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Abstract--Continuous monitoring of complex dynamic systems is an increasingly important issue in diverse 
areas such as nuclear plant safety, production line reliability, and medical health monitoring systems. Recent 
advances in both sensor technology and computational capabilities have made on-line permanent monitoring 
much more feasible than it was in the past. In this paper it is shown that a pattern recognition system 
combined with a finite-state hidden Markov model provides a particularly useful method for m6delling 
temporal context in continuous monitoring. The parameters of the Markov model are derived from gross 
failure statistics such as the mean time between failures. The model is validated on a real-world fault diagnosis 
problem and it is shown that Markov modelling in this context offers significant practical benefits. 
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I. INTRODUCTION 

Health monitoring of complex dynamic systems is a 
basic requirement in many domains where safety, re- 
liability and longevity of the system under study are 
considered critical. The system of interest might be a 
nuclear power plant, a large antenna system, a telecom- 
munications network, or a human heart. Health moni- 
toring can involve a variety of tasks such as detec- 
tion of abnormal  conditions, identification of faulty 
components,  or prediction of impending failures. The 
availability at low cost of highly sensitive sensor tech- 
nology, data acquisition equipment, and VLSI compu- 
tational power, has made round-the-clock permanent 
monitoring an attractive alternative to the more tradi- 
tional periodic manual  inspection. 

For  the purposes of this paper we will restrict our 
attention to the problem of accurately determining the 
state of the monitored system as a function of time. 
In particular we assume that a sequence of observed 
sampled sensor readings y are available at uniformly- 
spaced discrete time intervals without loss of generality 
the sampling interval is assumed to be 1. Each y is a 
k-dimensional measurement. Given a sequence of such 
sample vectors, 7(0, y(t - 1) . . . . .  ?(0), the task is to infer 
the current state of the system at time t. 

We assume that the system must be in one, and only 
one, of a finite set ofm states, toi, 1 < i < m, at any time. 
Let f~ be the discrete random variable corresponding 
to the (unobservable) state of the system, taking values 
in the set {to~ . . . . .  to,.}. Note  that the words "states" 
and "classes" will both be used in this paper but refer 
to the same thing. One of these states is deemed "nor- 
mal", the other m - 1 correspond to fault conditions. 
This assumption, that the known fault classes are 
mutually exclusive and exhaustive, limits the proposed 

method to problems where only single faults occur at 
any given time and all faults can be described in advance. 
The first limitation, single fault detection, is a known 
limitation of most fault detection methods and is inher- 
ent in the underlying nature of the sensor information 
available and the nature of the faults themselves. For 
example, it is possible that in some problems, multiple 
faults result in predictable combinations of single fault 
symptoms- -however ,  this is usually a domain-specific 
issue and is beyond the scope of discussion in this 
paper. In practice, since faults are often relatively rare 
compared to the sampling interval at which decisions 
are made, the probability of two independent faults 
occurring within the same time interval is extremely 
small. We will later see that the second limitation, the 
assumption that the known faults {to2 . . . . .  tom} comprise 
the set of all faults which could potentially occur, can 
be relaxed in a general domain-independent  manner. 
We will also assume throughout  that our monitoring 
algorithm is entirely passive and cannot effect any 
changes in the system. 

2. BACKGROUND ON FAULT DETECTION FOR DYNAMIC 
SYSTEMS 

In the ideal case where the system dynamics and 
measurement process can be completely modelled in 
an accurate manner, a variety of optimal control-theo- 
retic methods for fault detection can be derived based 
on on-line state estimation and statistical analysis of 
the residual error signals (see Willsky m for an overview 
of such methods). 

In practice, however, particularly for large complex 
systems, it is common to find that the system model 
may not be that reliable, if indeed there is any system 
model available. A common technique (Isermann tz~ 
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Fig. 1. Parameter estimation approach to fault diagnosis: 
u(t) is the measured (control) input, y(t) is the measured 
output signal, v(t) represents unmeasured disturbances to the 
system, 0(t) are the estimated system parameters at time t, and 
6[0(t)] indicates the change in the values of the system par- 

ameters at time t from their nominal values. 

and Frank 13)) is to fit a dynamic model to the relation- 
ship between the measured input and output signals 
of the system. Figure 1 shows a simplified block diagram 
of the basic method, u(t) and y(t) are the measured 
input and output signals respectively, and v(t) rep- 
resents unmeasured disturbances to the system. 

The model is often a linear difference equation (in 
the discrete time case) relating inputs and outputs, e.g. 

p q 

y(t)+ ~ ~tiy(t-i)= ~ f l j u ( t - j - b ) + e ( t )  (1) 
i - 1  j - 1  

where e(t) is an additive noise term, p and q are the 
orders of the model, and 6 is a delay term. In this 
example the observed data at time t would be "f(t)= 
{u(t), y(t)} and the model parameters would be denoted 
as 0 =  {~1 . . . . .  ~p, f l l  . . . . .  flq}. Typically the order or 
structure of the model (p and q) can be judiciously 
estimated based upon known system properties 
however, the parameters 0 of the model are estimated 
in an on-line manner using observed input/output data. 
The lumped parameters of the model can often be 
related to particular system components. Hence, fault 
detection occurs by observing changes in the values of 
the estimated parameter values of the fitted model 
(compared with some model of their normal condition), 
which in turn depend on the system components. This 
method has become known as the parameter method 
of fault detection--faults are detected by analysing 
changes in the parameters of the fitted model, as depic- 
ted in Fig. 1 by 6[0(0]. 

The focus of this paper is on the problem of detecting 
changes in the underlying system state from parameter 
estimates 0( t ) ,0( t -  1) .. . .  using both data-derived es- 
timates of the parameter-state dependence and prior 
knowledge of the temporal behaviour of the system. 
As mentioned earlier the system is assumed to always 
be in one, but only one, state 0)i, 1 < i < m, at any point 
in time, i.e. the states are mutually exclusive and 
exhaustive. We will also assume that the distribution of 
parameters conditioned on a given state, p(01f~ = 0)i) 
(where both are measured at the same time t) is station- 
ary, but that there may be some overlap of these state- 
conditional distributions. We will refer to the depen- 
dence p(0lf~ = 0)i) as the instantaneous model between 
the parameters and states. In the case of complete 
overlap (where two or more states possess identical 
distributions) there is naturally no way to identify the 
underlying states just by observing the parameters and 
knowing the instantaneous model. However, as will be 
shown later in this paper, even when there is significant 
overlap in the instantaneous model, accurate state 
identifcation is still possible by taking the temporal 
context into account using a hidden Markov model. 

