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Motion capture, a currently active research area, needs estimation of the pose of the subject. For this

purpose, we match the tree representation of the skeleton of the 3D shape to a pre-specified tree model.

Unfortunately, the tree representation can contain vertices that split limbs in multiple parts, which do

not allow a good match by usual methods. To solve this problem, we propose a new alignment, taking

into account the homeomorphism between trees, rather than the isomorphism, as in prior works. Then,

we develop several computationally efficient algorithms for reaching real-time motion capture.

& 2010 Elsevier Ltd. All rights reserved.
1. Introduction

1.1. Motivation

Motion capture without markers is a highly active research
area, as shown by Moeslund et al. [1]: between 2000 and 2006,
more than 350 papers on this topic were published. Motion
capture is used in several applications which have different aims
and constraints:

3D models animation, for movies FX or video games for
example, requests an highly accurate model, but does not need
real-time computation (offline video processing is acceptable).

Real-time interaction, for virtual reality applications, requests a
fast computation, at the price of a lower accuracy.

This paper is placed in the context of real-time interaction.
Moeslund et al. describe in a previous work [2] the different

steps of motion capture.
The first step (called initialization step) consists of finding the

initial pose of the subject, represented here by a 3d shape (visual
hull) constructed using a multi-view system with an algorithm of
Shape From Silhouette [3].

Most algorithms of 3D pose estimation use a manually
initialized model, or ask the subject to move successively the
different parts of his/her body [4], but several automatic
approaches have been developed, using an a priori model. This a
priori model can approximate different characteristics of the
subject:
ll rights reserved.

: +33 1 60 95 77 55.

Biri).
Kinematic structure: A structure containing a fixed number of
joints, with specified degrees of freedom, and limb lengths.

Shape: A generic humanoid model, represented by simple
shape primitives [5].

Appearance: The texture of subject surface.
This kind of complex a priori model is difficult to match with

real data, and needs to be adapted to each subject (especially in
the case of appearance).

In shape matching, a common approach consists of using
surface (or contour, in case of 2D shapes) information, via
curvature and distance to centroid information [6–8]. This kind
of approach cannot be used in our case for several reasons: it
implies a complex a priori model, curvature is variable for
articulate shape, and the visual hull can have a very noisy surface,
due to the method of acquisition.
1.2. Our approach

Two of the most preserved characteristics of the real shape by
its visual hull reconstruction are its topology and the distances
between the different parts of the shape. A useful tool for
representing these characteristics is the skeleton of the shape.

A lot of approaches using the skeleton of a shape have been
developed. In motion capture research area [9–11], the best time
obtained for finding the initial pose is around one second [10],
which is too slow, even for interactive time interaction. In 2D
shape matching research area, skeleton is a common tool of
representation and comparison [12,13]. A widely used method
consist in comparison of shock graphs [14], built from both the
skeleton and the radius distance of the shapes. However, even if
this method can be applied in the case of 3D shapes [15], it is not
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interesting in our case, because the radius distance of the visual
hull can be noisy.

For our purpose, the skeleton is still too complex, and we do
not need all the involved information. It can be observed that only
a small part of the skeleton points are interesting: the ending
points and the intersection points. In addition to the position of
these points, we need to know how they are linked together, and
what is the length of the skeleton branch between them.

Considering these observations, we can represent the skeleton
by a unrooted tree (called the data tree): the vertices represent the
ending or intersection points, and the edges represent the links
between the points. In addition, we give a weight to each edge,
corresponding to the geodesic distance between the points
involved.

Then, our a priori model is also an unrooted weighted tree
(called the pattern tree), where vertices represent the different
parts of the shape (head, torso, crotch, hands and feet), and each
edge represents the link between this parts, associated to a
weight, representing the distance between two parts. It can be
seen as a very simplified kinematic structure, without definition
of degrees of freedom.

Our approach to find the initial pose of the subject is therefore
to find the best alignment between the pattern tree and the data
tree, that is to say, the matching which involves as few
modifications as possible, to transform the data tree in the
pattern tree (see Fig. 1 for an example of our complete pipeline,
and expected alignment).

As we know which part of the shape correspond to each vertex
of the pattern tree, and which are the 3D coordinates of each
vertex of the data tree, the alignment will give the position of each
part of the 3D shape.

1.3. Problems

Several kinds of noise and deformities can appear in the data
tree:

Ghosts limbs: Due to the reconstruction from silhouettes, parts
of space cannot be carved, resulting in ‘‘limbs’’ of the object which
do not exist on the real model. Our method must be accurate
enough to distinguish these ghosts limbs from real ones.

Spurious branches: Due to the skeletonization algorithm and to
the amount of noise of the shape surface, branches without
important topological signification can appear on skeleton. For
example, in Fig. 1, the edges {g,h},{l,m},{i,j},{j,k} are spurious
branches. Our method must be robust enough to work on data
trees with consequent amount of spurious branches.
Fig. 1. Example of data tree acquisition and expected alignment with pattern (model)

computed from the skeleton, and the pattern tree. The numbers represent the weights

expected ones for the pattern tree).The grey dashed lines represent the expected align
Useless vertex: Vertices with exactly two neighbors are not
useful to describe the topology of a shape, and then uselessly split
an edge (and its weight) into two parts, making difficult a good
matching. This kind of vertices can appear when removing
spurious branches or ghosts limbs. For example, in Fig. 1, vertices
j, k, m are useless after spurious branches deletion. Our method
must be able to match two edges joined by this kind of vertex,
with a unique edge.

