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a b s t r a c t 

The current pandemic, caused by the outbreak of a novel coronavirus (COVID-19) in December 2019, has 

led to a global emergency that has significantly impacted economies, healthcare systems and personal 

wellbeing all around the world. Controlling the rapidly evolving disease requires highly sensitive and 

specific diagnostics. While RT-PCR is the most commonly used, it can take up to eight hours, and requires 

significant effort from healthcare professionals. As such, there is a critical need for a quick and automatic 

diagnostic system. Diagnosis from chest CT images is a promising direction. However, current studies are 

limited by the lack of sufficient training samples, as acquiring annotated CT images is time-consuming. To 

this end, we propose a new deep learning algorithm for the automated diagnosis of COVID-19, which only 

requires a few samples for training. Specifically, we use contrastive learning to train an encoder which 

can capture expressive feature representations on large and publicly available lung datasets and adopt 

the prototypical network for classification. We validate the efficacy of the proposed model in comparison 

with other competing methods on two publicly available and annotated COVID-19 CT datasets. Our results 

demonstrate the superior performance of our model for the accurate diagnosis of COVID-19 based on 

chest CT images. 

© 2021 Elsevier Ltd. All rights reserved. 
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. Introduction 

The latest coronavirus, COVID-19, was initially reported in 

uhan, China toward the end of 2019 and has since spread rapidly 

round the globe, leading to a worldwide crisis. As an infectious 

ung disease, COVID-19 leads to severe acute respiratory distress 

yndrome (ARDS) and is accompanied by a series of side effects 

hat include a dry cough, fever, tiredness, shortness of breath, etc. 

s of October 18th 2020, more than 39 million individuals around 

he world have been confirmed as having COVID-19, with a roughly 

.3% case fatality rate, according to the World Health Organiza- 

ion. 1 

So far, no effective treatment for COVID-19 has been found. 

ne of the major hurdles is the lack of efficient diagnostic meth- 

ds. Therefore, an accurate and rapid diagnosis platform is urgently 

equired to conduct COVID-19 screening and prevent its further 
∗ Corresponding author. 

E-mail addresses: xiaocong.chen@unsw.edu.au (X. Chen), lina.yao@unsw.edu.au 
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pread. Currently, most tests are based on real-time reverse tran- 

criptase polymerase chain reaction (RT-PCR). However, each RT- 

CR test can take several hours to produce results. With the cur- 

ent spread rate of COVID-19, this is not acceptable. Further, the 

imited number of test kits exacerbates the situation [1–3] . Re- 

ent studies also show that the RT-PCR suffers from low sensitivity 

nd accuracy, often requiring repeated entries [4,5] . This prevents 

atients from being confirmed in a timely manner, increasing the 

otential risk of spreading. 

In order to address these challenges, scientists around the 

orld are trying to develop new diagnostic systems. Some stud- 

es [6,7] have demonstrated that chest computed tomography 

CT) imaging can help in diagnosing COVID-19 rapidly. Salehi 

t al. [8] concluded that chest CT imaging is sensitive for diagnos- 

ng COVID-19 even when patients do not have clinical symptoms. 

pecifically, three typical radiographic features, including consoli- 

ation, pleural effusion and ground class opacification, can be eas- 

ly observed from the CT images of COVID-19 patients [9,10] . 

With this in mind, several methods based on chest CT im- 

ges been developed for diagnosing COVID-19. For instance, some 

tudies used a 3D CNN to diagnosis of COVID-19 from chest 

T scans [11] . Mei et al. [12] adopted ResNet to rapidly iden- 

https://doi.org/10.1016/j.patcog.2021.107826
http://www.ScienceDirect.com
http://www.elsevier.com/locate/patcog
http://crossmark.crossref.org/dialog/?doi=10.1016/j.patcog.2021.107826&domain=pdf
mailto:xiaocong.chen@unsw.edu.au
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mailto:taozhou.ai@gmail.com
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https://doi.org/10.1016/j.patcog.2021.107826
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Fig. 1. The overall architecture of our approach. Top: The pre-training stage, which includes data augmentation and representation learning. The pretext task is an instance 

discrimination task. Bottom: Few-shot classification with 2-way, 1-shot example. For classification, the support images and query image are encoded by the pre-trained 

encoding network. Query sample embeddings are compared with the centroid of training sample embeddings and used to fine-tune the pre-trained encoder. 
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ify COVID-19. Besides diagnosis, several works also used the seg- 