We will assume that the application is such that a 
database or fault library can be generated for both 
the normal class 0)z and the fault classes {O) 2 . . . . .  0)m}" 

The database consists of pairs of symptom vectors and 
class labels, {0,Q}, where 0 is the d-dimensional par- 
ameter vector estimated from the observed system data. 
Note that the mapping from 0 to fl need not be one- 
to-one, since the conditional dependence of 0 given that 

=coi is typically probabilistic in nature. 
The assumption of availability of labelled training 

data rules out applications where it is not possible 
to gather such data--perhaps no such data has been 
collected in the past and it is not possible to simulate 
faults in a controlled manner. However, there are many 
applications where either a fault library already exists, 
or can be created under controlled conditions (perhaps 
by testing a particular system in a laboratory). The im- 
portant point is that for fault diagnosis problems for 
which such symptom-fault data are readily available, 
standard supervised classification or discrimination 
methods can be used to learn a fault diagnosis model 
from this database. 

It is important to note that the parameter estimation 
technique generally requires far less precise knowledge 
about the system than the previously-mentioned state- 
space approach and, hence, tends to be both more 
widely applicable and more robust from a practical 
standpoint. For example, in the case of the antenna 
monitoring problem to be described later, both the 
presence of nonlinearities and the inherent complexity 
of the system make it difficult to develop an accurate 
state-space model. In contrast, the parameter model 
method can be implemented with relative ease. Natu- 
rally, if there is enough knowledge of the system avail- 
able such that the state-space approach is feasible, then 
this should give better results since it takes advantage 
of more information. 
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As an aside, mention should also be made of know- 
ledge-based or artificial intelligence models which em- 
ploy q u a l i t a t i v e  models of system behaviour to detect 
faults. First-generation knowledge-based systems typi- 
cally use experiential heuristics (described in the 
form of expert-supplied rules) to describe symptom- 
fault relationships. More sophisticated second-gener- 
ation methods (under the broad heading of "model- 
based reasoning") use qualitative causal models of the 
system to represent "first-principles" knowledge 
(Bratko e t  al. ~4) and Davis'5)). In principle, this allows 
the system to identify faults which have never occurred 
before. Both approaches have limited applicability at 
present in terms of handling the dynamic and uncertain 
nature of many real-world problems. In general, the 
qualitative symbolic representation is not particularly 
robust for dealing with noisy, continuous data contain- 
ing temporal dependencies. Furthermore there are 
many applications for which neither domain experts 
nor strong causal models exist, thus making the devel- 
opment of a knowledge base very difficult. 

3. LEARNING SYMPTOM-FAULT MAPPINGS 

The details of the particular classification model used 
to generate the symptom-fault mapping are not directly 
relevant to the general discussion. If there is prior 
knowledge that the probability dependence of the symp- 
toms conditioned on the faults obeys a particular 
parametric form, such as multi-variate Gaussian, then 
a maximum-likelihood method to estimate the par- 
ameters of the conditional distributions may be ap- 
propriate. More commonly there is little prior know- 
ledge regarding the symptom-fault dependencies. In 
this case non-parametric discriminative methods such 
as linear discriminants, nearest-neighbour (kNN) 
methods, decision trees, or neural networks may all be 
useful approaches depending on the exact nature of the 
problem at hand. Recent studies using several well- 
known data sets have shown that all of these classification 
models perform roughly equally well in terms of pre- 
dictive accuracy, i.e. their classification performance 
on independent test data sets was often statistically 
indistinguishable from each other (Ng and Lippmann 16) 
and Weiss and Kapouleasl7)). Hence, other attributes of 
the classification method such as complexity, the ability 
to handle high dimensional problems, small-sample 
performance, explicit knowledge representation, and so 
forth, can become the deciding factors for a given appli- 
cation. 

We will impose one particular requirement on the 
classification method to be used, namely that it produces 
estimates of the posterior probabilities of the classes 
co i, 1 _< i < m, given the input symptoms 0, i.e./~(f~ = ~oil0 ). 
In many practical applications estimation of posterior 
probabilities (as opposed to a simple indication of 
which class is most likely) is very useful to allow one 
to control the false alarm rate, the rejection rate, and 
so forth. 

Rather than deal with the time series data directly 
one usually seeks to extract invariant characteristics 
of the time series waveforms, where the invariance 
is with respect to different environmental conditions 
of operation of the system conditioned on a particular 
class. These invariant characteristics correspond directly 
to the estimated system parameters discussed earlier, 
i.e. what are called system parameters in the control 
literature can be treated as feature vectors for readers 
more familiar with pattern recognition terminology. 
This feature extraction stage can critically affect the 
classification performance of the overall system. Note 
that we will use the terms symptoms and features 
interchangeably in the remainder of the paper. 

We will assume the use of a particularly simple 
feature extraction method whereby the data is wind- 
owed into separate consecutive blocks, each containing 
an integer number T samples. Many variations of this 
sampling scheme are possible, for example, the use of 
overlapping blocks or recursive estimates. For the pur- 
poses of this paper we will confine our discussion to 
the relatively simple case of disjoint, consecutive blocks, 
each of which contain T samples. In practice T is 
chosen large enough to give reasonably accurate esti- 
mates of the features so as to reduce the sampling 
variance across different windows. For autoregressive 
models such as equation (1), the 0 coefficients are es- 
timated from all of the observations in a given window 
of consecutive samples using standard methods such 
as least squares estimation, i.e. 

0(t) = f(y(t), ytt - 1) . . . . .  "/(t - ( r -  1 ))) 

0(t - T) =.f(7(t - T),-/(t - (T+ 1)) . . . . .  y(t - ( 2 T -  1))) 

and so forth. 
What has been expressed at this point, assuming 

that a particular estimation method and classification 
algorithm had been chosen, is simply a framework for 
generating estimates of the state of the system at any 
point in time, i.e. at intervals of time T the classification 
system will produce estimates of the posterior class 
probabilities given the features which are estimated 
over the [t, t - T] time interval. This approach makes 
an independent decision at each time instant, i.e. class 
probability estimates or symptom data from the past 
do not influence the present estimates. Clearly this 
is suboptimal given the fact that faults are p e r s i s t e n t  

over time and, hence, that better class estimates could 
be obtained by making use of past information. Two 
obvious approaches spring to mind in order to model 
this temporal context. In the first, one could introduce 
some form of memory into the classification model. 
Examples of such memory methods include recurrent 
neural networks (i.e. networks where the outputs are 
fed back to the inputs after a unit delay, Pineda ~8) and 
Pearlmutter t9}) or a "window in time" technique where- 
by the classifier is trained not only on feature values 
at time t, but also on values from time t - T back to 
t - M T  where M is the memory of the model (Waibel 
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et  al.tl°)). This approach of imp l i c i t l y  modelling tem- 
poral context has the significant disadvantage of mak- 
ing it much more difficult to train the classifier. The 
second approach (which we will now describe), of using 
a hidden Markov model, is much more elegant in that 
it combines over time the i n s t a n t a n e o u s  estimates of 
the trained classifier by taking advantage of prior 
knowledge about  the gross statistical properties of the 
failure modes of the system. 