Splitted vertex: Vertices with more than three neighbors in the
pattern tree can correspond to a cluster of vertices linked by
weakly weighted edges in the data tree, due to the skeletonization
algorithm. For example, in Fig. 1, vertex T of pattern tree matches
with vertices b and e in data tree. Our method must be able to
match them.
1.4. Our contribution

Approaches found in the literature (see Section 3) do not
permit to achieve a robust matching, with respect to all these
perturbations. However, some existing edit-based distance, the
alignment distance [22], is an interesting way to solve
the problem of splitted vertices, and it preserves the
topology during the matching. In addition, an operation described
in [30], the cut operation, is specially designed for considering
only a subpart of the tree. This operation is exactly what
we need to avoid the problems of ghost limbs and spurious
branches, which can be considered as useless parts of the
data tree.

The problem of useless vertices cannot be solved by
methods found in the literature. We introduce in this
paper a new kind of alignment, which solves this problem by
considering the homeomorphism between trees instead of the
isomorphism.

This paper is organized as follow: In Section 2, we give the
basic definitions and notations related to edge-weighted graphs
that will be used in the sequel. In Section 3, we determine which
edit-based distance of the literature is the most appropriate
to base our method. In Section 4, we introduce our main
contribution, the homeomorphic alignment. We also introduce
algorithms to compute it efficiently for rooted trees, as well as
unrooted trees. In Section 5, we show how to use the cut
operation [30] with homeomorphic alignment. Finally, in Section
6, we show the results of different experimentations, and a
comparison between our homeomorphic alignment distance and
the classical alignment distance.
tree. From the right to the left: the original 3D shape, its skeleton, the data tree

of the edges (i.e. the geodesic distances in the skeleton for the data tree, and the

ment between the data tree and the model.
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2. Basics notions and notations

2.1. Undirected graphs

An undirected graph is a pair (V,E), where V is a finite set, and E

a subset of ffx,yg,xAV ,yAV ,xayg. An element of E is called an
edge, an element of V is called a vertex. If fx,ygAE, then x and y are
said to be adjacent or neighbors. The set of all neighbors of x is
denoted by N ðxÞ. The number of vertices adjacent to a vertex v is
called the degree of v, and is denoted by deg(v). Let G¼(V,E) be an
undirected graph, and let x,y be in V, a path from x to y in G is a
sequence of vertices v0,y,vk such that x¼v0, y¼vk and
fvi�1,vigAE,1r irk. The number k is called the length of the
path. If k¼0 the path is called a trivial path. The path is closed if
x¼y. The path is simple when no vertex occurs more than once in
the sequence of vertices of the path (except possibly x¼y). A non-
trivial simple closed path in which all edges are distinct is called a
cycle. A graph is connected if for all fx,yg � V , a path from x to y

exists in G. A tree is a connected graph with no cycles. A simple
path from x to y in a tree is unique and is denoted by pðx,yÞ. A
graph with no cycles is called a forest, each of its connected
components being a tree.
2.2. Directed graphs

A directed graph is a pair (V,A), where V is a finite set, and A is a
subset of V � V . An element of A is called an arc, an element of V is
called a vertex. Let G¼(V,A) be a directed graph, and let x,y be in V, a
path from x to y in G is a sequence of vertices s0,y,sk such that x¼v0,
y¼vk and ðvi�1,viÞAA,1r irk. The undirected graph associated to G

is the undirected graph G0 ¼ ðV ,EÞ, such that fx,ygAE if and only if
ðx,yÞAA or ðy,xÞAA. A vertex rAV is a root of G if for all xAV\frg, a
path from r to x in G exists. The graph G is antisymmetric if for all
ðx,yÞAA such that xay, ðy,xÞ =2 A. The graph G is a rooted tree (with
root r) if r is a root of G, G is antisymmetric and if the undirected
graph associated to G is a tree. A graph, where each of its connected
components is a tree, is called a rooted forest.

Let G¼(V,A) be a rooted tree. If ðy,xÞAA, we say that y is the
parent of x (denoted by par(x)), and that x is a child of y. The set of
all children of y is denoted by CðyÞ. The maximum length of a path
Fig. 2. First row: U1 is obtained from U2 by merging on x. U4 is obtained from U3 by merg

obtained from D2 by merging on x. D5 is obtained from D4 by merging on y. D2 and D4 ar

have different orientations). (For interpretation of the references to color in this figure
between the root and any node is called the height of the tree. The
vertices on the path from the root to a vertex x are called the
ancestors of x. We denote the set of the ancestors of x by anc(x).
2.3. Common definitions

Unless otherwise indicated, all the other definitions and
notations in this paper are similar for the two kinds of graphs.
We give them for directed graphs, the versions for undirected
graphs can be obtained by replacing arcs by edges.

