test set

or each dataset. Then we train models using the training set along

ith the validation set to settle down hyper-parameters. Finally,

e use the test set to evaluate the model. 

.1. Training and evaluating protocols on PoseConvGRU 

For the KITTI’s experiment, we use the same data splits as

ang et al. used in the paper [24] , where sequences 00, 01, 02,
8 and 09 used as the training and validation (“trainval”) set; the

emaining 6 scenes (sequences 03, 04, 05, 06, 07 and 10) used as

he test set. With regard to the Malaga’s experiment, we adopt the

plit way in [12] , sequences 01, 04, 06, 07, 08, 10 and 11 used as

he “trainval” set with 02, 03 and 09 used as the test set. 

The validation set is randomly selected from the training set,

ollowing the principle of sampling without replacement. The spe-

ific constituent is shown in Table 2 . A key issue here is how to

enerate sample sequences of images. In the experiment, we ran-

omly select an image frame as the starting frame, and then suc-

essively take several frames to form a sequence of length T 1 . In

rder to simplify the data training process, a fixed-length sequence

s used, and the starting frames of two adjacent sample sequences

re also selected across multiple frames, thereby avoiding exces-

ive data overlap between samples. We can sample sequences ev-

ry other frame to augment data. The key rule of sampling is to

nsure that there are enough identical scenes contained in both

mages. If the camera moves too fast through some frames, data

ugmentation must be handled carefully. 

Training details: The entire network was built on the deep learn-

ng framework PyTorch with the well-known Adam [38] optimizer.

he initial learning rate is 10 −4 . As the number of training epoch

ncreases, the learning rate will be appropriately reduced to ensure

hat the optimization function is close to the optimal solution. We

se two NVIDIA GeForce RTX2080 GPUs for acceleration. The batch

ize is set to 32. It takes about 0.15 h to train an epoch (all train-

ng data is trained for one time). After the end of an epoch, all

raining samples will be disordered to ensure that the training loss

urve will drop smoothly. It takes about 20 hours for one entire

xperiment to achieve a modest loss error. 

In general, training the network combining these two modules

s difficult to converge. In order to shorten the convergence time,

he feature-extracting module is pre-trained firstly. As shown in

ur ablation experiments part 4.3 , we train CNN and FC layers from

cratch to estimate camera poses (Recurrent Neural Network ex-

luded), structure shown in Fig. 5 . The Xavier Initialization method

s used for setting weights in network parameters during training

39] , and the bias is zero-initialized. 

After pre-training process, we directly uses the parameters of

he trained model in CNN as the initial parameters in the feature-
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Table 3 

Time-consuming information for each system. Preprocess Calcu- 

lation includes optical flow calculation and RGB conversion, in 

particular. The best result is highlighted. 

Preprocess Network Total 

Calculation Inference Execution 

[s/frame] [s/frame] [s/frame] 

SVR-VO [40] 15.022 0.112 15.134 

P-CNN [10] 15.022 0.041 15.063 

Flowdometry [11] 0.271 0.362 0.633 

LS-VO [12] 0.012 0.003 0.015 

ST-VO [12] 0.012 0.002 0.014 

Ours – 0.011 0.011 

• The data except ours are derived from [11] and [12] . 

Fig. 6. The structure of Ours-onlyCNN-cons. We do the same constraints as done in 

3.3 part to help perform ablation experiment. 
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2 Our framework without memory module and constraints. 
3 Our framework without memory module only. 
4 Our framework, PoseConvGRU itself. 
5 PoseConvGRU with constraints, named PoseConvGRU-cons. 
extracting module of PoseConvGRU and train the whole frame-

work, that is, the fine-tuning operation. 