4. HIDDEN MARKOV MODELS FOR MODELLING 
TEMPORAL CONTEXT 

We now describe the use of discrete-time, finite- 
state, hidden Markov models for smoothing classifi- 
cation decisions over time. Note  that for the purposes 
of this discussion the terms "class" and "state" are 
equivalent, i.e. both refer to the set of normal and fault 
conditions {0)1 . . . . .  0)"}. 

A first-order temporal  Markov model is character- 
ized (in the present context) by the assumption that 

p ( ~ ( t )  = 0)d~(t - T), ~(t  - 2T) . . . . .  D(0)) 

= p(D( t )  = 0)~l~(t-  T)), 1 < i < m, Vt (3) 

i.e. that the conditional probability of any current state 
given knowledge of all previous states is the same as 
the conditional probability of the current state given 
knowledge of the system state at time t -  T. Hence, 
assuming stationarity, to calculate the probability of 
any state at time t, one need only know the initial state 
probabil i t ies  n(0) = [p(fl(0) = 0)1), p(fl(0) = o ) 2 )  . . . . .  

p(~(0) = 0),.)] and the values p ( f ~ ( t ) =  0 ) i l ~ ( t -  T ) =  
0)i), l_<i, j <m.  The m × m matrix A, where a i i =  
p(D(t)  = 0)ilD(t - T) = 0)i), is known as the transition 
matrix and characterizes the Markov  model. Given A 
and ~t one can calculate the probability of any state at 
any time t. 

Let us assume at this point of the discussion that the 
discrete-time Markov model described above can be 
used to model the failure behaviour of the system of 
interest, i.e. at any time t, given that the system is in a 
particular state j, the probability that the system will 
be in state i at time t + T is described by the state 
transition probability aij = p(D(t )  = 0)ilf~(t - T )  = 0)i)" 
We will later discuss the implications of using such 
a model and the use of failure rates to estimate the tran- 
sition probabilities: however, at this point we will focus 
on how the model is used. Markov  models such as this 
can be used for reliability analyses to determine long- 
term failure rates and modes of a system (Papazoglou 
and Gyftopoulos tl 1)). 

However, the goal here is somewhat different, namely 
to monitor  the system in real-time. The key point is 
that the states of the system are not directly observable, 
but are hidden ,  i.e. the monitor ing system has no direct 
way to measure the state of the system, even for past 
time. Instead, various symptoms or features 0(t) are 
observable. These features are a probabilistic function 
of the states: in fact the classification models mentioned 

earlier can estimate an i n s t a n t a n e o u s  symptom-state 
mapping p(D(t )  = 0)i[0(t)). By making the appropriate 
conditional independence assumptions we shall see 
how one can estimate p(D(t)  -- 0)i[0(t), 0(t - T) . . . . .  0(0)) 
without explicitly providing the 0 ( t -  T) . . . . .  0(0) as 
direct inputs to the classifier. 

The hidden Markov formalism provides an exact 
solution to this problem provided the underlying con- 
ditional independence assumptions are met. It has been 
widely applied with significant success in speech-rec- 
ognit ion applications (Rabinert12)). Let (I) t = {0(t), 
0(t - T), 0(t - 2 T) . . . . .  0(0) } denote the observed symp- 
toms up to time t with probability p(tl)t)= p({0(t) . . . . .  
0(0)}). It is convenient to work in terms of an inter- 
mediate variable ~i(t), where 

~i(t) = p(D(t )  = 0)i, Or) (4) 

is the joint  probability of state i (at time t) and the 
observed symptoms. To find the posterior probabilities 
of interest it is sufficient to be able to calculate the 
values of ~t at any time t since by Bayes' rule 

~(t)  ~(t)  
p( f l ( t )  = 0)i[~t) -- - - -  (5) 

p((1),) ~ ~j(t) 
j - I  

We derive a recursive estimate as follows: 

~t~(t) = ~ p(~)(t) = 0)~, 0 , ,  D( t  - T )  = co j)  
j = l  

= ~ p(f~(t)  = 0)~, 0(t), S t -  T,  f2(t - T) = 0)J) 
j=l  

m 

= ~ p(f~(t)  = 0)~,0(t)l~, T,D( t  --  T )  = 0)J) 
j - I  

"P(Ot r,f~( t -  T )=0) j )  
m 

= ~ p(D(t) = 0), ,O(t) l tb,_r,D(t  - T)  = 0)j)ctj(t - T) 
j = l  

(by the definition of ~tj) 
m 

= ~ p(O(t ) l f l ( t )  = 0 ) i , ~ , _ r , f ~ ( t  - T )  = 0)j) 
j = l  

"p(D(t)  = 0)ildPt r, D( t  - T )  = 0)i)~i( t  - T )  
m 

= ~ p(O(t) lD(t)  = 0),)p(D(t)  = 0) , lOt_ T, 

j = l  

f~(t -- T) = coi)ctj(t -- T) 

(assuming that 0(t) is independent of past observations 
and past states, 9iven  the present state) 

m 

= ~ p(O(t)l f~(t)  = 0),)p(D(t) = 0),lf~tt-- T) = 0)1) 
j - I  

• ~ i ( t -  T) 

(since by the basic Markov assumption ~(t) only de- 
pends on f~(t - T)) 

m 

= p(O(t)lf~(t)  = 0)i) ~,  ai i~i(  t - T).  (6) 
1=1  
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The first term can be derived (within a constant factor) 
from the classifier's estimate of p(~(t)= @10(t)) and 
Bayes' rule. The terms in the sum are just a linear 
combination of the values of ~ from the previous time- 
step. Hence, equation (6) gives the basic recursive rela- 
tionship for estimating state probabilities at any time t. 

The derivation of equation (6) made use of the two 
basic assumptions which are commonly used in hidden 
Markov models: that the state at time t depends only 
on the state at time t - T, and that the observed symp- 
toms at time t are dependent only on the state at time t. 
The first assumption is the basic first-order Markov 
assumption on the states. The second assumption is 
that 0(t) is independent of both the most recent state 
and the observed past data, given that the present state 
is known. This implies that we assume that the observed 
symptoms are statistically independent from one time 
window to the next, given the state information. For 
disjoint, non-overlapping, blocks of data this will gen- 
erally be true if the feature sampling rate 1/T is greater 
than any significant frequency component in the 
underlying observed time-series ,/(t). For overlapping 
blocks of data, or where T is comparable to the time 
constants of the dynamic system, observed symptoms 
would no longer be independent and the model would 
be modified to include a measure of this dependence. 