entation techniques for detection [13,14] . However, all existing 

ethods are trained using the limited samples available from a 

mall number of patients and may not generalize well to new 

atients. It is well-known that a lack of labelled training data is 

 common challenge since deep learning methods generally re- 

uire a large volume of data for accurate training. Significant re- 

earch efforts have been dedicated to alleviating this problem 

hrough, for example, data augmentation or generative adversar- 

al networks (GANs) [15–18] . However, these methods are highly 

ensitive to parameter selection. Hand-tuned data augmentation 

ethods like rotation may lead to overfitting [19] , images gener- 

ted by a GAN cannot simulate the real patient data which, may 

ntroduce unpredictable bias in the testing phase [15] . Recently, 

ew-shot learning attracted significant attention in medical im- 

ge analysis. In general, few-shot learning aims to leverage ex- 

sting data to classify new tasks from similar domains. The basic 

orkflow for few-shot learning is to pre-train an embedding net- 

ork on a large dataset (e.g. ImageNet), then fine-tune the weights 

f this network, and finally apply it to a small unseen dataset 

20,21] . However, the performance is only marginally improved 

his way. One reason lies in that ImageNet contains a broad range 

f categories and pre-training on this dataset often introduces ir- 

elevant information, which does not help in learning effective 

mbeddings for improving lung-specific feature representation. In 

ddition, pre-training on ImageNet incurs a high computational 

ost; for example, ImageNet-1B typically required over 50 GPU 

ays. 

To address this challenge, we develop an end-to-end trainable 

eep few-shot learning framework that can provide accurate pre- 

ictions with minimal training on chest CT images. Specifically, we 

rst use the instance discrimination task to enforce model to dis- 

riminate two images are the same instance or not. Different views 

f the same images are then generated to augment the original 

ataset. As our goal at this stage is to increase variances other than 

iscrimination, we are able to effectively avoid the disadvantages 

f data augmentation mentioned previously. 

We then deploy a self-supervised strategy [22] powered with 

omentum contrastive training to further boost the performance. 

he key idea is to build a dynamic dictionary to perform (key, 

a

2 
uery) look-up, where the keys are sampled from data and en- 

oded by the encoder. However, the key in the dictionary is noisy 

nd inconsistent due to the back-propagation [23] . We apply the 

omentum mechanism to mitigate this effect by updating the 

ey and query encoders at different scales. Finally, we utilize two 

ublic lung datasets to pre-train an embedding network and em- 

loy the prototypical network [24] to conduct the few-shot clas- 

ification, which learns a metric space for classification by mea- 

uring the distances to the derived prototypical representation of 

ach class. Extensive experiments on two new datasets demon- 

trate that our model provides a promising tool for quick COVID-19 

iagnosis with very limited available training data. 

. Problem Definition 

Due to the shortage of annotated COVID-19 CT images, normal 

lassification methods may not work properly. As such, we formu- 

ate COVID-19 diagnosis as a few-shot classification problem. Few- 

hot learning is designed for cases in which only a few samples of 

ew class are available for classifier training. It can be defined as a 

-way, C-shot episodic task [25] , where M represents the number 

f classes and C represents number of samples available for each 

lass. The training set, which has never been seen before, can be 

epresented as D = { (x 0 , y 0 ) , . . . , (x d , y M 

) } , where d is the number

f samples in the dataset. We randomly select the support set and 

uery set from D : (i) The support set S can be partially or fully 

ade up of M classes but only contain C + 1 samples. (ii) We ran- 

omly select one sample from the C + 1 samples to form the test 

et (query set). Hence, COVID-19 diagnosis can be represented as a 

wo-way, C-shot learning problem. 

. Methodology 

In this section, we will introduce our proposed self-supervised 

OVID-19 diagnosis method. The overall flowchart is illustrated 

n Fig. 1 . We will describe the three major components of our 

ethod, which include data augmentation, representation learning 

nd the few-shot classification. 
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Fig. 2. Three possibilities for random cropping. Dashed boxes are augmented views. Crops A, C, E will have random color distortions applied, while B, D, F will not change 

if method (2) is chosen. All the cropped sections will be resized back to the original input image size. For the instance discrimination task, the goal, given B, D, F is to 

determine whether or not A, C, E are in the same instance. 
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.1. Data Augmentation 

Data augmentation has been widely used in unsupervised rep- 

esentation learning and supervised learning [26,27] . A few exist- 

ng approaches define the contrastive classification task as chang- 

ng the structure of images. For instance, Hjelm et al. [28] and 

achman et al. [29] used global-to-local view for contrastive learn- 

ng as shown in the first example in Fig 2 . Meanwhile, Oord 

t al. [22] and Henaff et al. [30] achieved neighbor prediction using 

he adjacency view (middle example, Fig 2 ). An overlapping view 

f the two approaches can be seen in third image of Fig 2 . 