For each batch, we set the initial state of the ConvGRU to 0. The

reason can be divided into two sides. On the one hand, the image

sequences we use are not selected according to the principle of

sampling without replacement. So without shuffling the samples,

the adjacent two batches will contain the same imagery frames,

if the state here needs to pass through the two batches, we must

ensure that the last frame of the first batch is the same as the

first frame of the second batch, which inevitably limits the diver-

sity of the network’s samples. On the other hand, this sampling

method is equivalent to dividing a scene into a number of irrel-

evant segmented series (including repeated images). So the regu-

larity of each sample can be learned separately. Setting the initial

state of ConvGRU to 0 means that each sample was learned from

the same state, and experiments prove that it is indeed feasible.

There are some related proposed methods learning the initial state,

which is set as a network parameter when training Recurrent Neu-

ral Network, but this is not necessary for our case. 

Additional constraints illustrations: For PoseConvGRU with ad-

vanced constraints (PoseConvGRU-cons), it is similar to the origi-

nal one. The difference is that PoseConvGRU-cons inputs the image

sequences to the framework in both front and reverse direction.

When T 1 and T 2 are kept constant, the batch size in PoseConvGRU-

cons is half of that in the original PoseConvGRU. Other parameters

still remain unchanged during training. It takes about 0.5 h to train

an epoch. One entire experiment was trained for about 50 hours. 

Evaluation metrics: We evaluate our approaches on both dataset

using translation / rotation errors for subsequences and translation /

rotation errors for different speeds , which are most commonly used

evaluation metrics on the KITTI VO/SLAM dataset. In KITTI’s ex-

periment, the subsequences generally take eight kinds of lengths:

10 0 m, 20 0 m, ..., 800 m, and as for the counterpart of Malaga, the

subsequences take the first three lengths: 10 0 m, 20 0 m, 30 0 m.

When calculating the error, we should sample the sequence of the

same length from the entire trajectory first, and then calculate the

relative poses of the camera on this sequence. Finally, we compare

them with the ground truth to derive translation and rotation er-

ror respectively, computing the average error of all the sample se-

quences as the average error of the current sequence. Finally we

traverse the subsequences of different lengths to obtain the aver-

age error of various subsequences. Another evaluation metric re-

lies on the speed of the mobile platform. We take an average of 7

values in KITTI’s experiment and 3 values in Malaga’s experiment

from the lowest speed to the highest speed, calculating the error

between the estimated poses and ground truth at different speeds.

4.2. Runtime analysis 

We evaluate the time consumption of our PoseConvGRU frame-

work along with other optical-flow-based methods to stand for our

contribution of low calculation cost. We test our model on a com-

mon GPU server, which is similar to most of deep learning based

methods [10–12] . More specifically, we use one Intel(R) Core(TM)

i7-8700 CPU and one NVIDIA GeForce RTX2080 GPU to carry out

the network inference, results shown in Table 3 . 

PoseConvGRU is the fastest method among these learning

methods as it needs no preprocess calculation time which other

optical-flow-based methods must consume. 

4.3. Ablation and comparison experiment 

Firstly, we design ablation experiments along with other

branches to verify each module’s effectiveness and then conduct

several comparison experiments with other learning and geomet-

ric approaches to reveal and verify our performance. 
We pre-train CNN and some FC layers jointly, adding constraints

o estimate visual ego-motion directly (constrained structure per-

ormed in Fig. 6 ), then we remove FC layers remaining CNN along

ith pre-trained parameters as our initial feature-encoding mod-

le in PoseConvGRU. Next, we carry out fine-tuning with stacked

onvGRU to achieve our whole framework. As a result, we derive

our branches, named Ours-onlyCNN, 2 Ours-onlyCNN-cons, 3 Ours, 4 

urs-cons 5 from entire training process. 

Effectiveness on epoch in pre-training process: Taking Ours-

nlyCNN-cons on KITTI’s experiment as an example, the whole

raining process lasts for about 100 epochs, and the models with

poch = 15, 55, 75, 100 were taken out for testing. The trajectory

urves of the training set are shown in Fig. 7 . The trajectory curves

f the test set are shown in Fig. 8 , and the curves of the evaluation

etrics on the test set are shown in Fig. 9 . 