Note that we have specified here only how to cal- 
culate the state probabilities based on past information. 
Alternative estimation strategies are possible. For 
example, using the well-known forward-backward re- 
currence relations (Rabiner "2}) one can update the 
state probability estimates using symptom information 
which occurred later in time, i.e. estimate p(ft(t)= 
o~ilO(t + kT) . . . . .  O(t) . . . . .  0(0)). From an operational 
standpoint this allows further smoothing of glitches 
and a consequent reduction in false alarms--the dis- 
advantage is that there is a latency of time k T  before 
such an estimate can be made. Another approach is to 
use the Veterbi algorithm to estimate the most likely 
joint sequence of states, i.e. 

max {p(~(t) = tol . . . . .  f~(0) = toj[~,) }. 

Which scheme is used depends largely on the particular 
application and each can easily be implemented using 
a variation of the recursive equations derived above. 
The probability estimation method based only on past 
and present measurements (as described in equations 
(5) and (6) is the most direct method for on-line moni- 
toring and will be assumed throughout the rest of the 
paper. 

5. THE NATURE OF  THE MARKOV TRANSITION MATRIX 

In the previous sections we have assumed the exis- 
tence of the transition matrix A-- the  question naturally 
arises in practice as to how the entries in this matrix 
are obtained. For speech recognition applications there 
is typically an abundance of training data from which A 
can be estimated by the use of iterative maximum 

likelihood procedures such as the Baum-Welch algor- 
ithm. However, for reliability monitoring, while there 
may be data obtained under specific normal and fault 
conditions, there will typically not be a set of training 
data corresponding to a sequence of state transitions. 
Hence, in practice, prior knowledge regarding the over- 
all system reliability and behaviour must be brought 
to bear in order to provide estimates of A. We adopt 
a divide-and-conquer approach by dividing the states 
into three categories: first is the normal state, then 
the intermittent states, and finally the "hard-fault" 
states. The difference between the latter two is that 
intermittent failures allow the possibility of returning 
to the normal state whereas the "hard-fault" states 
do not. 

5.1. Specification of  the "normal-normal" transition 
probability, a t t 

The use of a first-order Markov model to describe 
failure processes implicitly assumes that the lengths of 
times between failures are distributed geometrically. 
This follows from the fact that for a discrete-time 
Markov model the probability that the system stays 
in state toi for n time steps is p"- l(1 - p) where p = a,. 
The memoryless assumption which leads to the geo- 
metric distribution of inter-failure durations is quite 
robust and plausible for many applications and is widely 
used in reliability analysis to model failure processes 
(Siewiorek and Swarz tts)). 

By relating the Markov transition parameters to 
overall failure statistics of the system we can both check 
the validity of the geometric distribution assumption 
and also determine the transition probabilities them- 
selves. The expected length I of time spent in state to~, 
given that it starts in state tot, is 

E [ I ] =  ~ n a ] y l ( 1 - a l t )  (7) 
n=l  

1 
- ( 8 )  

1 - a l t  

is units of time T. Thus, the mean time between failure 
(MTBF) of the system can be expressed as 

MTBF 1 
- ( 9 )  

T 1 - a t 1  

and, hence 

T 
art = 1 - - -  (10) 

MTBF 

where the MTBF and T are expressed in the same time 
units. In this manner, MTBF statistics can be used as 
the basis for estimating ai 1. The MTBF of the system 
can typically be either specified by a reliability analysis 
(for a new system) or can be estimated from a problem 
database (for a system which has been in use for some 
time). Note that T will be chosen to be much smaller 
than the MTBF in practice. 
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5.2. Specification of the fault transition probabilities 

Transition probabilities into both intermittent and 
hard faults from the normal state are found by weight- 
ing 1 - a l l  (the probability of the system entering a 
fault state at the next time step given that it is currently 
in the normal state) by the anticipated relative like- 
lihood of occurrence of each fault state. These relative 
likelihoods may be derived from reliability analysis or 
can be estimated empirically if a problem database 
exists. 

The mean anticipated duration of intermittent fail- 
ures can be used to calculate the self-transition prob- 
ability for intermittent states in an analogous manner 
to the way in which the MTBF was used above to find 
al~. Knowledge of intermittent fault duration is typi- 
cally more subjective in nature than finding the MTBF 
and may require knowledge of the physics of the fault 
condition. 

Conceptually, hard faults present a problem (in the 
context of Markov monitoring) since once such a fault 
occurs the system cannot return to the normal state 
until the fault is physically repaired, which in turn 
typically requires downtime of the system. In practice, 
a sensible approach is to define an "absorbing" state 
which indicates that the system has been halted. Hence, 
the only allowable transition out of a hard fault state 
is into the halt state. The length of time which the 
system may spend in the hard fault state, before the 
halt state is arrived at, is largely a function of the 
operational environment: if the Markov monitoring 
system itself is being used as part of an overall alarm 
system, or if the fault is detectable by other means, then 
an operator may shut down operations quickly. On 
the other hand, if the fault does not manifest itself in 
any significant observable manner and if the Markov 
monitoring system is being used only for off-line data 
analysis, then the system may remain in the hard fault 
state for a lengthy period of time. Hence, deciding how 
the self-transition probabilities are chosen for the hard- 
fault classes will be quite specific to particular oper- 
ational environments. 

To complete the Markov transition matrix it is suf- 
ficient to note that "fault-to-fault" transitions are nor- 
mally disallowed except in cases where there is sufficient 
prior knowledge to believe that intermittent faults can 
occur directly in sequence. 

5.3. Comments on robustness and dynamics 

The process of defining the Markov transition matrix 
is obviously quite subjective in nature. While this could 
be viewed as a weakness of the overall methodology, 
one can argue that in fact it is a strength. In particular, 
it allows the effective coupling of relatively high-level 
prior knowledge (in the form of the Markov transition 
matrix A) with the "lower-lever' data-driven estimation 
of p(l)10 ). Naturally, the latitude in specification of A 
leads to questions regarding the sensitivity of the meth- 
od to misspecification. While a systematic sensitivity 
study is beyond the scope of this paper, empirical 

results using this method suggest that unless the par- 
ameter-state conditional densities are almost entirely 
overlapped, then the model is quite robust to variations 
in A--typical ly,  only the length of time to switch 
between states ("time to detect") is directly affected. 

