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Computing camera focal length by zooming a single point
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Abstract

In this paper we present a novel simple procedure to compute the focal length of a camera. The method is based on zooming in and
out only a single point. The same approach allows computing the principal point when only two points are available on a pair of images
surveyed with a different focal length. Experimental results show that the method is as accurate as classical full calibration methods.
Moreover, its application to augmented reality produces more accurate results than those obtained when the simple pin-hole model is
considered.
� 2006 Pattern Recognition Society. Published by Elsevier Ltd. All rights reserved.
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1. Introduction

Digital video applications, like sports video and TV
shows, are more and more interested in compositing real
video with digital models in real-time to add information
content or increase the attractiveness through special ef-
fects [1]. To achieve this, the calibration parameters, which
describe the projection of the 3D digital models on the 2D
video images, have to be known. The procedure to deter-
mine these parameters is called camera calibration. The
main difficulty to obtain on-the-field, real-time operation
is related to the identification of good feature points and
to the definition of an adequate model, which guarantees a
reliable estimate of the parameters. We will focus here on
camera calibration when zoom lenses are used.

There are two main approaches to this problem. Classical
calibration procedures adopt non-linear optimization and/or
algebraic matrix manipulation, to compute the parameters
altogether: both exterior (camera’s position and orientation
with respect to a given reference frame) and interior (focal
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length, principal point and distortion field) [1,2,4]. These
procedures are based on surveying a 3D distribution of con-
trol points of known or partially known position, spread in-
side the calibrated volume [3]. However, such a distribution
is difficult to obtain in real situations and a host of calibra-
tion techniques, based on surveying simplified distributions
such as linear, planar or circular have been developed [5,6].
Methods of this category cannot be employed when camera
parameters are changed often. In fact, they require to stop
filming, setting-up the calibration object, surveying it and
computing the parameters. Only afterwards, filming action
can resume.

A different approach is based on computing the param-
eters from feature points automatically identified directly
on the video image sequence. This approach belongs to the
framework called “Structure from Motion” [7], and it has
originated several calibration procedures [8,9]. However, as
a good distribution of feature points and a good initializa-
tion are required to converge (cf. Results Section), these
techniques operate mainly on-line but not in real-time (cf.
commercial products like Boujou and Realviz [10,11]).

Two main simplifications of the calibration model can be
accepted for real-time operation: the position of the prin-
cipal point is fixed and known and the distortion field can
be neglected [2,4]. A further simplification can be obtained
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considering that the introduction of zooming lenses has
limited camera movements during filming: different scene
frames being obtained simply by zooming in and out. In
this condition, the only parameter required to project 3D
digital models onto the scene, can be reduced to the actual
focal length. This is changed often with zoom lenses, and
each time it has to be determined. For this reason, simple
focal determination techniques have been derived. They are
based on extracting lines from an image and evaluating the
vanishing points: two vanishing points associated to two
orthogonal directions, are sufficient to determine the actual
focal length [9].

An even simpler approach is proposed here. It is shown
that only one single point is sufficient to determine the actual
focal length of a camera. This can be obtained through an
innovative use of the projective transformation and requires
that the image of the point is acquired with the actual focal
length and two other known focal lengths, for instance, the
minimum and the maximum ones. Besides this we propose
also an elegant solution for computing the principal point
which requires only two points. Results on real images are
reported and discussed.

2. Mathematical background and description of the
method

We will start with the pin-hole camera model (Fig. 1a),
which is characterized by the position of the principal point,
PC(xC, yC), intersection of the optical axis, a, with the im-
age plane, �, and by the focal length, f, which is the dis-
tance of the image plane from the projection centre, F. The
pixel squareness is known: as it is independent from camera
zoom, its value reported in the camera factory specifications
can be used. The position of the principal point is supposed
constant and known. Distortions are not considered.