Fig. 7 shows that at the initial stage of training, since the trans-

ation and rotation error are both substantial and gradually accu-

ulate from the start of sequences, the trajectories of epoch-15 get

ore and more away from the real ones. As the number of epoch

ncreases, the trajectories of training set and the ground truth get

loser and when epoch reaches to 75, the trajectory curves of train-

ng set almost perfectly coincides with ground truth on the se-

uences 00, 02 and 09, which is also consistent with the contin-

ous decline of training error. When the number of iterations is

urther increased, it is found that the trajectories of epoch-100 on

equences 02 and 08 deviate far from the counterparts. In fact, the

raining error at this moment is less than that of the previous ones.

he reason for having this phenomenon is that the loss function

escribes only the MSE of the poses between two adjacent frames.

hen the poses of some frames diverge from the ground truth,

he trajectories still drift far away even if the poses of other frames

re estimated accurately. If we continue to train, the training error

ill be further reduced, and the trajectories will be closer to the
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Fig. 7. Trajectories under different epoch (training set), represented by different colors. The labels of two axes are in KITTI’s style, which sets forward and right direction 

of the moving vehicle as Z and X direction, respectively. The Y-axis represents vertical direction, but it is not supposed to be shown in the figure as data on this direction 

drifts severely in KITTI. The grid sizes are adjusted to fit each trajectory. 
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round truth, but the variation will be more modest. However, due

o limited time and the convergence performance for the training

et does not represent the generalization ability of the model, it is

lso necessary to consider the presentation on the test set. 

Fig. 8 shows the trajectory curves for different sequences in the

est set. It can be clearly seen from sequences 03 and 05 that the

stimated trajectories become closer to the ground truth as the

umber of epoch increases, indicating that the framework designed

n this paper can learn the motion relationship and feature infor-

ation between two adjacent frames. Even if many scenes are not

een before, our framework can also estimate camera ego-motion

ell and do not have the overfitting problem. An important rea-

on is that we uses tricks such as dropout when training the net-

ork. For sequence 04, the testing results under different epoch

re almost the same. It can be seen that the camera basically

oves straight forward, and the rotation change is slight, so the

ranslation estimation is very sensitive in terms of this scenario.

or sequences 06 and 07, the testing results of the models saved

y epoch-55, epoch-75 and epoch-100 basically have no obvious

erformance improvement, illustrating that the network’s learning

bility has reached the bottleneck, and even if the number of epoch

s increased, the performance will not be enhanced significantly.

or sequence 10, the estimated trajectories achieve better appear-
nces on epoch-55 and epoch-75 than epoch-100, implying that

he model may have the overfitting problem for this scenario. In

rder to further analyze the performance of the models, it is also

ecessary to compare with each other on the quantitative evalua-

ion metrics. 

The four graphs in Fig. 9 represent the error evaluation met-

ics on the test set: the upper left and upper right graphs show

he trends of translation and rotation error of subsequences under

ifferent length respectively. The lower left and lower right graphs

how the variations of translation and rotation error at different

peeds individually. It can be seen that for subsequences of the

ame length, as the number of training epoch increases, the trans-

ation error and the rotation error significantly decline, but there is

asically no enormous improvement after epoch-75. For the ego-

otion estimation at the same speed, the translation error of the

ater training (epoch-75) is less obvious than it of the early training

epoch-15), especially when the speed exceeds 40 km/h, the effect

f epoch-75 is even worse than that of epoch-55. One big reason

s that the speed distribution in the scenes of the training set is

ifferent from that of the test set. Therefore, if there is a lack of

mage pairs with higher speed in the training set, the framework

ill not accurately estimate the high-speed translation in the test

et. To alleviate this problem, we can try to expand the samples



8 G. Zhai, L. Liu and L. Zhang et al. / Pattern Recognition 102 (2020) 107187 

Fig. 8. Trajectories under different epoch (test set), represented by different colors. The labels of two axes are in KITTI’s style, which sets forward and right direction of the 

moving vehicle as Z and X direction, respectively. The Y-axis represents vertical direction, but it is not supposed to be shown in the figure as data on this direction drifts 

severely in KITTI. The grid sizes are adjusted to fit each trajectory. 