The astute reader will have noticed that for a typically 
reliable system the dynamics of the Markov model 
will be such that it will remain in the normal state for 
long stretches of time. It is important to realize that the 
relatively static behaviour of the model should not 
undermine the reader's assessment of its practical utility: 
for many problems it is often extremely difficult to 
design detectors of rare events which have both a low 
false alarm rate and a high detection rate. For  example, 
in the next section we will discuss an application where 
the system makes classification decisions every 6 s or 
so, while the MTBF is on the order of a few days. For  
this application, if the Markov model component of 
the method is omitted and only the instantaneous state 
estimates are used, the false alarm rate increases dram- 
atically to the extent that this non-Markov method 
would be completely impractical for use in an oper- 
ational environment. 

6. BACKGROUND ON ANTENNA FAULT DIAGNOSIS 

We now describe the application of the hidden 
Markov model to a real fault monitoring problem. It 
is first helpful to provide some background. The Deep 
Space Network (DSN) (designed and operated by the 
Jet Propulsion Laboratory for the National Aeronautics 
and Space Administration (NASA)) provides end-to- 
end telecommunication capabilities between earth and 
various interplanetary spacecraft throughout the solar 
system. The ground component of the DSN consists 
of three ground station complexes located in California, 
Spain and Australia, giving full 24 h coverage for deep 
space communications. Since spacecraft are always 
severely limited in terms of available transmitter power 
(for example, each of the Voyager spacecraft only use 
20 W to transmit signals back to earth), all subsystems 
of the end-to-end communications link (radio telemetry 
coding, receivers, amplifiers) tend to be pushed to the 
absolute limits of performance. The large steerable 
ground antennas (70 and 34 m dishes) represent critical 
potential single points of failure in the network. In 
particular there is only a single 70 m antenna at each 
complex because of the large cost and calibration effort 
involved in constructing and operating a steerable 
antenna of that s ize-- the  entire structure (including 
pedestal support) weighs over 8000 tons. 

The antenna pointing systems consist of azimuth 
and elevation axes drives which respond to computer- 
generated trajectory commands to steer the antenna 
in real-time. Pointing accuracy requirements for the 
antenna are such that there is little tolerance for com- 
ponent degradation. Achieving the necessary degree of 
positional accuracy is rendered difficult by various 
non-linearities in the gear and motor elements and 
environmental disturbances such as gusts of wind af- 
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Fig. 2. Simplified block diagram of antenna pointing system. 

fecting the antenna dish structure. Off-beam pointing 
can result in rapid fall-off in signal-to-noise ratios and 
consequent potential loss of irrecoverable scientific 
data from the spacecraft. 

The antenna servo pointing systems are a complex 
mix of electro-mechanical components. Figure 2 shows 
a simple block diagram of the elevation pointing sys- 
tem for a 34m antenna--see Appendix B for a brief 
description of how the pointing system works. A faulty 
component manifests itself indirectly via a change in 
the characteristics of observed sensor readings in the 
pointing control loop. Due to the non-linearity and 
feedback present, direct causal relationships between 
fault conditions and observed symptoms can be dif- 
ficult to establish--this makes manual fault diagnosis 
a slow and expensive process. In addition, if a pointing 
problem occurs while a spacecraft is being tracked, the 
antenna is often shut-down to prevent any potential 
damage to the structure and the track is transferred to 
another antenna if possible. Hence, at present, diagnosis 
often occurs after the fact, where the original fault 
conditions may be difficult to replicate. In the next 
section we describe the application to this problem of 
the methods outlined earlier. 

7. E X P E R I M E N T A L  R E S U L T S  

7.1. Data collection and feature extraction 

The observable antenna data consists of various 
sensor readings (in the form of sampled time series) 
which can be monitored while the antenna is in tracking 
mode. To generate a fault library hardware faults were 
introduced in a controlled manner by switching faulty 
components in and out of the control loop. Sensor 
variables monitored included wind speed, motor cur- 
rents, tachometer voltages, estimated antenna position, 
and so forth. 

The time series data were initially sampled at 50 Hz 
(well above the estimated Nyquist sampling rate for 
signals of interest) and segmented into windows of 4 s 
duration (200 samples) to allow reasonably accurate 
estimates of the various features. The features are de- 
rived by applying an autoregressive-exogenous (ARX) 
modelling technique using the rate feedback command 
as the input to the model and motor current as output 
(see Figs 1 and 2): 

y(t) + ~ aiy(t -- i)= bju(t - j )  + e(t), 
i=1 j = l  

t=  l , 2 , . . . , N  (11) 

where y(t) is the motor current, u(t) the rate command 
input, e(t) an additive white noise process, and a i and 
bj are the model coefficients. The model order was 
chosen by finding an empirical minimum (using data 
from normal conditions) of the Akaike Information 
Criterion (AIC) which trades-off goodness-of-fit to the 
data with model complexity (Ljung(14)). An eighth- 
order model was chosen in this manner with p = 6 and 
q = 2, resulting in 8 ARX features. Using this model 
structure, a separate set of ARX coefficients was estim- 
ated from each successive 4s window of data using 
direct least mean squares estimation. Hence a new set 
of features, 0(t), is available at a rate of 0.25 Hz com- 
pared to the original sampling rate of 50 Hz for this 
particular application this rate of decision-making is 
more than adequate. Hence, note that for the sequence 
of feature vectors { . . . .  0(t - T), 0(t),0(t + T) ... .  }, each 
feature vector is estimated from a separate, non-over- 
lapping, window of 200 samples from the original time 
series. Note also that the autoregressive representation 
is particularly useful for discriminative purposes when 
dealing with time series (Kashyap(15)). 

In addition to the ARX features we also included 
four time domain features (such as the estimated stan- 
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dard deviations of tachometers and torque sensors) 
which were judged to have useful discriminative power. 
It is worth pointing out that for the chosen sample size 
of 200 it was found that the assumption that feature 
estimates do not have any temporal dependence across 
windows was justified. This observation is based on 
empirical results obtained by analysing the correlation 
structure in the training data. 

7.2. Model  development 

Data were collected at a 34 m antenna site in Gold- 
stone, California, in early 1991, under both normal and 
fault conditions. The two faults correspond to a failed 
tachometer in the servo loop and a short circuit in the 
electronic compensation loop--these are two of the 
most problematic components in terms of reliability. 
The data consisted of 15,000 labelled sample vectors 
for each fault, which was converted to 75 feature vectors 
per class. Data were collected on two separate occasions 
in this manner. Because the antenna is in a remote 
location and is not permanently instrumented for servo 
component data acquisition, data collection in this 
manner is a time-consuming and expensive task. Hence, 
the models were trained with relatively few data points 
per class. 