The projection of a 3D point, P(X, Y, Z), on the image
plane of the video camera, p(xp, yp), is described by the
projective equations, which contain a factorization of the
interior and exterior parameters. In homogeneous notation
these can be written in compact matrix notation as

p = K M D P, (1)

where

K =
[−f 0 xc

0 −f yc

0 0 1

]
, M =

[1 0 0 0
0 1 0 0
0 0 1 0

]
,

D =
[

R −RT
0 1

]
, (2)

R and T are the exterior parameters and represent the ori-
entation (3 × 3 matrix) and the location (3 × 1 vector) of
the camera with respect to an external reference frame. For
convenience, the exterior reference frame is positioned in F,
with the X, Y -axis parallel to those of the image plane. In

this case, D becomes equal to the identity matrix leading to
the following simplified projection equation:

p = K M P (3)

which, for a point p(xp, yp) is

xp − xC = − f
XP

ZP

,

yp − yC = − f
YP

ZP

, (4)

well known in the computer vision community. Eqs. (4) rep-
resent only an approximation of the real projective trans-
formation as they are based on the implicit assumption that
the centre of projection, F, does not move; when the focal
length is changed, it is assumed implicitly that the image
plane is moved further or closer to F (cf. Fig. 1a).

2.1. Computation of the focal length

To compute the focal length taking into account the move-
ment of the projection centre, we have developed a novel
view of the perspective projection. Let us consider three
images of one 3D point P: p1, p2, p3 (Fig. 1b). Two of
these are taken with known focal lengths, f1 and f3, and a
third one with the focal length that we want to compute, f2
(actual focal length). The point P is projected on the image
plane � through the points F1, F2, and F3, which belong to
the same line (the focal axis, a). We note that:

• the points p1, p2, p3 and the principal point C are always
collinear;

• the points F1, F2, and F3 and the principal point C are
always collinear;

• the points F1, F2, F3, p1, p2, p3 and the principal point
C lie on the same plane.

• the points C, F1, F2, F3 and C, p1, p2, p3 share the same
cross-ratio:

[C F1 F2 F3] = [C p1 p2 p3]. (5)

If we suppose that the image plane reference system has
the z-axis parallel to the optical axis, a, we can write: Fj =
[0, fj ] and pj = [p′

j, 0], where p′
j is the offset position of

pj:p′
j =[xpj

−xC, ypj
−yC]. If two focal lengths are known

(for example f1 and f3) along with the principal point, C,
and the position on � of the three points p1, p2, and p3, the
unknown focal length, f2, can be computed as

f2 = f1f3‖p′
2‖‖p′

3 − p′
1‖

(f1 − f3)‖p′
3‖‖p′

2 − p′
1‖ + f3‖p′

2‖‖p′
3 − p′

1‖
. (6)

Two focal lengths are particularly useful: the minimum
and maximum ones. These can be estimated once, off-line,
through a distribution of control points of high accuracy
[2–4] or can be derived from factory specifications. We
explicitly note that in this derivation the image plane is
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Fig. 1. The simple pinhole camera model usually adopted to describe the projective transformation is shown in panel (a). When zooming in, the image
plane gets closer to the projection centre, F. P and Q are two 3D points which are projected with focal fj into pj and qj on the image plane. The
plane is implicitly moved from the position �1 to the position �2. The projection model, which takes into account the movement of the projection
centre when zooming, is reported in panel (b). In this case the image plane, P, is fixed and the projection centre translates along the optical axis a.
The novel way to look at the cross-ratio, introduced in this paper, is also shown in panel (b). p1, p2, p3 are the projection of the 3D point, P, on the
image plane, �, through three different three projection centres F1, F2, and F3. A different focal length: f1, f2 and f3, is associated to each of these
points. These three points and the principal point, C, are collinear. The same collinearity condition holds for C, F1, F2, and F3 are. From the cross-ratio
[C F1 F2 F3] = [C p1 p2 p3] the actual focal length, f2, can be computed. Only one point is sufficient.

considered fixed (anchored to the camera body), while F
moves, translating along the optical axis.