Fig. 9. Comparison results (test set) under different epoch . 
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Fig. 10. Trajectories of our methods and LIBVISO2 on the Sequence 03, 04, 05, 06, 07, 10 (test set), exhibited in different colors (best viewed with zoom-in). “Ours” represents 

PoseConvGRU and “Ours-onlyCNN” means the version without memory module. The remaining two methods are counterparts with constraints. The labels of two axes are in 

KITTI’s style, which sets forward and right direction of the moving vehicle as Z and X direction, respectively. It shows that our methods perform better than VISO-M, and 

methods with RNN-based modules outperform ones without them in many scenes. 

(  

t

 

c  

P  

a  

β  

t

 

s  

T  

l  

o  

t  

a

 

t  

P  

o  

t

 

u  

v  

e  

a  

r

E

E

T  

s  

t  

r  

t  

v  

w  

f  

i

 

t  

t  

f  

e  

v  

o  

s  

t  

s  

o  

P  

o  

m  

T  

t  

n  

c  

i  

f

 

i  

i  

R

 

s  

w  

f  

O  
sampling in every few frames) in the training set, thus improving

he generalization ability of the model. 

Quantitative experiment result: We adopt the same training pro-

edure and hyper-parameters on experiments of both datasets. For

oseConvGRU, we set β = 0.9 and use network parameters iter-

ted 90 epochs for testing. For PoseConvGRU-cons, we set β1 = 0 . 9 ,

2 = 0 . 999 and use network parameters iterated 80 epochs for

esting. 

1) KITTI dataset: The trajectories on the KITTI’s test set are

hown in Fig. 10 , and the evaluation metrics are shown in Fig. 11 .

he experiment totally compared six methods, including two base-

ine methods VISO2-M and VISO2-S with Ours-onlyCNN, Ours-

nlyCNN-cons, Ours and Ours-cons. As can be seen from Fig. 10 ,

he six methods can slightly estimate the shape of the trajectory

ccurately, but the details are various from each other. 

It is difficult to conclude the advantages and disadvan-

ages of various methods from a certain situation. For example,

oseConvGRU-cons fits the real trajectory better than the onlyCNN

n the sequence 03, but is slightly inferior to the onlyCNN-cons on

he sequence 05. 

Fig. 11 shows the error of the six methods on different eval-

ation metrics, which can objectively reflect the performance of

arious methods. When we evaluate translation error and rotation

rror for subsequences, we have noticed that both errors descend

s path length rises. The phenomena are caused by the error met-

ic Eq. (4.3) that we have used in KITTI’s definition. 

 trans = 

∥∥R 

−1 
pre (t gt − t pre ) 

∥∥
2 

L path 

 rot = 

arccos ((trace (R 

−1 
pre R gt ) − 1) / 2) 

L path 

(6) 

he error curves of translation E trans and rotation E rot will descend

ince the growth rate of subsequences L path is much higher than

he absolute translation and rotation error. We discover that the
otation error declines on high velocities, which is different to the

ranslation. This phenomenon may be caused by the fact that the

ehicle-recording KITTI dataset tends to go straight on high speeds

hile rotate when slowing down. Moving straight, which is with

ew changes on rotation, can be easily learned by the framework

n terms of modeling orientation. 