Experiments were carried out with both a feedforward 
multi-layer neural network and a simple maximum- 
likelihood Gaussian classifier. A description of the 
neural network model used is given in Appendix A. 
The neural network was chosen over alternative classi- 
fication models because of its ability to approximate 
arbitrary decision boundaries in a relatively non-par- 
ametric manner. In addition, by using a mean-square 
error objective function, the outputs of the network 
can be used as estimates of posterior class probabilities 
(Richard and Lippmann "61 and Miller et al." 71). Based 
on cross-validation results, a network with a single 
hidden layer of 12 units was chosen as the working 
model. The networks were trained using a conjugate 
gradient variation of the well-known backpropagation 
method (Barnard and Cole "81 and Powell°91). The 
Gaussian classifier used a separate, diagonal covariance 
matrix for each class, where the components consisted 
of maximum likelihood estimates. Using the full co- 
variance matrix was considered impractical given only 
150 samples per class in 12 dimensions. Note that the 
use of feature transformation techniques such as principal 
components analysis or the use of structured covariance 
matrices could in principle alleviate this problem, how- 
ever, these approaches were not pursued here. Com- 
ponents of the Markov transition matrix A were 
estimated using a database of trouble reports which 
are routinely collected at all antenna sites--see Ap- 
pendix C for a more detailed discussion. 

Figure 3 shows the overall model structure and the 
sequence of calculations which occur at time t. At the 
top is the pointing system being monitored as described 
in Appendix B. The next level down shows the par- 
ameter estimation stage where the parameters 0(t) are 

estimated based on 200 samples (which have taken 4 s 
to collect). This is followed below by the parameter/ 
state conditional probability model, which in our case 
is either a Gaussian or neural network classifier which 
produces the instantaneous estimate of the state prob- 
abilities p(t)(t) = ~oil0(t)), 1 < i < m. Finally, at the bot- 
tom of the figure is the Markov component, which 
combines the past state estimates p(f~(t) = o9il0(t - T)), 
1 < i < m and the current instantaneous estimates us- 
ing the recursive structure of equation (6). In Novem- 
ber 1991, these models were implemented in software 
as part of the data acquisition system (using a Macintosh 
II computer). The results of testing the models on 
previously unseen data in real-time at the antenna site 
are discussed in the next section. 

7.3. Classification results 

The neural and Gaussian models, both with and 
without the Markov component, were tested by mon- 
itoring the antenna as it moved at typical deep-space 
tracking rates of about 4 mdeg s- 1. The results reported 
below consist of summary results over a variety of 
different short tests: the cumulative monitoring time 
was about l h in duration. 

Table 1 summarizes the overall classification per- 
formance for each of the models, and both for each 
individual class and for all classes averaged together. 
Clearly, from the final column, the neural-Markov 
model is the best model in the sense that no windows 
at all were misclassified. It is significantly better than 
the Gaussian classifier which performed particularly 
poorly under fault conditions. However, under normal 
conditions it was quite accurate having only 1 false 
alarm during the roughly 30rain of time devoted to 
monitoring normal conditions--this is not too sur- 
prising since in theory at least the ARX coefficients 
should obey a multi-variate Gaussian distribution given 
that the model is correct, i.e. for the non-fault case 
(Ljungtl4)). The effect of the Markov model is clearly 
seen to have beneficial effects, in particular reducing 
the effects of isolated random errors. However, for the 
compensation loss fault, the Markov model actually 
worsened the already poor Gaussian model results, 
which is to be expected if the non-Markov component 
is doing particularly poorly as in this case. 

Table 2 presents the same data summarized in terms 
of the logarithm (base 10) of the mean-square error 
(MSE), calculated as follows: 

MSE = ~ (!)(Col(j)) - oi( j))  z (12) 
j = l  i =  

where/~(~oi(j)) is the classifier's estimate of the posterior 
probability of class i for input j ,  o i ( j ) =  1 if o~i is the 
true class for input j and zero otherwise, and N the 
size of the training data set. The mean-square error 
provides more information on the probabilities being 
produced by the classifier than the classification error 
rates. Lower values imply that the probabilities are 
sharper, i.e. the classifier is more certain in its conclusion. 
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Table 1. Percentage misclassification rates for Gaussian and neural models both 
with and without Markov component 

Without Markov model With Markov model 

Class Gaussian Neural Gaussian Neural 

Normal conditions 0.36 1.72 0.36 0.120 
Tachometer failure 27.78 0.00 2.38 0.00 
Compensation loss 34.21 0.00 43.16 0.00 
All classes 16.92 0.84 14.42 0.00 

Table 2. Logarithm of mean-squared error for Gaussian and neural models both 
with and without Markov component 

Without Markov model With Markov model 

Class Gaussian Neural Gaussian Neural 

Normal conditions - 2.44 - 1.97 - 2.46 - 4.24 
Tachometer failure - 0.40 - 3.52 - 0.42 - 4.22 
Compensation loss -0 .82  -3 .48  - 1.39 -4.71 
All classes -0 .87  -2 .29  - 1.02 -4 .34  

The  genera l  t r end  in Tab le  2 is tha t  the  n e u r a l - M a r k o v  
c o m b i n a t i o n  is s ignif icant ly be t te r  t h a n  any  of  the  
o t h e r  c o m b i n a t i o n s .  

F igures  4 - 6  p lo t  the  e s t ima ted  p robab i l i t y  o f  the  
t rue  class as a func t ion  of  t ime for var ious  mode l s  to 

a l low a m o r e  de ta i led  i n t e rp r e t a t i on  of  the  results.  
N o t e  that ,  given tha t  the  t rue  class is label led i, the  
es t imated  probabi l i ty  of  class i f rom the  neural  ne twork  

c o r r e s p o n d s  to the  normalized o u t p u t  o f  o u t p u t  uni t  i 

o f  the  n e t w o r k  at  t ime t, i.e. 

~i(t) 
/~i(t) = , (13) 

~,(t) 
k=l  

(where  51(t ) is the  value of  the  ith n e t w o r k  o u t p u t  node)  
while the  M a r k o v  probabi l i t i es  c o r r e s p o n d  to the  es- 
t imates  of  p(~(t)=(oil(I)(t)), as de sc r ibed  ear l ie r  in 

e q u a t i o n  (6). 
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Figure 4 corresponds to normal conditions and com- 
pares the neural model with and without the Markov 
processing. The instantaneous probability estimates 
from the neural model have a large variation over time 
and are quite noisy. This is essentially due to the 
variation in the sensor data from one window to the 
next, since as might be expected, signals such as motor 
current contain significant noise. In addition, a large 
glitch is visible at about 460 s. The neural model gives 
a low probability that the condition is normal for that 
particular window (in fact a large glitch such as this 
looks like a tachometer failure problem), however, the 
Markov model remains relatively unaffected by this 
single error. Overall, the stability of the Markov model 
is clearly reflected in this plot and has significant ad- 
vantages in an operational environment in terms of 
keeping the false alarm rate to a minimum. Note that 
at any particular instant the neural network only ever 
assigns a probability of up to 0.8 or 0.9 to the true class. 
In contrast, by modelling the temporal context, the 
neural-Markov model assigns a much greater degree 
of certainty to the true class. 