2.2. Computation of the principal point

To compute the principal point, we start from the con-
sideration that, given the image plane �, and two different
points F1 and F2 on the focal axis a (Fig. 2a), we can define
a projective transformation � onto �, via a new plane �′,
as follows (see also Ref. [9, Chapter 12]). Let us consider
a point P on �′ and let p1 and p2 be the projections of this
point onto �, from the projection centres F1 and F2. The
projective transformation � : � → �, can be defined as

�(p1) = p2. (7)

It follows that the transformation of a point, pj, which lies
on a straight line through C on �, performed through �(.),
produces a second point, pk = �(pj), which belongs to the
same line. It is possible to show that:

1. given a point pj on the image plane �, the points pj,
�(pj), C, F1 and F2 lay always on a unique plane;

2. the three points pj, �(pj), and C are always collinear;
3. every straight line s passing through C and its image

�(s) satisfy the following constraint: �(s) = s;
4. and, at last, �(C) = C.

The last observation suggested to us the following algo-
rithm. Take two images of at least two points, each with a
different focal length, (e.g. by zooming); three points are
shown in Fig. 2b for sake of clarity. Let us call pj, qj the pairs
of points measured on the image plane � and r, s, t , the lines
through these pairs of points. The principal point will lie at
the intersection of these lines (focus of expansion [9,12]).
An alternative method to compute the principal point is
based on the determination of the eigenvalues and eigenvec-
tors of the homology �. We verified experimentally that this
second solution, although elegant, is particularly sensitive to
error on points measurement and it was not pursued further.

2.3. Adding digital objects to the images

The same novel view of the cross-ratio has suggested to
us a technique to add digital objects to acquired images.
Let us suppose that an object is present in the two images,
I1 and I3, acquired, respectively, with f = f1 and f = f3.
Suppose that we want to insert the same object, or a digital
object similar to that, into a third image, I2, acquired with
f = f2 (Fig. 3).

In this situation the position of the (virtual) object in I2
can be computed through the cross-ratio (Eq. (6)) as

x2 = f2(f1 − f3)(x3 − xC)x1 + f2f3(x3 − x1)xC − f1f3(x3 − x1)xC

f2(f1 − f3)(x3 − xC) + f2f3(x3 − x1) − f1f3(x3 − x1)
,

y2 = f2(f1 − f3)(y3 − yC)y1 + f2f3(y3 − y1)yC − f1f3(y3 − y1)yC

f2(f1 − f3)(y3 − yC) + f2f3(y3 − y1) − f1f3(y3 − y1)
. (8)
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Fig. 2. The projective transformation model used to compute the principal point is depicted in panel (a). p1 and p2 are the projection onto the image
plane � of a point P belonging to �′, through the points F1 and F2, respectively. C is the principal point. In panel (b) the projection on the image plane,
�, of three points, P1, P2, and P3, positioned at two different distances from C (two different focal lengths) is shown. These points are p1, p2, p3 and
q1, q2, q3, respectively. The three lines, s, r, t , from the pair of points, pj, qj, intersect in C. Two of such lines are sufficient to determine the principal
point or focus of expansion.

Fig. 3. The portion of a soccer field close to one of the four corners was taken with a Fuji FinePix 602S camera with a target size of 2048 × 1536 pixels
and a 6× zoom capability. The image taken with the minimum focal length (f1 = 8 mm) is shown in panel (a) while that taken with the maximum focal
length (f3 = 48 mm) is shown in panel (b). The camera was positioned approximately at 12 m from the corner. Note that the only point which can be
reliably computed is the mast basis of the corner flag. From the position of this point measured in I1 and I3, the actual focal length used to take the image
I2 (panel (c)) was computed and resulted of 24.4 mm. The image of the ball synthesized from images (a) and (b) as described in Section 2.3, is shown
superimposed as a transparency to the real position in panel (c). The difference is hard to distinguish also inside the zoomed image shown inside the circle
in the bottom right corner, being the ball center offset of 2 pixels in horizontal and 6 pixels in vertical (0.1% and 0.4% of the image size, respectively).
Ball image diameter was computed within less than 1 pixel of error. In panel (d) the same situation is shown when a simple ratio is adopted to describe
the projective transformation (Eqs. (9)–(10) in Section 4.1). Here, both the displacement and the dimension of the ball exhibit large errors (see text).
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Similar reasoning allows determining the area occupied
on the image by an object surveyed with minimum and max-
imum focal length.