In this study, we apply a stochastic data augmentation T which 

andomly transfers a given example image x into two different 

iews, denoted as x i , x j . We consider the pair x i , x j as positive. Fur-

her, we apply two simple augmentation strategies in sequence: 

1) random cropping, followed by a resizing operation back to the 

riginal size with random flipping; or (2) random cropping with 

olor distortions followed by a resizing operation. When a new im- 

ge is fed into the model, one of the above methods is randomly 

elected for augmentation. This process is repeated twice to gener- 

te two different views. Note that we implement color distortions 

sing the torchvision 

2 package in PyTorch [31] . 

.2. Contrastive Visual Embedding 

Using contrastive learning to learn visual embeddings was 

rst explored by Hadsell et al. [32] . Given an image set {I =
 1 , . . . , i p } , x i ∈ R 

d , the goal of the task is to find a mapping func-

ion G : R 

d �→ R 

a , a � d that satisfies: 

 (G (x ) , G (x + ) � s (G (x ) , G (x −) (1) 

here s (·, ·) is a function used to measure the similarity between 

wo inputs. G is designed for dimension reduction and represen- 

ation learning. Finally, x + , x − represent the positive and nega- 

ive samples, where x + is similar to x and x − is dissimilar. It is

orth mentioning that the contrastive learning is a type of un- 

upervised learning. A simple framework for contrastive learning 

as proposed by Chen et al. [33] . Specifically, the representa- 

ions are learned by maximizing the agreement between differ- 

ntly augmented views x i , x j of the same data example x via a con-

rastive loss in the latent space. We adopt this framework in our 

odel. Specifically, our representation learning stage consists of 

hree modules: the encoder, projection head and, contrastive loss 

unction. 

Encoder The neural network based encoder f (·) can extract rep- 

esentations from the augmented images. This framework is flex- 

ble for adopting any type of network architecture without con- 

traints. In this study, we adopt ResNet [34] to obtain the repre- 
2 https://pytorch.org/docs/stable/torchvision/index.html 

c

q  

3 
entation h i , h j , h i = f (x i ) = ResNet (x i ) where h i is the R 

d output

f the average pooling layer. 

Projection head The projection head g(·) is a function that can 

ap the resulting representation into the application space of the 

ontrastive loss. The most common projection head used is the 

ultilayer perceptron (MLP) with one hidden layer [33] . In this 

ase, we can express the z i (as well as z j ) as: 

 i = g(h i ) = W 

2 σ (W 

1 h i ) (2) 

here W 

1 , W 

2 are the weights of the hidden layer and output 

ayer, respectively. The σ (·) is the non-linear ReLU activation func- 

ion, which can be defined as: 

eLU (x ) = 

{
0 x ≤ 0 

x x > 0 

(3) 

e will examine the effectiveness of this projection head in 

ection 4 . 

Contrastive loss function The contrastive loss function is defined 

or the contrastive pre-text task. It was first proposed by Hadsell 

t al. [32] and is used to calculate the value when the query is 

imilar to the positive key and dissimilar for all other keys. In this 

anuscript, we only consider the instance discrimination task [35] . 

iven a set { x k } including a positive pair x i , x j , the contrastive task

ims to identify x j in set { x k } k 	 = i for a given x i . 