Figure 5 compares the performance of the Gaussian, 
Gaussian-Markov and neural-Markov models on 
detecting the compensation loss fault. The variation 
in the Gaussian estimates is quite noticeable. The 
Gaussian-Markov model combination, after some ini- 
tial uncertainty for the first 90 s or so, settles down to 
yield reasonable estimates. However, the overall super- 
iority of the neural-Markov model (the upper curve) 
is evident. 

Figures 6(a) and (b) show the performance of the 
neural network classifier with and without the hidden 
Markov model monitoring the antenna for a total 

duration of about 1 h. Tachometer failure and com- 
pensation loss fault are introduced into the system 
after 14 and 44 min, respectively, each lasting roughly 
15 min in duration. The difference in the quality of the 
two approaches is clearly visible in the figures and 
leaves little doubt as to the utility of the Markov 
method. 

The results presented above clearly demonstrate 
the ability of a hidden Markov model to enhance the 
overall quality and reliability of a monitoring system's 
decisions. From a practical standpoint, the difference 
is significant: the non-Markov systems would not be 
reliable for actual operational use since they are too 
noisy and would have an unacceptably large false alarm 
rate. In contrast, the Markov-based system is a serious 
candidate for field implementation--we are currently 
evaluating such systems for installation in all new 
antenna designs. However, there are significant oppor- 
tunities for further improvement in models of this nature. 
In the next section we discuss one such area where 
some progress is being made. 

8. DETECTING NOVEL CLASSES 

While the neural model described above exhibits 
excellent performance in terms of discrimination, there 
is another aspect to classifier performance which we 
must consider for applications of this nature; how will 
the classifier respond if presented with data from a 
class which was not included in the training set? Ideally, 
one would like the model to detect this situation. For 
fault diagnosis the chance that one will encounter such 
novel classes under operational conditions is quite 
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high since there is little hope of having an exhaustive 
library of faults to train on. 

In general, with any non-parametric learning algor- 
ithm, there can be few guarantees about the extrapol- 
ation behaviour of the resulting model (Geman et al.(2°)). 
The response of the trained model to a point far away 

P i t  2 7 : 1 - F  

from the training data may be somewhat arbitrary, 
since it may lie on either side of a decision boundary, 
the location of which in turn depends on a variety of 
factors such as initial conditions for the training algor- 
ithm, objective function used, particular training data, 
and so forth. One might hope that for a fcedforward 
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multi-layer perceptron, novel input vectors would lead 
to low response for all outputs. However, if neural 
activation units with non-local response functions are 
used in the model (such as the commonly used sigmoid 
function), the tendency of training algorithms such 
as backpropagation is to generate mappings which 
have a large response for at least one of the classes as 
the attributes take on values which extend well be- 
yond the range of the training data values. Kramer 
and Leonard t21~ discuss this particular problem of poor 
extrapolation in the context of fault diagnosis of a 
chemical process plant. The underlying problem lies in 
the basic nature of discriminative models which focus 
on estimating decision boundaries based on the differ- 
ences between classes. In contrast, if one wants to 
detect data from novel classes, one must have a gen- 
erative model for each known class, namely one which 
specifies how the data is generated for these classes (an 
example would be the Gaussian classifier used in the 
experiments in Section 7). Hence, in a probabilistic 
framework, one seeks estimates of the probability den- 
sity function of the data given a particular class, f(01t2 = 
COl), from which one can in turn use Bayes' rule for 
prediction: 

f(0lf~ = o)i)p(f~ =coi) 
p(f~ (-Oi l0 ) (14) 

f(01f~ --- o)~)p(f~ = cok) 
k = l  

Generative models have certain disadvantages: they 
can perform poorly in high dimensions, and for a fixed 
amount of data may not be as efficient in terms of 
approximating the Bayes decision boundary as a purely 
discriminative method. We are currently investigating 
the use of hybrid generative/discriminative models in 
this context and have experimented with the use of 
kernel density estimators and mixture models--pre- 
liminary results are described in Smyth and Mellstrom <22~ 
and Smyth. <23) 

9. DISCUSSION 

The hidden Markov method for on-line health mon- 
itoring proposed in this paper relies on certain key 
assumptions which may or may not be true for par- 
ticular applications. In particular, for the purposes 
of this discussion we have assumed that: 

(1) Faults are discrete in nature (i.e. they are "hard" 
failures rather than gradual degradation) and are 
known in advance. 

(2) There is a fault library of classified data available 
in order to train the model. 

(3) State-dependence is first-order Markov. 
(4) Symptom estimates are statistically independent 

from one window to the next, conditioned on the 
classes. 

However, it should be pointed out that these assump- 
tions could potentially be relaxed and the model further 
refined. For example, a fault library may not be neces- 

sary if the symptom-fault dependence can be specified 
based on prior knowledge. Similarly, the assumption 
of independence of symptom estimates across windows 
is not strictly necessary--it makes the model much 
simpler, but could be included in equation (6) if such 
dependence is known to exist and can be modelled. 

i0. CONCLUSION 

Effective modelling of temporal context in continuous 
monitoring applications can considerably improve the 
reliability and accuracy of a decision system. In parti- 
cular, we have shown in this paper that hidden Markov 
models provide an effective method for incorporating 
temporal context in conjunction with traditional clas- 
sification methods. The Markov model approach has 
the ability to significantly reduce the false alarm rate 
of a classification system by taking advantage of any 
time domain redundancy which may be present. The 
model was demonstrated on a real-world antenna fault 
diagnosis problem--the empirical results demonstrate 
clearly the advantage of the Markov approach. The 
data used in these experiments are available on request 
from the author. In general, the use of hidden Markov 
models for continuous monitoring seems to have 
promise: applications to other critical applications such 
as medical diagnosis in intensive care situations, nuclear 
plant monitoring, and so forth, appear worthy of fur- 
ther investigation. 
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APPENDIX A. NEURAL NETWORK MODEL DESCRIPTION 

We describe an example of a popular feedforward multi- 
layer neural network model to familiarize the reader with the 
general notation and concepts. Figure A1 shows an example 
of a network. The input nodes are labeled n~, 1 < i < K + 1, 
the hidden nodes are labelled hi, 1 < j  < H, and the output 
layers are labelled o k, 1 < k < m. In general, there are K + 1 
input units, where K is the number of features. The extra node 
is always in the "on" state, providing a threshold capability. 
Similarly, there are m output nodes, where m is the number 
of classes. 