Two graphs G¼(VG,AG) and G0 ¼ ðVG0 ,AG0 Þ are said to be
isomorphic if there exists a bijection f : VG-VG0 , such as for any
pair ðx,yÞAVG � VG, ðx,yÞAAG if and only if ðf ðxÞ,f ðyÞÞAAG0 .

A weighted graph is a triplet ðV ,A,oÞ, where V is a finite set, A a
subset of V � V , and o a mapping from A to R. In a weighted tree,
the weight of the unique path from x to y, denoted by oðx,yÞ, is the
sum of the weights of all arcs traversed in the path.

In this paper, we say that two weighted graphs ðV ,E,oÞ and
ðV 0,E0,o0Þ are isomorphic whenever the graphs (V,E) and ðV 0,E0Þ are
isomorphic (regardless of the weights).

The merging is an operation that can be applied only on arcs
sharing a 2-degree vertex. The merging of two arcs (u,v) and (v,w)
in a weighted graph G¼ ðV ,A,oÞ consists of removing v in V,
replacing (u,v) and (v,w) by (u,w) in A, weighted by
oððu,wÞÞ ¼oððu,vÞÞþoððv,wÞÞ.

Two weighted graphs G¼ ðVG,AG,oGÞ and G0 ¼ ðVG0 ,AG0 ,oG0 Þ are
homeomorphic [16] if there exists an isomorphism between a
graph obtained by mergings on G and a graph obtained by
mergings on G0.

See Fig. 2 for some examples of isomorphism and
homeomorphism.
3. Edit-based distances

The problem of comparing graphs (in particular trees) occurs in
diverse areas such as computational biology, image analysis and
structured databases. However, the graphs considered in these
domains are most often with labeled vertices. Here, each notion will
be introduced in the case of graphs with weighted edges/arcs.
ing on y. U2 and U3 are isomorphic, U1 and U4 are homeomorphic. Second row: D1 is

e isomorphic, D1 and D5 are homeomorphic, D2 and D3 are not isomorphic (red arcs

legend, the reader is referred to the web version of this article.)
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In this section, we review different edit-based distances
proposed in the literature, and select the one that is the best
adapted our aims.

3.1. Edit operations

A lot of methods have been developed for tree comparison, as
the maximal common subtree [17,18], or the approximate subtree
homeomorphism [19]. An approach widely used to compare trees
is to search for a sequence of simple primitive operations (called
edit operations) that transforms a tree into the other and that has a
minimal cost.

For a graph G¼ ðV ,A,oÞ, classical edit operations are:
Resize: Change the weight of an arc a¼ ðu,vÞAA.
Delete: Delete an arc a¼ ðu,vÞAA and merge u and v into one

vertex.
Insert: Split a vertex in two vertices, and link them by a new

arc.
See Fig. 3 for illustrations.
The cost of these edit operations is given by a cost function

gðw,w0Þ, where w (respectively w0) is the total weight of the
arcs involved in the operation before (respectively, after) its
application. As a consequence, the cost of a resizement can be
denoted by gðw,w0Þ, where w is the former weight of the resized
arc and w0 is the new weight, the cost of a deletion can be denoted
by gðw,0Þ, where w is the weight of the deleted arc, and the cost of
an insertion, gð0,wÞ, where w is the weight of the created arc.
Furthermore, we assume that g is a metric. Typically, gðw,w0Þ ¼
jw�w0j or ðw�w0Þ2.

3.2. Choice of edit-based distance

Various edit-based distances have been defined, using
different constraints on the edit operations order or on the
resulting correspondence between the vertices sets, and different
definitions of operations. These edit-based distances can be
classified, as proposed by Wang et al. [20]: edit distance [21],
alignment distance [22,23], isolated-subtrees distance [24–26],
and top-down distance [27–29].

3.2.1. Edit distance

Let G2 be the graph that results from the application of an edit
operation s to graph G1; this is written G1 ) G2 via s. Let S be a
sequence s1,s2,y,sk of edit operations. We say that S transforms
Fig. 3. Examples of edit operations: on the top, on und
graph G to graph G0 if there is a sequence of graphs G0,G1,y,Gk

such that G¼G0, G0 ¼ Gk and Gi�1 ) Gi via si for 1r irk. The cost
of the sequence S, denoted by gðSÞ, is the sum of costs of the
constituent edit operations. The distance from G to G0, denoted by
dðG,G0Þ, is the minimum cost of all sequences of edit operations
taking G to G0.

For our purpose, this kind of edit-based distance cannot
be used, because the associated matching does not
preserve topological relations between trees. In addition, the
algorithm based on this distance is the one with the highest time
complexity.

3.2.2. Isolated-subtrees distance

Isolated-subtrees distance is an edit-based distance such that
two disjoint subtrees in the pattern tree will always be matched
with two disjoint subtrees in the data tree.