We define the contrastive task on pairs of augmented images 

rom a randomly selected minibatch with N samples. The augmen- 

ation process results in 2 N data points. To create the contrastive 

ask, we need enough negative samples to construct the loss func- 

ion. Similar to Doersch et al. [36] , we treat the other 2 N − 2 ex-

mples as the negative samples. The similarity function s (·, ·) can 

e defined as the cosine similarity: 

 (v , u ) = 

v T  u 

‖ v ‖‖ u ‖ 

(4) 

here v , u are two vectors. Based on this, we can define the loss

unction for a pair of positive samples (i, j) as: 

 i, j = − log 
exp (s (z i , z j ) /τ ) ∑ 2 N 

k =1 1 k 	 = i exp (s (z i , z k ) /τ ) 
(5) 

ere 1 k 	 = i ∈ { 0 , 1 } is the indicator which has a value of 1 when

 	 = i and 0 otherwise, and τ is the temperature parameter. This 

oss is known as the normalized temperature-scaled cross entropy 

oss [22,29] . However, Eq. (5) only considers the positive samples 

nd ignores negative samples. Note that, the margin based con- 

rastive loss function [32] has the same problem only considering 

bout the positive keys. This may lead to potential bias. To avoid 

his, we introduce the momentum mechanism into our model. 

Contrastive learning can also be expressed as training an en- 

oder to conduct a dictionary lookup task. Consider an encoded 

uery q and encoded samples x , . . . , x , which are the keys of the
i k 

https://pytorch.org/docs/stable/torchvision/index.html
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3 https://github.com/UCSD- AI4H/COVID- CT 
4 https://www.sirm.org/category/senza-categoria/covid-19/ 
5 http://medicalsegmentation.com/covid19/ 
ictionary. If the query q is similar to the sample x + , there is

 match. For the negative samples x −, there is no match in the

ictionary. Based on this definition, He et al. proposed an unsu- 

ervised learning-based framework MoCo [23] , by adopting con- 

rastive learning. 

Based on the above definition, the goal of contrastive learn- 

ng is to build a discrete dictionary for high-dimensional contin- 

ous inputs. The core of MoCo is to maintain a dictionary with a 

ueue. The benefit of this is that the encoder can reuse the en- 

oded keys from the previous mini-batch. In addition, the dictio- 

ary can be much larger than the mini-batch and easy to adjust. 

s the number of samples that can be included in the dictionary 

s fixed, once the dictionary is full, it will progressively remove the 

ldest records. In this way, the consistency of the dictionary can 

e maintained as the oldest samples are often out-of-date and in- 

onsistent with the new entries. Another approach, called Memory 

ank [35] , tries to store the historical records of the encoded sam- 

les. This approach maintains a bank of all the representations of 

he dataset. The dictionary then randomly samples from the mem- 

ry bank directly for each mini-batch without back-propagation. 

owever, this method will lead to inconsistency when sampling. 

o overcome this, back-propagation should be conducted to keep 

he sampling step up-to-date. A simple solution is to copy the key 

ncoder f k from the query encoder f q without the gradient. How- 

ver, the encoder changes constantly, which can lead to a noisy 

ey representation and poor results. The momentum contrast was 

ntroduced to address this problem, using a different method to 

pdate the gradient for f k : 

k ← − mθk + (1 − m ) θq . (6) 

here θk is the parameter for f k , θq is the parameter for f q and 

 ∈ [0 , 1) is the momentum coefficient. We use back-propagation 

o update the parameter θq and use Eq. (6) to update θk . Benefiting 

rom the momentum coefficient, the update of θk is smoother than 

q . According to the different update strategies, the query and key 

ill eventually be encoded by different encoders. 

Based on the above discussion, we use the dictionary as a 

ueue to allow the encoder to reuse the previous encoded sample. 

he loss function for the pre-trained model can be written as: 

 = − log 
exp (q, k + ) /τ

exp (q, k + ) /τ + 

∑ 

k − exp (q, k −) /τ
. (7) 

ifferent from Eq. (5) , here we need to consider the queue and 

he negative cases, so we slightly modify the loss function to fulfil 

his requirement by introducing the positive examples k + and neg- 

tive examples k −, where q k = k + ∪ k −. In the instance discrimina-

ion pre-text task, a positive pair is formed when a query q and 

 key k are augmented from the same sample; otherwise, a nega- 

ive pair is created. Once the pre-training step is finished, we ex- 

ract the pre-trained encoder f (·) and integrate it into our classi- 

cation module. It is worth mentioning that the triple loss [37] is 

nother popular loss function that considers both positive and neg- 

tive examples. However, the triple loss does not converge easily 

nd is time-consuming. Hence, it is normally only used in identi- 

cation [38,39] or fine-grained image classification tasks. For our 

ask, using the contrastive loss is adequate as we are dealing with 

nstance discrimination task. 