3. Experimental results

The algorithm has been extensively tested on different sets
of natural images taken with different cameras.

To evaluate the quality and reliability of the estimate of
the actual focal length a planar black and white 7×9 chess-
board with 30 mm square length was used (cf. Fig. 4). This
pattern is widely adopted [5,8] as it allows a reliable identifi-
cation of the chessboard square corners, which serve as fea-
ture points. The results presented here were obtained from
images acquired with a Sony DSC-S50 digital camera, with
a target of 640 × 480 pixels. Minimum and maximum fo-
cal length, reported by the factory, was 6.1 and 18.3 mm,
respectively (zoom 3×).

Chessboard square corners were identified semi-
automatically with MatlabTM software made publicly avail-
able from Ref. [13]. The parameters estimated with the
method presented here were evaluated comparing them with
those obtained with the classical technique proposed by
Zhang [8] and implemented in the same software package
[13]. Ten different calibration sessions were carried out; in
each session the camera was calibrated with six different
focal lengths: the minimum, the maximum and four in-
termediate ones. The mean and standard deviation of the
estimated values are reported in Table 1. For each focal
length, the chessboard was acquired in at least 25 different
positions and orientations for Zhang’s algorithm, while it
was acquired in the same fixed position for the method
presented here. A subset of 10 of the 63 chessboard corners
were extracted randomly and used to determine the focal
length with the method presented here.

We first checked that the principal point does not move
significantly with zooming. The obtained mean and stan-
dard deviation of the principal point position obtained
with Zhang’s algorithm averaged over the six calibrations,
each with a different focal length, was: (322.62;220.28)
± (0.94;1.84) pixels (Table 1). This is well in accordance
with the data reported in the literature [4,12,14]. Moreover,

Fig. 4. Three images of the chessboard used to calibrate with Zhang’s algorithm, taken with different position and attitude. The sequence was taken by
a Sony DSC-S50 digital camera (target size of 640 × 480 pixels) with its minimum focal length (f = 6.1 mm).

for this particular digital camera the pixel form factor was
one up to the sixth decimal digit, as reported in the factory
specifications. The principal point value obtained with the
method presented here is slightly less stable than in Zhang’s
calibration.

The focal length value was similar for both methods, with
generally a smaller standard deviation for the method pre-
sented here. Moreover, we explicitly note that for long focal
lengths the estimate becomes critical for the limited ampli-
tude of the field of view. In this situation, Zhang’s algorithm
requested up to 150 images to get a reasonable estimate of
the focal length (standard deviation below 10 pixels). Similar
problems were encountered when using bundle adjustment
in combination with control points of known position [3].
The method proposed here does not suffer from this prob-
lem: only one single point is sufficient also for long focal
lengths as shown with the next data set.

Typical results obtained compositing digital objects and
real images are presented in the soccer field images of Fig. 3.
Here, a portion of the field was surveyed with a Fuji, FinePix
S602 digital camera, with a target size of 2048×1536 pixels.
We trusted the minimum (f1 = 8 mm) and maximum (f3 =
48 mm) focal lengths declared in the factory specifications.

The image taken with f1 (wide angle, I1) is shown in
panel (a), while the image taken with f3 (macro zoom, I3)
is shown in panel (b). The zooming effect here is very large,
being a 6×. In these two images, a soccer ball was present
close to the corner flag. A third image (Fig. 3c) was taken
with an intermediate focal length (image I2).

We first note that there is only one point which can be
determined with a high reliability, which is the mast base
of the corner flag. This point is used to compute the focal
length with the method described in Section 2.2 (Eq. (6)).
The value obtained was 24.4 mm, which was congruent with
the position of the zoom slider on the camera.