3.2.3. Top-down distance

Top-down distance is an edit-based distance such that an arc
ðp,p0Þ in the pattern tree can match an arc ðd,d0Þ in the data tree,
only if (par(p),p) matches (par(d),d).

Isolated-subtrees distance and top-down distance cannot
always match all the model tree, but only subparts, most often
unconnected. However, we will see in the next subsection that it
is not the case for alignment distance.

3.3. Alignment distance

In [22], Jiang et al. propose a similarity measure between
vertex-labeled trees, that we transpose here for edge-weighted
graphs.

Let G1 ¼ ðV1,A1,o1Þ and G2 ¼ ðV2,A2,o2Þ be two weighted graphs.
Let G01 ¼ ðV

0
1,A01,o01Þ and G02 ¼ ðV

0
2,A02,o02Þ be weighted graphs

obtained by inserting arcs weighted by 0 (zero) in G1 and G2, such
that there exists an isomorphism I between ðV 01,A01Þ and ðV 02,A02Þ. The
set of all couples of arcs A¼ fða1,a2Þ; a1AA01,a2AA02,a2 ¼ I ða1Þg is
called an alignment of G1 and G2.

The cost CA of A is the sum of the costs of all operations used to
align G1 and G2: the insertions of arcs weighted by 0 (zero) (which
is free, due to non-variation of weights), and the resizement for
each arc a1AA01 to the weight of I ða1Þ. More formally:

CA ¼
X

ða1 ,a2ÞAA
gðo01ða1Þ,o02ða2ÞÞ:
irected graphs. On the bottom, on directed graphs.
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Fig. 4. Example of alignment: G01 (resp. G02) is obtained from G1 (resp. G2) by insertions of edges (here G02 ¼G2). The dotted lines represent one of the possible alignments of

G01 and G02.
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The minimal cost of all alignments from G1 and G2, called the
alignment distance, is denoted by aðG1,G2Þ. The alignment distance
is a special case of the edit distance, where any insertion occurs
before any deletion. As a result, aðG,G0ÞZdðG,G0Þ.

Alignment distance is interesting in our case for three reasons:
it takes into account topological relations between trees, it can be
computed in polynomial time, and it enables to ‘‘remove edges’’,
regardless of the rest of the graph, solving the problem of splitted
vertices.

3.3.1. Illustration

We consider only the problem of splitted vertices in this
example. In Fig. 4, we show the way to obtain an alignment with
minimal cost: only one edge insertion in the pattern tree, on the
vertex T, representing the torso.

The resulting alignment, represented by dotted lines, has a cost
of 12. The corresponding vertices matching is the following: H

matches with a, T with {b,e}, A1 with d, A2 with c, C with f, F1 with
n, and F2 with o.
4. Homeomorphic alignment distance

If we now take into account the problem of useless 2-degree
vertices, we can see that the alignment strategy does not work
anymore (see Fig. 5). In this example, the split of the ‘‘leg’’ edges of the
data tree in several parts involves that the best alignment is obtained
by matching the ‘‘arms’’ of the pattern (edges {T,A1} and {T,A2}) with
the parts of the legs in the data tree which are closest of them, in
regard of their weights (edges {m,o} and {j,n}). The cost of the
alignment, shown by the dotted lines, is equal to 26 and is minimal.

For the purpose of solving the useless vertex problem, we
propose a new alignment strategy.

4.1. Merging kernel

Considering that a merging on a vertex v on the graph
G¼ ðV ,A,oÞ does not affect the degree of any vertex in V\fvg (by
definition of merging operation) and therefore the possibility of
merging this vertex, the number of possible mergings decreases
by one after each merging. In consequence, the maximal size of a
sequence of merging operations, transforming G into another
graph G0 ¼ ðV 0,A0,o0Þ is equal to the initial number of possible
mergings in G. It can be remarked that any sequence of merging
operations of maximal size yields the same result. The graph
resulting of such a sequence on G is called the merging kernel of G,
and is denoted by MKðGÞ.

The following proposition is straightforward:

Proposition 1. Two graphs G1 ¼ ðV1,A1,o1Þ and G2 ¼ ðV2,G2,o2Þ

are homeomorphic iff MKðG1Þ and MKðG2Þ are isomorphic.

4.2. Homeomorphic alignment distance

Let G1 ¼ ðV1,A1,o1Þ and G2 ¼ ðV2,A2,o2Þ be two weighted
graphs. Let G01 ¼ ðV

0
1,A01,o01Þ and G02 ¼ ðV

0
2,A02,o02Þ be weighted

graphs obtained by deleting arcs in G1 and G2, such that there
exists an homeomorphism between G01 and G02 (not necessarily
unique). Let G

00

1 ¼ ðV
00

1 ,A
00

1,o00

1Þ and G
00

2 ¼ ðV
00

2 ,A
00

2,o00

2Þ be the merging
kernel of G01 and G02, respectively. From Proposition 1, there exists
an isomorphism I between G