.3. Prototypical network for few-shot classification 

Another step in our workflow is classification. In this stage, 

eta-learning is applied to fine-tune the pre-trained encoder to fit 

he class changes required by few-shot learning. Then we use Pro- 

otypical Networks [24] for few-shot classification. The prototypi- 

al network learns an embedding that maps all inputs into a mean 

ector c in the latent space to represent each class. The goal of 
4 
he pre-trained encoder is to ensure that similar images are close 

nd dissimilar images are separate in the latent space. The proto- 

ypical network has a similar goal, so it is used to fine-tune our 

re-trained encoder. For class m, the centroid embedding features 

an be written as: 

 m 

= 

1 

| S| 
∑ 

(x d ,y M ) ∈ S 
ψ(x d ) (8) 

here ψ(·) is the embedding function from the prototypical net- 

ork. As the prototypical network is a metric based learning 

ethod, we use the Euclidean distance to produce the distribution 

or all classes for a query q . 

p(y = m | q ) = 

exp (−d(ψ(q ) , c m 

)) ∑ 

m 

′ exp (−d(ψ(q ) , c m 

′ ) 
. (9) 

q. (9) is based on the softmax function over the distance between 

 query set’s embedding and the features of the class. The loss 

unction for this stage can be defined as: 

 meta = d(ψ(q ) , c m 

) + log (d(ψ(q ) , c m 

′ )) (10) 

.4. Training strategy 

Algorithm 1 shows the whole pre-training workflow of our 

Algorithm 1: Training algorithm for the pre-training. 

input : Batch size N, τ, f k , f q , g, T , q k 
1 for sampled mini-batch { x k } N k =1 

do 

2 for k ∈ { 1 , . . . , N} do 

3 Select two data augmentation functions from T : t , t ′ ; 

4 x 2 k −1 = t(x k ) , ̂  x 2 k −1 = t ′ (x k ) ; 

5 h 2 k −1 = f k (x 2 k −1 ) , h 2 k = f q ( ̂  x 2 k −1 ) ; 

6 z 2 k −1 = g(h 2 k −1 ) , z 2 k = g(h 2 k ) ; 

7 end 

8 for i ∈ { 1 , . . . , 2 N} , j ∈ { 1 , . . . , 2 N} do 

9 Calculate the similarity using Eq. (4) ; 

10 end 

11 Update f k to minimize Eq. (7); 

12 Update f q by Eq. (6) ; 

13 enqueue( q k , z 2 k −1 ) ; 

14 dequeue( q k ); 

15 end 

16 return f k ; 

odel. 

. Experiments 

.1. Datasets 

We evaluated our proposed model using two publicly available 

nnotated COVID-19 CT slices datasets: (1) COVID-19 CT 3 and (2) 

 dataset provided by the Italian Society of Medical and Interven- 

ional Radiology 4 and preprocessed by MedSeg. 5 It is worth men- 

ioning that there is no overlap between COVID-19 CT and MegSeg 

s they come from different countries. When dividing the sup- 

ort and query sets for classification, we divided the datasets at 

 patient-level instead of CT level to avoid any possible overlap. 

he basic statistics for the COVID-19 CT dataset and MegSeg are 

https://github.com/UCSD-AI4H/COVID-CT
https://www.sirm.org/category/senza-categoria/covid-19/
http://medicalsegmentation.com/covid19/
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Table 1 

Number of patients and number of CT slices available in the experimental 

datasets. 

COVID-19 CT MegSeg 

# of Patients 
COVID-19 216 43 

Non-COVID-19 171 0 

# of CT Slices 
COVID-19 349 110 

Non-COVID-19 397 0 
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ummarized in Table 1 . We combined the two datasets for testing. 

ote that all CT slices were resized to 512 × 512 using opencv2. 6 

A proper pre-training is required for our proposed model. 

ifferent from other existing methods, such as Self-Trans [20] , 

hat used ImageNet to pre-train the model, we adopted DeepLe- 

ion [40] and the Lung Image Database Consortium Image Collec- 

ion (LIDC-IDRI). 7 DeepLesion contains over 32,0 0 0 lung CT images 

hile LIDC-IDRI includes 244,617 ones. Both datasets are public 

nd focus on lung diseases. We used the two datasets without la- 

els to pre-train the encoder network. 