We then wanted to add the soccer ball also in this image,
in the same position and with adequate size. To the scope,
Eqs. (7) were applied to the six vertices of the central white
hexagon of the soccer ball pattern to compute their position
in the image I2. The soccer ball image in I1 was then shrank
to fit these points and added to the image taken with the
intermediate focal length, I2. The error in the ball position
(measured in the hexagon vertexes) was of [−2.083 ± 0.68;
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Table 1
The position of the principal point, C, and the focal length, f , estimated by the method proposed here and by Zhang’s algorithm

Computation of C (proposed method) Computation of C (Zhang’s calibration)
(316.59; 219.97) ± (4.53; 4.42) (321.65; 220.66) ± (4.41; 6.36)
(333.01; 217.36) ± (6,61; 6.48) (321.08; 221.90) ± (1.20; 8.73)
(316.20; 219.47) ± (9.07; 8.39) (320.47; 220.67) ± (5.32; 8.93)
(318.36; 236.83) ± (57.08; 45.52) (324.52; 222.01) ± (16.68; 16.17)

Computation of f (proposed method) Computation of f (Zhang’s calibration)
1079.88 ± 4.15 1081.97 ± 9.92
1221.42 ± 5.12 1198.86 ± 5.11
1395.98 ± 5.32 1392.00 ± 6.58
1773.70 ± 12.10 1779.93 ± 9.50

A Sony DSC-S50 digital camera with a target size of 640 × 480 pixels and a 3× zooming capability, was used to survey a 7 × 9 chessboard. For the
method presented here, the camera stayed still and only zooming was performed to calibrate; for each zoom level a set of 30 calibrations was carried
out; in each of them a sub-set of 10 vertexes was randomly extracted from the 63 vertexes identified on the image, and used to compute the parameters.
The statistics was obtained by analysing the parameters obtained in the 30 different calibrations. For Zhang’s method, the same chessboard was placed
in at least 25 different positions and orientations, for each focal length. Statistics reported is that provided from Ref. [13]. Units are pixels in both cases.

6.42 ± 0.82] pixels on the x and y directions, respectively.
The difference in ball size was less than 1 pixel. The differ-
ence between the true ball and the ball added on the image
is difficult to be appreciated also in the zoom circle at the
bottom right of Fig. 3c.

4. Discussion

Zoom lenses are more and more used in digital videos
as they allow capturing the smallest details and to get a
panoramic view of the same scene with the same camera.
This reduces the need of camera motion and simplifies the
procedure of camera calibration. In this paper, thanks to a
different view of the cross-ratio in the perspective projec-
tion, the focal length can be computed using only one sin-
gle point. This greatly simplifies the problems related to
identification and matching multiple points over different
images.

The method relies on an accurate estimate of two focal
lengths; these focal lengths should be such that they can
be reproduced on the field, and they are typically the min-
imum and maximum one. These focal lengths can be esti-
mated once off the field with accurate markers, or we can
rely on the factory data. Once these two focal lengths have
been measured, the method allows a reliable estimate of the
focal lengths in the entire range, and in particular of the
longest ones. These are particularly difficult because of the
geometrical set-up: classical solutions require many images
to produce good results. Other focal lengths, between the
maximum and the minimum one, could be identified on the
camera and measured. This would improve the accuracy of
the method.

The projection model used requires two assumptions. First
assumption is that the principal point is known and is in a
constant position. This is a reasonable assumption with mod-
ern CCD sensors: in many cameras, its displacement can be
compared with the localization error of the features and it

can be neglected [2,4] (cf. Table 1). Therefore, it can be esti-
mated once, off the field along with the minimum and max-
imum focal lengths. The second assumption is the neglect
of the distortion field. This can offset image measurements,
the offset increasing mainly in radial direction from the im-
age centre and therefore having more impact on points close
to the image borders. The distortion field is usually taken
into account when very precise measurements are required
and/or high distortion field is present [2,9,14,15]. However,
when the distortion field has moderate entity, and selected
feature points are not close to the border, it can be left out
from the calibration model without degrading the accuracy
significantly [10].