00

1 and G
00

2. The set of all couples of
arcs H¼ fða,a0Þ; aAA

00

1,a0AA
00

2,a0 ¼ I ðaÞg is called an homeomorphic

alignment of G1 with G2 (see Fig. 6). The graph G
00

1 is called the left

graph of H. The graph G
00

2 is called the right graph of H.
The cost CH ofH is the sum of the costs of all operations used to

homeomorphically align G1 and G2: the deletion of arcs in G1 and
G2, to obtain G01 and G02, respectively, and the resizement for each
arc a1AA

00

1 to the weight of Hða1Þ. More formally:

CH ¼
X
ða,a0 ÞAH

gðo00

1ðaÞ,o
00

2ða
0ÞÞþ

X
ad AA1\A

0
1

gðo1ðadÞ,0Þþ
X

a0
d
AA2\A

0
2

gð0,o2ða
0
dÞÞ:

This minimal cost of all homeomorphic alignments between G1

and G2, called the homeomorphic alignment distance, is denoted by
ZðG1,G2Þ.

4.2.1. Illustration

Let us consider again the pattern and data trees used in Fig. 5.
In Fig. 6 is shown the way to obtain a homeomorphic alignment
with minimal cost: only one edge deletion in the data tree (edge
{b,e}), is necessary to obtain a homeomorphism. The merging
kernel of G01 is equal to G01, and the merging kernel of G02 is
obtained by merging on vertices j, h and m.
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Fig. 5. Example of bad alignment, due to useless 2-degree vertices.

Fig. 6. Example of homeomorphic alignment: G01 (resp. G02) is obtained from G1 (resp. G2) by deletions of edges. G
00

1 ¼MKðG01Þ and G
00

2 ¼MKðG02Þ. The dotted lines represent

one of the possible homeomorphic alignments of G1 and G2.

B. Raynal et al. / Pattern Recognition 43 (2010) 2937–29492942
The resulting homeomorphic alignment, represented by dotted
lines, has a cost of 12. The corresponding vertices matching is the
following: H with a, T with {b,e}, A1 with d, A2 with c, C with f, F1

with n, and F2 with o.

4.3. Algorithm for rooted trees

In order to compute homeomorphic alignment distance with
good complexity, we will use a bottom-up approach. This
approach, widely used in the literature on edit-based distances,
is based on a reformulation of the distance between trees in terms
of both the distance between their subtrees and the matching of
their roots. Then, using this reformulation, the computation starts
by the distances between the simplest subtrees (i.e the leafs), and
goes up to the root. The distances between subtrees are kept in
memory, avoiding redundancy of computation.

However, there are two main differences to take into account in
the case of homeomorphic alignment distance: the fact that
information is on arcs, rather than of vertices, and the fact that an
arc can be matched with a set of arcs merged together (due to
merging kernel application).

The first problem involves to take into consideration several
arc weights in the reformulation (one for each arc between the
root and its children), instead of the unique value linked to the
root, as in the literature.

The second problem involves to take into account not only the
subtrees of the tree, but also those which can be generated by
some merging.

Our approach to solve these two problems is to use a special
kind of tree, the root of which has only one child. Then, we make a
reformulation of the homeomorphic alignment distance between
this kind of trees, in function of subtrees with the same property.
By this way, there is only one new arc to take into consideration at
each step, the one between the root and its child. Moreover, we
consider that this arc can be the result of a merging. In
combination with the recursive nature of the bottom-up
approach, it will lead to consider subtrees with all possible
mergings. Finally, we also need a reformulation of the home-
omorphic alignment distance between ‘‘classic’’ trees in function
of the one between the subtrees described above.
4.3.1. Definitions and notations

First, we need to define more formally the particular kind of
tree described above.

Let T ¼ ðV ,A,oÞ be a weighted tree rooted in rT.
We denote by TðvÞ,vAV , the subtree of T rooted in v (see Fig. 7).
Let va be an ancestor of v, we denote by Tcut(v,va) the subgraph

of T obtained from T(va) by removing all complete subtrees which
do not contain vertices of T(v).

We denote by T(v,va) the tree obtained from Tcut(v,va) by
merging on each vertex nAancðvÞ\fva,vg. We say that T(v,va) is the
subtree of T rooted in va pruned in v, and we call this kind of trees
a pruned tree (see Fig. 7 for an example).

We denote by F ðT ,vÞ the pruned forest, the connected
components of which are the trees T(p,v), for all pACðvÞ
(see Fig. 7 for an example). By abuse of notation we also
denote by F ðT,vÞ the set of all connected components of this
forest.
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Fig. 7. From the left to the right: a tree T, a subtree of T rooted in b, a subtree of T rooted in a and pruned in e, and a pruned forest of T with origin b.
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4.3.2. Reformulations

In order to use a bottom-up approach, we have to express the
homeomorphic alignment distance:
�
 Between trees in function of the distances between their
pruned forests (Proposition 2).

�
 Between pruned trees in function of the distances between

their pruned subtrees (Proposition 4).

�
 Between pruned forests in function of the distances between

their pruned subtrees (Proposition 5).

In addition, we have to reformulate these distances in the special
cases where at least one of the trees is empty (Proposition 3).