PoseConvGRU is basically better than onlyCNN on the evalua-

ion of four kinds of errors, since PoseConvGRU is initialized by

he parameters of onlyCNN, and associates ConvGRU for multi-

rame constraints. ConvGRU does improve the accuracy of visual

go-motion estimates. PoseConvGRU-cons is superior to PoseCon-

GRU in these evaluation metrics, indicating that the performance

f the network can be improved by adding these advanced con-

traints. However, the effect of PoseConvGRU-cons is comparable

o that of onlyCNN-cons. The main reason we believe is that the

ample size is far from enough as both PoseConvGRU-cons and

nlyCNN-cons is to double the training data. Table 4 compares

oseConvGRU-cons and PoseConvGRU with the other five meth-

ds, including both learning and geometric ones numerically. Our

ethod is slightly superior to CL-VO on rot but inferior on trans .

he training data in our paper is limited, so we can only ob-

ain different samples by combining the existing images. This does

ot essentially introduce new sample images, so even though we

onstrain our framework with multi-frame through ConvGRU, it is

mpossible to improve the generalization ability of the network

urther. 

The performance of the four deep learning methods proposed

n this paper is better than the VISO2-M, while they are slightly

nferior to the VISO2-S. Our future work consider taking the stereo

GB image into account to achieve better effect. 

2) Malaga dataset: This dataset is quite different from KITTI,

ince it contains more sparse buildings and more extensive sky

ithin a great number of images, making it enough challengeable

or evaluating visual ego-motion estimation performance due to

RB-SLAM can not proceed successfully on all sequences. We use
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Fig. 11. Comparison results of different methods on the sequences 03, 04, 05, 06, 07, 10 (test set). “Ours” represents PoseConvGRU and “Ours-onlyCNN” means the version 

without memory module. The remaining two methods are counterparts with constraints. 

Table 4 

The quantitative results on KITTI dataset. CL-VO and DeepVO are learning methods. The best results are high- 

lighted and the second-best ones are underlined. 

Avg Monocular Stereo 

PoseConvGRU PoseConvGRU CL-VO DeepVO ORB-SLAM VISO2-M VISO2-S 

-cons (Ours) (Ours) [41] [28] [15] [14] [14] 

rot ( ◦) 0.0247 0.0268 0.0267 0.0351 0.3553 0.0386 0.0044 

trans (%) 7.56 7.69 7.37 10.17 30.01 16.24 2.92 

• rot : average frame-to-frame relative rotational drift( ◦/m) on 10 0 m–80 0 m. • trans : average frame-to-frame 

relative translational drift(%) on 100 m–800 m. • The data of DeepVO and ORB-SLAM are derived from [41] . 
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Table 5 

The quantitative results on Malaga dataset. LS-VO and ST-VO predict 

optical flow to achieve performance, while we use RGB images di- 

rectly. The best results are highlighted and the second-best ones are 

underlined. 

Avg Methods 

PoseConvGRU LS-VO ST-VO ORB-SLAM-M 

-cons (Ours) [12] [12] [15] 

rot ( ◦) 0.0316 0.0690 0.1241 0.0156 

trans (%) 12.70 15.56 23.20 86.60 

• rot : weighted average frame-to-frame relative rotational drift( ◦/m) 

on 100 m - 300 m. • trans : weighted average frame-to-frame relative 

translational drift(%) on 100 m - 300 m. • The data of ORB-SLAM-M 

are derived from [12] . 
the split way of training and test adopted in [12] . Table 5 compares

PoseConvGRU-cons with monocular learning methods LS-VO, ST-

O, and monocular geometric method ORB-SLAM(-M). Our method

is superior to LS-VO on trans but inferior to ORB-SLAM-M on rot . 

Qualitative experiment result: 

1) KITTI dataset: Quantitative experiments only use the first 11

sequences with ground truth to carry out training and testing in

the KITTI’s experiment, which can quantitatively analyze the er-

ror. Considering that the latter 11 scenes do not provide ground

truth, we can still use the trained model to test in these scenes

and visually evaluate the performance of our method. In this pa-

per, all the images of sequences 00–11 are used as the training set,

with a total of 23,190 image pairs, taking a tiny part as the vali-

dation set, and then we adopt the method in the quantitative ex-



G. Zhai, L. Liu and L. Zhang et al. / Pattern Recognition 102 (2020) 107187 11 

Fig. 12. These six sequences do not have ground truth, so we proceed on the qualitative experiments. “Ours” represents PoseConvGRU and “Ours-onlyCNN” means the 

version without memory module. The remaining two methods are counterparts with constraints. The labels of two axes are in KITTI’s style, which sets forward and right 

direction of the moving vehicle as Z and X direction, respectively. For the best view, we only show methods without constraints. 