The number of hidden units H in the hidden layer can 
influence the classifier performance in the following manner: 
too many and the network overfits the data, whereas too few 
hidden units leaves the network with insufficient represen- 
tational power. The appropriate network size is typically 
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Fig. A1. Diagram of a "generic" feedforward neural network 
model with four inputs { n 1 . . . . .  n4 }, a single hidden layer with 

six hidden units {hi . . . . .  h4}, and two outputs {01, 02}. 

chosen by varying the number of hidden units and observing 
cross-validation performance. 

Each input unit i is connected to each hidden unit j by a 
link with weight w o, and each hidden unit j is connected to 
each output unit k by a weighted link %k. Each hidden unit 
calculates a weighted sum and passes the result through a 
non-linear function F(), i.e. 

i = K + l  

a(hj)=F( i~=l wija(ni) ) 

where a(n~) is the activation of input unit /--typically, this 
is just a linear (scaled) function of the input feature. A com- 
monly used non-linear function in the hidden unit nodes F(x) 
is the so-called sigmoid function, defined as 

1 
F(x) = 

l + e - X  

Output unit k calculates a similar weighted sum using the 
weights wjk between the j th hidden unit and the kth output 
unit, i.e. 

a, = G (  ~ wjka(hj)) 

where ak is the activation of the kth output node. The function 
G(x) can be chosen either as linear (e.g. G(x)= x) or as a 
non-linear function. For example for a classification problem 
such as that described in this paper the sigmoid function is 
used to restrict the range of the output activations to the 
range 1-0, 1]. A classification decision is made by choosing the 
output unit with the largest activation for a given set of inputs 
(feature values); i.e. choose class k such that 

k =a rg  max {a~}. 
i 

The network design problem is then to find the best set of 
weights such that a particular objective function is minimized 
on the N training data samples--the training data is in the 
form of input-output pairs {xj, yj), 1 _<j< N where xj is a 
feature vector and yj the desired output (for simplicity of 
notation assume that we just have a single output model). Let 
~j(D, x j) be the network output for a particular set of weights 
fl and input vector xj. The objective function is typically some 
metric on yj and pj, whose mean value is estimated on the 
training data. Commonly used such objective functions include 
the mean-squared error 

l N 
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and the cross-entropy error 

1 N 1 - yj 
E c E = ~ j ~  yjlog YJ +(1- -y j ) log  1 

= ~ j ( ~  x j) - ~ j - ~ ,  x j)" 

From a maximum likelihood perspective the mean-squared 
error approach essentially assumes that the training data is 
perturbed by additive Gaussian noise, while the cross-entropy 
function assumes a multinomial distribution on the class 
labels. Despite these significantly different assumptions, for 
classification problems there appears to be little practical 
difference in terms of classification performance between these 
objective functions. For the experiments reported in this paper 
the mean-squared error objective function was used. 

APPENDIX B. DESCRIPTION OF THE ANTENNA POINTING 
SYSTEM 

Figure 2 is a block diagram of the elevation axis antenna 
drive subsystem (there is a corresponding azimuth axis drive 
for positioning the antenna in the azimuth axis). The elevation 
drive subsystem is a closed-loop control system that consists 
of a digital control computer, two 7.5 hp d.c. motors, two 
servo amplifiers, two cycloid gear reducers, two tachometers, 
and various electronic components for signal conditioning 
and servo compensation. The two forward tachometer/ampli- 
fier/motor/gear paths operate in tandem to drive a large bull 
gear which is attached to the antenna structure (a 34 m dish 
plus supporting metal structure). Feedback control is provided 
by both rate feedback from each motor to its tachometer and 
a position feedback loop. The antenna position is estimated 
by an optical encoder and fed back to the antenna servo 
controller. The antenna servo controller is a microprocessor- 
based system which implemented a PI (proportional plus 
integral) control algorithm by integrating both the comman- 
ded position (which is a digital signal sent from a ground 
station control computer describing the desired position) 
and the actual position estimate. The digital portion of the 
control loop (the antenna servo controller) updates at a 50 Hz 
rate. The reconstruction filter and the loop compensation 
components are filters for signal conditioning and control 
loop compensation. Finally, the torque bias signal is a voltage 
measurement proportional to load torque which is fed back 
from the gears in order to share the torque between the two 
motors, reduce the effect of parameter variations between 
them and to effectively bias the cycloid gears away from 
non-linear regions of operation. 

APPENDIX C. SPECIFICATION OF THE MARKOV 
TRANSITION MATRIX FOR THE ANTENNA POINTING 

PROBLEM 

Training and test data under fault conditions were obtained 
by switching faulty components in and out of the servo control 
loop. Hence, for the purposes of this experiment, the two fault 
conditions were modelled as intermittent faults and fault 
transitions between these two states were allowed. The Markov 
transition matrix A was set as follows: 

( 0.999 0.005 0.005 

A=~0.0005 0.99 0.005 / . 

',,0.0005 0.005 0.99 / 

This corresponds to a system MTBF of about 1 h and 7 min 
given the 4 s decision interval (using equation (11)). It also 
assumes that each fault is equally likely to occur and that the 
mean duration of each fault is about 6 min and 40 s. The initial 
state probabilities were chosen to be equally likely: 

7r(O) = (1/3, 1/3,1/3). 

The actual MTBF of the system under operational condi- 
tions was estimated from a problem database to be about 30 h 
if only hard faults are considered. However, if intermittent 
transient faults are also considered, the MTBF is effectively 
reduced to about 1 h- - th i s  estimate is based on empirical 
observations of the antenna in an operational tracking mode. 
Hence, while the self-transition probabilities of the fault states 
are set in a somewhat artificial manner for this experiment, 
the value chosen for al l  correlates well with the effective 
MTBF of the system. 

As mentioned in Section 5.3, the state estimates of the 
model are relatively robust to changes in the values of the 
transition probabilities. For example, increasing 1 -  aH by 
an order of magnitude causes the estimates to be slightly less 
stable but does not introduce any additional false alarms, 
while reducing 1 - a l ~  by an order of magnitude causes no 
significant difference in the results other than the time for the 
model to switch from normal to a fault state (after a fault has 
actually occurred) increases from a single 4 s interval to two 
or three such intervals. It should be pointed out that the 
robustness of the method in general to misspecification errors 
in the transition matrix is a topic for further investigation. 
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