The power of the method presented here is well exem-
plified by the very small error in the position computed
in images taken with an arbitrary focal length, I2, of the
same points measured on the images taken with the ref-
erence focal lengths. Typical mean offset was of a few
pixels, which has to be considered extremely small given
the resolution of the cameras. In the soccer sequence the
error in the object’s position amounts to less than 0.1%
in the horizontal direction and less than 0.4% in the ver-
tical one (and it was not the smallest error obtained in all
the sequences that we have taken). The error was usually
mainly along the y direction. This asymmetry in the error
may be ascribed to the experimental conditions. The cam-
era was mounted on a tripod and no remote control was
given to the user, to simulate the most frequent operating
conditions.

4.1. Comparison with simple projective model

Projective transformation through zoom lenses is correctly
represented by the thick-lens-model, which is based on the
definition of an inner and outer principal point [15,16] (Fig.
5a). The distance between these two points increases during
zooming in. The corresponding geometry is represented in
Fig. 1b and the relationship between a point in 3D space
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Fig. 5. The thick-lens model is plotted in panel (a). The planes Hoxy and
Hixy are called principal planes. They are orthogonal to the optical axis,
a, and are positioned such that the optical rays travel parallel from Hoxy

to Hixy . Ho and Hi are the intersection of the optical axis with Hoxy and
Hixy . The distance of the object, po, is measured with respect to Hoxy

while the image plane distance, pi , is measured with respect to Hixy .
During zooming in, the distance between Hoxy and Hixy decreases. The
thick-lens model can be transformed into the pin-hole model (panel b) by
making Hi and Ho coincident: Hi =Ho =C. C is the centre of projection
in the pin-hole model. po = Tz (distance of the object from the centre
of projection) and pi = f (distance of the centre of projection from the
Image plane).

and its projection on the image plane taken with a different
zoom is described by Eqs. (6).

In computer vision, very often, this model is simplified by
assuming that the image plane translates along the optical
axis and the principal point is fixed. Under this condition
(Fig. 1a), Eqs. (4) are derived. In this model, we have to
measure only two projections on the image plane of the
same 3D point to compute an unknown focal length, f2 (the
actual focal length). Each projection has to be taken with
a different focal length: p2 is obtained with the unknown
focal length, f2, and pk with the known one, fk , (e.g. the
minimum or the maximum focal length). From pk, p2 and
fk, f2 can be computed through Eqs. (4) as

f2 = fk

|p2 − C|
|pk − C| . (9)

Once f2 has been determined, the position of any point
measured with focal length fk , pk(xk, yk), can be identified
over the image taken with focal length f2 simply as

x2 = xC + (xk − xC)
f2

fk

,

y2 = yC + (yk − yC)
f2

fk

. (10)

These equations derive from the simplification in the pro-
jection equations (8) and leaded to the large errors as it can

be clearly seen in the soccer sequence (Fig. 3d). With the
simplified model, the actual focal length, f2, was computed
through Eq. (9) using the same point at the mast base of
the corner flag, used to calibrate with the method introduced
here. Two different values were obtained: f2 = 12.3 mm
when the image taken with the maximum focal length was
considered (fk = f3 and pk = p3), and f2 = 40.2 mm with
the minimum focal length (fk = f1 and pk = p1). We have
then determined the position of the soccer ball and its size
in the intermediate image, assuming f2 = 12.3 mm, which
has given the best result with this solution. Nevertheless,
the mean offset of the same six points identified in Fig. 3c
(Section 3) was [−40.2 ± 0.99 25.4 ± 7.09] pixels in the
horizontal and vertical direction, respectively. Moreover, the
ball diameter was 19 pixels larger than in the real image.

From this experiment it is clear that the displacement of
the projection centre when zooming has to be taken into
account if large errors have to be avoided.

5. Conclusion

In this paper, we present a novel simple procedure to
compute the focal length of a zooming camera. The method
is based on zooming in and out only one single point. Ex-
perimental results show that the method produces results
comparable to classical calibration methods. In particular, in
comparison with Zhang’s method, the estimate of the focal
length is reliable also at large focal lengths, where Zhang’s
algorithm requires much more images. Experimental results
support the need of an accurate projective model of zoom-
ing, which is able to take into account the translation of
the projection centre. Large errors are originated by models
which fail to achieve this.
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