In the sequel we consider two weighted trees P¼ ðVP ,AP ,oPÞ

and D¼ ðVD,AD,oDÞ, rooted respectively in rP and rD.

Proposition 2. We have :

ZðP,DÞ ¼ ZðF ðP,rPÞ,F ðD,rDÞÞ:

Proof. Since the root of a tree cannot be eliminated by any
operation (merging, deletion) involved in the definition of Z, it
may be seen that any homeomorphic alignment H of P with D has
a corresponding alignment H0 of F ðP,rPÞ with F ðD,rDÞ of same
cost, and the converse also holds. &

Proposition 3. Let iAVP\frPg,jAVD\frDg,iaAancðiÞ,jaAancðjÞ,

Zð|,|Þ ¼ 0

ZðPði,iaÞ,|Þ ¼ ZðF ðP,iÞ,|ÞþgðoPðia,iÞ,0Þ

ZðF ðP,iaÞ,|Þ ¼
X

i0ACðiaÞ
ZðPði0,iaÞ,|Þ

Zð|,Dðj,jaÞÞ ¼ Zð|,F ðD,jÞÞþgð0,oDðja,jÞÞ

Zð|,F ðD,jaÞÞ ¼
X

j0ACðjaÞ
Zð|,Dðj0,jaÞÞ:

Proof. Straightforward. &

Proposition 4. Let iAVP\fpg,jAVD\fdg,iaAancðiÞ, jaAancðjÞ.

ZðPði,iaÞ,Dðj,jaÞÞ

¼min

ZðPði,iaÞ,|ÞþZð|,Dðj,jaÞÞ,

gðoPðia,iÞ,oDðja,jÞÞþZðF ðP,iÞ,F ðD,jÞÞ,

min
jc ACðjÞ

fZðPði,iaÞ,Dðjc ,jaÞÞþZð|,F ðD,jÞ\Dðjc ,jÞÞg,

min
ic ACðiÞ

fZðPðic ,iaÞ,Dðj,jaÞÞþZðF ðP; iÞ\Pðic ,iÞ,|Þg:

8>>>>>><
>>>>>>:

Proof. Let H be an homeomorphic alignment of P(i,ia) with D(j,ja),
and let HL ¼ ðVL,AL,oLÞ and HR ¼ ðVR,AR,oRÞ the left and right
graphs of H, respectively.
There are seven possible cases:
1.
 H is an empty set (it is cheaper to remove both P(i,ia) and
D(j,ja) than to align them).
2.
 fðia,iÞ,ðja,jÞgAH.

3.
 (f AAR, f being obtained by merging (ja,j) with other arcs. In

this case, there is one and only one child jc of j, such (j,jc) is
merged with (ja,j) in f, and then all Dðj0c ,jÞ,j0c ACðjÞ\fjcg are
deleted.
4.
 (f AAL, f being obtained by merging (ia,i) with other arcs. In this
case, there is one and only one child ic of i, such (i,ic) is merged
with (ia,i) in f, and then all Pði0c ,iÞ,i0c ACðiÞ\ficg are deleted.

Cases 1,2,3,4 justify, respectively, the lines 1,2,3,4 of the
expression of ZðPði,iaÞ,Dðj,jaÞÞ in the proposition.

The three last cases cannot lead to a better homeomorphic

alignment:
5.
 The deletion of (ia,i) and (ja,j) cannot be preferred to the
resizement (possible case 2), because gðoPðia,iÞ,0Þþgð0,oD

ðja,jÞÞZgðoPðia,iÞ,oDðja,jÞÞ.

6.
 If (ia,i) was deleted, and not (ja,j), then only one Pðic ,iÞ,ic ACðiÞ is

aligned with D(j,ja), the other being removed. It is less
expensive to merge (ia,i) with (i,ic) (possible case 3), because
gðoPðia,iÞ,0ÞþgðoPði,icÞ,oDðja,jÞÞZgðoPðia,icÞ,oDðja,jÞÞ.
7.
 The deletion of (ja,j) is more expensive than the merging of
(ja,j) (possible case 4), for the same reasons as above. &

Proposition 5. 8ADF ðP,iÞ,BDF ðD,jÞ,

ZðA,BÞ ¼min

min
Dðj0 ,jÞAB

fZðA,B\fDðj0,jÞgÞþZð|,Dðj0,jÞÞg,

min
Pði0 ,iÞAA

fZðA\fPði0,iÞg,BÞþZðPði0,iÞ,|Þg,

min
Pði0 ,iÞAA,Dðj0 ,jÞAB

fZðA\fPði0,iÞg,B\fDðj0,jÞgÞ

þZðPði0,iÞ,Dðj0,jÞÞg,
min

Pði0 ,iÞAA,B0DB
fZðA\fPði0,iÞg,B\B0Þ,

þZðF ðP,i0Þ,B0ÞþgðoPði,i0Þ,0Þg,

min
A0DA,Dðj0 ,jÞAB

fZðA\A0,B\fDðj0,jÞgÞ

þZðA0,F ðD,j0ÞjÞþgð0,oDðj,j0ÞÞg:

8>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>:

Proof. Let H be an homeomorphic alignment of ADF ðP,iÞ with
BDF ðD,jÞ, and let Pði0,iÞAA and Dðj0,jÞAB. There are five possible
cases:
1.
 Dðj0,jÞ is not aligned with element of A,

2.
 Pði0,iÞ is not aligned with element of B,
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3.
 Pði0,iÞ is aligned with Dðj0,jÞ,

4.
 disjoint subparts of Pði0,iÞ are aligned with elements of B,

5.
 disjoint subparts of Dðj0,jÞ are aligned with elements of A.
Cases 1, 2, 3, 4, 5 justify, respectively, the lines 1, 2, 3, 4, 5 of the
expression of ZðA,BÞ in the proposition. &

4.3.3. Algorithm

Using the reformulations defined above, we can now design
our algorithm following the bottom-up approach.

Algorithm 1. Homeomorphic Alignment Distance for Rooted
Trees
Data: pattern rooted tree P, data rooted tree D

Result: ZðP,DÞ ¼ ZðF ðP,rPÞ,F ðD,rDÞÞ; // Prop. 2

begin

foreach pAVP , in suffix ordesr do

foreach ADF ðP,pÞ do

Compute ZðA,|Þ; // Prop: 3
j
foreach paAancðpÞ\fpg do

Compute ZðPðp,paÞ,|Þ; // Prop: 3
j

66666666664
foreach dAVD, in suffix order do

foreach BDF ðD,dÞ do

Compute Zð|,BÞ; // Prop: 3
j
foreach daAancðdÞ\fdg do

Compute Zð|,Dðd,daÞÞ; // Prop: 3
j

66666666664
foreach pAVP , in suffix order do

foreach dAVD, in suffix order do
foreach ADF ðP,pÞ do

foreach BDF ðD,dÞ do

Compute ZðA,BÞ; // Prop: 5
j66664

foreach paAancðpÞ\fpg do

foreach daAancðdÞ\fdg do

Compute ZðPðp,paÞ,Dðd,daÞÞ; // Prop: 4
j66664

6666666666666666664

6666666666666666666664

�������������������������������������������������������������
end
4.3.4. Complexity

We denote by N the maximum degree of a vertex in the pattern
tree or in the data tree, H the maximal height of both trees and S

the maximal size (number of vertices) of both trees. We recall that
a set of size n has 2n subsets.

The time complexity of computing each reformulation used in
the algorithm is:
�
 ZðPði,iaÞ,|Þ and Zð|,Dðj,jaÞÞ-Oð1Þ.

�
 ZðA,|Þ and Zð|,BÞ-OðNÞ.

�
 ZðPði,iaÞ,Dðj,jaÞÞ-OðNÞ.

�
 ZðA,BÞ-OðN � 2N

Þ.
Fig. 8. A tree G and the rooted trees Ga and Ge.
Combining these complexities with the different loops of the
algorithm, we obtain that the total computation is in
O(S2*(N*23*N+H2*N)) time complexity.
If the maximal degree is bounded, the total computation is in
O(S2*H2) time complexity.

4.4. Algorithm for unrooted trees

First, let us give an expression of the homeomorphic alignment
distance between unrooted trees, in function of the distances
between all their possible rooted versions.

Let G¼ ðV ,E,oÞ be a weighted tree, let rAV , we denote by Gr,
the directed weighted tree rooted in r, such that G is the
undirected graph associated to Gr (see Fig. 8).

Proposition 6. Let P¼ ðVP ,EP ,oPÞ and D¼ ðVD,ED,oDÞ be two

weighted trees. We have:

ZðP,DÞ ¼ min
iAVP ,jAVD

fZðPi,DjÞg:

Proof. Let G¼ ðV ,E,oÞ be a graph, and rAV a vertex of G. Notice
that:
�
 a merging occurring on a vertex vAV\frg in G can occur in Gr,

�
 deletion, insertion, resizement, and division occurring in G can

occur in Gr.

On the other hand, for each optimal homeomorphic alignment

H of P in D, it is easy to see that there exists pAVP and dAVD, such

that p and d are not affected by a merging. For example, if

D0 ¼ ðV 0D,E0D,o0DÞ is a subgraph such as ZðP,DÞ ¼ ZðP,D0Þ, p and d can

be chosen as 1-degree vertices of VP and V 0D, respectively. As a

result, ZðP,DÞ ¼ ZðPp,DdÞ. Since the homeomorphic alignment is

more constrained in the case of rooted trees than in the case of

unrooted trees, we can assure than ZðP,DÞrZðPa,DbÞ,aAVP ,bAVD.

To sum up, knowing that ZðP,DÞrZðPa,DbÞ,aAVP ,bAVD, and that

there exists pAVP and dAVD, such that ZðP,DÞ ¼ ZðPp,DdÞ,

we conclude that ZðP,DÞ ¼miniAVP ,jAVD
ZðPi,DjÞ. &

4.4.1. Naive algorithm

Let P¼ ðVP ,EP ,oPÞ and D¼ ðVD,ED,oDÞ be two weighted trees.
From Proposition 5, we propose a first, naive algorithm to
compute ZðP,DÞ, consisting of computing the homeomorphic
alignment distance for all couples of weighted rooted
trees we can obtain from P and D, and keeping the minimum
reached.