.2. Experimental settings 

For pre-training, we used the SGD optimizer with a weight de- 

ay of 0.0 0 01 and momentum of 0.9. The momentum update co- 

fficient was 0.999. The mini-batch size was set to 256 in eight 

PUs. The number of epochs was 200. The initial learning rate was 

.03, which was then multiplied by 0.1 after 120 and 160 epochs, 

s described in [35] . ResNet-50 was used as the encoder. The two- 

ayer MLP projection head included a 2048-D hidden layer with 

 ReLU activation function. The weights were initialized by using 

e initialization [41] , and the temperature parameter τ was set 

o 0.07. For the classification stage, we followed the default set- 

ings of the prototypical net. The experiments were conducted on 

ight GPUS which includes six NVIDIA TITAN X Pascal GPUs and 

wo NVIDIA TITAN RTX. 

.3. Evaluation and results 

We evaluated model performance using four metrics: (i) Accu- 

acy, which measures the percentage of correctly classified sam- 

les over the whole dataset; (ii) Precision, which measures the per- 

entage of true positives (TP) over all predicted positive samples; 

iii) Recall, used to measure the percentage of TPs over all positive 

amples; and (iv) Area-under-the-curve (AUC) which measures the 

elation between FPs and TPs. We trained and tested each of the 

ompared methods on COVID-19 CT and MegSeg dataset using 10- 

old cross-validation at a patient-level with the cross-entropy loss 

unction. 

The experimental results are summarized in Table 2 . We found 

hat the designed two-way, one-shot model yielded very similar 

erformance to ResNet-50. In addition, we found that the obtained 

lassification performance is worse when the model is pre-trained 
6 https://opencv.org/ 
7 https://wiki.cancerimagingarchive.net/display/Public/LIDC-IDRI 

d

s

m

Table 2 

Performance comparison between our propose

and the method pretrained on ImageNet use a t

Accuracy Precision 

ResNet-50 0 . 873 ± 0 . 013 0 . 894 ± 0

DenseNet-121 0 . 855 ± 0 . 013 0 . 867 ± 0

ImageNet Pre 0 . 732 ± 0 . 023 0 . 744 ± 0

Ours 0 . 868 ± 0 . 012 0 . 883 ± 0

5 
n ImageNet. As discussed previously, an extra step may be re- 

uired to conduct transfer learning from common items to lung 

T slices. 

As previously mentioned, our method used few-shot learning. 

e were thus interested to see how varying the number of shots 

ould affect the model performance. Accordingly, we conducted 

n experimental analysis to explore the relationship between the 

lassification performance and the number of shots. The results 

re shown in Table 3 , where ResNet-50 is used as a baseline 

ethod for the comparison. As can be seen, the classification per- 

ormance of our model is gradually improved with the increase 

n the number of shots. Specifically, our model achieved signif- 

cantly improved performance when using four shots compared 

ith one shot and outperformed ResNet-50, but no obvious fur- 

her improvement was observed when using more than five shots. 

hese results indicate that the pre-trained encoder effectively cap- 

ured the features from unknown images to improve the classifi- 

ation performance. Additionally, we provide visualizations of the 

eatures learned by different methods including our method, Pre- 

rain with ImageNet, DenseNet-121 and ResNet-50 in Fig 3 . Here, 

oth DenseNet-121 and ResNet-50 were directly trained on the 

OVID-19 dataset described in Table 1 . As can be seen, our method 

earned more features that focused on the lung area, improving 

he classification accuracy in comparison with approaches. Table 4 

ummarizes the training time taken by different methods for a 

omparison of the computational cost. As our method was not 

rained on the COVID-19 dataset, the corresponding training time 

as not available. The method trained on ImageNet took about 

50 h. 

.4. Ablation study 

In this section, we conducted extensive ablation studies to 

emonstrate the importance of each component in our model. The 

efault setting of our method was two-way, one-shot and ResNet- 

0 used the same setting as in the previous section. We investi- 

ated the following research questions: (1) How would data aug- 

entation and projection head affect the performance? (2) How 

mportant is the fine-tuning stage? (3) How would the resizing op- 

ration affect the performance? (4) Is the result significantly af- 

ected when using a different encoder? 

First, we explored the role of the data augmentation and pro- 

ection head. We conducted the experiments on our model without 

ugmentation and without projection head, respectively. 