Fig. 13. Qualitative tests on Malaga dataset exhibited on Google Earth. The blue and purple trajectories express stereo and monocular ORB-SLAM respectively, with the 

yellow one represents GPS(ground truth). Our performance(PoseConvGRU-cons) shows in red (best viewed with zoom-in). 
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eriment to train it. When the model converges to a certain extent,

he training set and the validation set are combined for fine-tuning

ntil the training error is basically not reduced. The model at this

ime is taken as the final model for the qualitative experiment and

ested on the rest sequences 11–21. For avoiding messy curves in-

ertwined and giving a better viewing experience, we only show

he performance of PoseConvGRU and onlyCNN. 

The partial results are shown in Fig. 12 , which also include the

esting results of two baseline methods VISO2-M and VISO2-S. The

ange of these 11 scenes is from 100 m × 100 m (such as se-

uence 14) to 20 0 0 m × 50 0 0 m (such as sequence 21), and is

uite different with the training set. From the perspective of vehi-
le speed, the top speed of the first 11 scenes is basically around

0 km/h, while in the latter 11 scenes, the running speed is even

s high as 90 km/h. When the camera frame rate is fixed at 10

ps, the movement between two adjacent images will become in-

ense, and the lack of such samples in the training set will affect

he generalization ability of the deep learning algorithm. 

Because of the lack of real trajectory data, we use the results

f the VISO2-S method as a reference. In sequences 11, 13, 15, 16,

7 and 18, the performance of PoseConvGRU is better than those

f onlyCNN and VISO2-M, and the trajectories of onlyCNN are also

ore accurate than VISO2-M. In most scenarios, the trajectories of

ISO2-M have severe deviations in scale compared to the other
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three methods. This shows that the scale problem of monocular

geometric methods is a big obstacle in the field of pose estimation,

and deep learning methods can basically overcome this difficulty. 

2) Malaga dataset: Since the Malaga dataset does not have

ground truth, quantitative evaluation can only be conducted with

poses calculated by ORB-SLAM-S reckoned as regression targets.

However, Frequent GPS data is available, we still can perform qual-

itative comparison. Fig. 13 depicts the testing results on Malaga

dataset sequences 03 and 09 (ORB-SLAM-M failed on 02), superim-

posed on Google Earth. As we can see from Fig. 13 , PoseConvGRU-

cons(Ours) predictions are close to GPS and ORB-SLAM-S in those

three sequences. It is significantly better than ORB-SLAM-M be-

cause our monocular approach is scale-aware, although it suffers

from drift. This experiment further shows that our approach can

proceed with some scenarios successfully which classical methods

(like ORB-SLAM-M) can not. 

5. Conclusion 

We propose a novel data-driven Long-term Recurrent Convolu-

tional Neural Networks (PoseConvGRU) encoding geometrical fea-

tures in images to gauge camera poses, which is completely end-

to-end. Our proposed neural network is more real-time and less

calculation-consuming, unlike other learning-based ego-motion es-

timation algorithms, which need to spend plenty of time to calcu-

late the pre-processed dense optical flow before training the neu-

ral network or use a pre-trained network to estimate the opti-

cal flow with additional calculation costs. The main idea is to use

CNN to extract the geometric relationship features of two adja-

cent images in the image sequences along with data augmentation,

then pass the feature maps through a stacked ConvGRU module for

feature learning, and finally achieve the regression of the relative

poses among consecutive multi-frame images. The performance of

our approach is better than VISO2-M and ORB-SLAM-M, showing

a competitive performance to state-of-the-art learning methods. In

the future, we plan to focus on the stereo study of end-to-end vi-

sual ego-motion estimation, since some significant information like

scale can be directly obtained from stereo images. 
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