The results summarized in Table 5 show that data augmenta- 

ion had a significant effect on the model performance while the 

rojection head yielded only a slight improvement. One possible 

eason why the projection head was not able to provide an obvi- 

us improvement would be that it was only used to extract the 

ost important information from the similarity vector. As such, it 

imply worked as a filter without introducing additionally useful 

eatures. 

In addition, we also investigated that the impact of different 

ata augmentation strategies. Specifically, we compared the clas- 

ification results between random-cropping of using three aug- 

entation strategies and only using a single one. All the com- 
d model and other methods. Our model 

wo-way, one-shot strategy. 

Recall AUC 

 . 012 0 . 874 ± 0 . 012 0 . 935 ± 0 . 014 

 . 012 0 . 859 ± 0 . 012 0 . 894 ± 0 . 013 

 . 021 0 . 738 ± 0 . 023 0 . 870 ± 0 . 022 

 . 011 0 . 872 ± 0 . 012 0 . 931 ± 0 . 013 

https://opencv.org/
https://wiki.cancerimagingarchive.net/display/Public/LIDC-IDRI
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Table 3 

Classification performance when using different settings in our model. Here, W indi- 

cates the number of ways and S the number of shots. For instance, 2W1S represents 

the two way, one shot setting. ResNet-50 is used as a baseline method for comparison. 

Accuracy Precision Recall AUC 

ResNet-50 0 . 873 ± 0 . 013 0 . 894 ± 0 . 012 0 . 874 ± 0 . 012 0 . 935 ± 0 . 014 

Ours(2W,1S) 0 . 868 ± 0 . 012 0 . 883 ± 0 . 011 0 . 872 ± 0 . 012 0 . 931 ± 0 . 013 

Ours(2W,2S) 0 . 872 ± 0 . 012 0 . 890 ± 0 . 011 0 . 875 ± 0 . 012 0 . 935 ± 0 . 012 

Ours(2W,3S) 0 . 876 ± 0 . 012 0 . 895 ± 0 . 011 0 . 878 ± 0 . 011 0 . 938 ± 0 . 012 

Ours(2W,4S) 0 . 881 ± 0 . 012 0 . 898 ± 0 . 011 0 . 882 ± 0 . 011 0 . 942 ± 0 . 012 

Ours(2W,5S) 0 . 884 ± 0 . 010 0 . 899 ± 0 . 010 0 . 885 ± 0 . 012 0 . 946 ± 0 . 010 

Ours(2W,6S) 0 . 885 ± 0 . 011 0 . 899 ± 0 . 012 0 . 886 ± 0 . 010 0 . 945 ± 0 . 009 

Fig. 3. Grad-CAM [42] visualizations of the features learned by different methods. The top row shows the original image set, followed by our method, pre-train with 

ImageNet and DenseNet-121 and ResNet-50. The results indicate that our method performs better than other approaches in learning lung features. 

Table 4 

Training time taken by different methods on our server (in hour(h)). 

COVID-19 + MegSeg LIDC-IDRI + DeepLesion 

ResNet-50 1 6 

DenseNet-121 1.5 7 

Ours – 8 

p  

w

c

g

Table 5 

The effect of data augmentation and projection head. 

Accuracy Precision Recall AUC 

Ours 0 . 868 ± 0 . 012 0 . 883 ± 0 . 011 0 . 872 ± 0 . 012 0 . 931 ± 0 . 013 

No Aug. 0 . 779 ± 0 . 021 0 . 791 ± 0 . 020 0 . 780 ± 0 . 021 0 . 889 ± 0 . 022 

No Proj. 0 . 856 ± 0 . 013 0 . 875 ± 0 . 012 0 . 870 ± 0 . 013 0 . 910 ± 0 . 015 

c

p

g

g

ared data augmentation methods are shown in Fig. 2 . In Table 6 ,

e summarize the classification results and use AB-cropping, CD- 

ropping, and EF-cropping to represent each of the three strate- 

ies. The results demonstrate that the model performance de- 
6 
reases by varying degrees when using only one of the crop- 

ing strategies compared with using all of them. This sug- 

ests that combining all three cropping strategies yields better 

eneralizability. 
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Table 6 

Effects of using different augmentation strategies on classification performance. 

Accuracy Precision Recall AUC 

Random 0 . 868 ± 0 . 012 0 . 883 ± 0 . 011 0 . 872 ± 0 . 012 0 . 931 ± 0 . 013 

AB 0 . 792 ± 0 . 011 0 . 801 ± 0 . 010 0 . 807 ± 0 . 010 0 . 844 ± 0 . 009 

CD 0 . 821 ± 0 . 022 0 . 844 ± 0 . 014 0 . 832 ± 0 . 015 0 . 845 ± 0 . 014 

EF 0 . 844 ± 0 . 018 0 . 852 ± 0 . 010 0 . 849 ± 0 . 013 0 . 866 ± 0 . 010 

Table 7 

Effect of fine-tuning. 

Accuracy Precision Recall AUC 

Ours 0 . 868 ± 0 . 012 0 . 883 ± 0 . 011 0 . 872 ± 0 . 012 0 . 931 ± 0 . 013 

Linear 0 . 788 ± 0 . 011 0 . 795 ± 0 . 010 0 . 790 ± 0 . 010 0 . 892 ± 0 . 009 

Table 8 

Effects of resizing in data augmentation on model performance. 

Accuracy Precision Recall AUC 

With 0 . 868 ± 0 . 012 0 . 883 ± 0 . 011 0 . 872 ± 0 . 012 0 . 931 ± 0 . 013 

Without 0 . 870 ± 0 . 013 0 . 885 ± 0 . 013 0 . 874 ± 0 . 011 0 . 932 ± 0 . 009 

Table 9 

Effects of using different encoders on model performance. 

Accuracy Precision Recall AUC 

ResNet-50 0 . 868 ± 0 . 012 0 . 883 ± 0 . 011 0 . 872 ± 0 . 012 0 . 931 ± 0 . 013 

ResNet-152 0 . 861 ± 0 . 011 0 . 867 ± 0 . 013 0 . 862 ± 0 . 012 0 . 925 ± 0 . 012 

DenseNet-161 0 . 861 ± 0 . 011 0 . 867 ± 0 . 013 0 . 862 ± 0 . 012 0 . 925 ± 0 . 012 

VGG-16 0 . 849 ± 0 . 018 0 . 862 ± 0 . 010 0 . 859 ± 0 . 011 0 . 916 ± 0 . 011 

c

e
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Moreover, we also examined the effects of the fine-tuning pro- 

ess on the model performance. To do so, we first pre-trained the 

mbedding network and modified the few-shot classification stage 

y replacing the prototypical network with a linear classifier with 

rozen features. We directly applied the linear classifier into the 

earned embedding network without any update on weights. The 

esults are summarized in Table 7 which show that the fine-tuning 

rocess can significantly improve the performance. 

In addition, we also investigated the impact of the resizing op- 

ration during the data augmentation process. To this end, we 

ompared the model performance with and without the resizing 

peration (see Table 8 ). As can be seen, the resizing operation 

lightly affected the performance. Moreover, as the cropping op- 

ration may generate different-sized images, the resizing operation 

s necessary to ensure that all these generated images can be fed 

nto the neural network for model training. 

Finally, we examined the effect of using different encoders on 

odel performance. We used the same settings as mentioned in 

ection 4.2 , but changed the encoder network from ResNet-50 to 

esNet-152, DenseNet-161, and VGG-16 for performance compari- 

on. The results reported in Table 9 show that ResNet-50 achieved 

he best performance. This justified the use of ResNet-50 as the 

ncoder in our proposed model. 

. Conclusion 

CT imaging is attracting increasing attention as a screening tool 

or COVID-19. It provides visualization for monitoring disease pro- 

ression and can help to evaluate the severity. However, the lack of 

nnotated CT scans is a significant challenge in CT imaging-based 

edical studies. In this work, we proposed a new deep-learning 

ased method that can be used for the automatic diagnosis of 

OVID-19 with limited samples. Moreover, we demonstrated that 

ur method achieved superior performance over ResNet-50 when 

he number of available samples is larger than three. ResNet-50 is 

 well-known and widely used supervised learning model for med- 
7 
cal image analysis. As our developed model used a self-supervised 

trategy based on unsupervised learning, the fact that it can out- 

erform than ResNet-50 is remarkable. 

We expect that our method will be useful for other medical 

maging analysis tasks facing the same data shortage problem. In 

he future, we plan to apply the proposed method to more COVID- 

9 datasets to validate its generalizability. Moreover, we will also 

nvestigate how to use knowledge distillation to reduce the size of 

earned embedding and further increase the classification accuracy. 
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