Complexity: Let P¼ ðVP ,EP ,oPÞ and D¼ ðVD,ED,oDÞ be two
weighted trees. As the number of rooted trees we can obtain
from an undirected tree is equal to the number of vertices of this
graph, the number of couples of weighted rooted trees we can
obtain from P and D is equal to jVP j � jVDj.

The total computation is then in OðjVPj
2 � jVDj

2 � ð2dP � 2dD �

ðdD � 2dP þdP � 2dD ÞþhP � hD � ðdPþdDÞÞÞ time complexity, where hP

(respectively, hD) is the maximal height of a rooted tree obtained
from P (respectively, D).
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If the maximal degree is bounded, the total computation is in
OðjVPj

2 � jVDj
2 � hP � hDÞ time complexity.

4.4.2. Optimized algorithm

It is easy to see that the above algorithm computes the
alignment of subparts of P and D more than one time. Using
dynamic programming and an adapted order of navigation in the
tree, we can avoid useless computation.

Let P¼ ðVP ,EP ,oPÞ and D¼ ðVD,ED,oDÞ be two undirected
weighted trees.

We denote by F ðP,a,bÞ,a,bAVP the set of rooted trees Pr, rAVP ,
such that b is an ancestor of a in Pr. We denote by anc(P,a,b),
a,bAVP the set of vertices xAVP such that x is an ancestor of a in at
least one rooted tree in F ðP,a,bÞ. We denote by CðP,a,bÞ, a,bAVP

the set of vertices xAVP such that x is a child of a in at least one
rooted tree in F ðP,a,bÞ.

It is easy to see that for computing ZðPpði,iaÞ,Ddðj,jaÞÞ and
ZðF ðPp,iÞ,F ðDd,jÞÞ, we need to know ZðPpðic ,iÞ,Ddðjc ,jÞÞ for all
ic ACðP,i,pÞ, jc ACðD,j,dÞ. We can start by computing
ZðPpði,iaÞ,Ddðj,jaÞÞ and ZðF ðPp,iÞ,F ðDd,jÞÞ, for all i (respectively, j)
being a leaf of Pp (respectively, Dd), which have no child, by
definition, and continue iteratively with all vertices which have all
their children already computed.

An adapted order of navigation for a tree T ¼ ðV ,E,oÞ can be
obtained by the following algorithm.

Algorithm 2. Order of navigation computation algorithm
(compute Order)
Data: unrooted tree T

Result: list of couples of vertices L

begin
list of couples of vertices L’|

LIFO queue of vertices Q’|

foreach vAV do
ifdegðvÞ ¼ 1then

push v in Q
j66664

while Q a| do
pop v of Q

foreach wAN ðvÞ do

if ðv,wÞ=2L then

if 8xAN ðvÞ\fwg,ðx,vÞAL then

push w in Q

add ðv,wÞ at the end of L

$666664

6666666664

6666666666666664

������������������������������������
end
Complexity: Let T ¼ ðV ,E,oÞ be an unrooted tree. Each vertex of
degree 1 (one) will be put in the queue, then, for each edge, each
of its vertices will be put twice in the queue. As jV j ¼ jEjþ1, the
complexity of computeOrder is in OðjEjÞ.

Final algorithm: We can compute Homeomorphic Alignment
for unrooted trees with improved complexity, using this order of
navigation.

Algorithm 3. Homeomorphic Alignment Distance for Unrooted
Trees
Data: pattern rooted tree P,
data rooted tree D

Result: ZðP,DÞ
begin
list of couples of vertices LP’computeOrderðPÞ

list of couples of vertices LD’computeOrderðDÞ

foreach ðp,p0ÞALP do

foreach ADF ðPp0 ,pÞ do

Compute ZðA,|Þ; // Prop: 3
j
foreach paAancðP,p,p0Þ\fpg do

Compute ZðPpa ðp,paÞ,|Þ; // Prop: 3
j

66666666664
foreach ðd,d0ÞALD do

foreach BDF ðDd0 ,dÞ do

Compute Zð|,BÞ; // Prop: 3
j
foreach daAancðD,d,d0Þ\fdg do

Compute Zð|,Dda ðd,daÞÞ; // Prop: 2
j

66666666664
foreach ðp,p0ÞALP do

foreach ðd,d0ÞALD do

foreach ADF ðPp0 ,pÞ do

foreach BDF ðDd0 ,dÞ do

Compute ZðA,BÞ; // Prop: 5
j66664

foreach paAancðP,p,p0Þ\fpg do

foreach daAancðD,d,d0Þ\fdg do

Compute ZðPpa ðp,paÞ,Dda ðd,daÞÞ; // Prop: 4
j66664

6666666666666666664

66666666666666666666664
Compute ZðP,DÞ; // Prop: 2 and Prop: 6

��������������������������������������������������������������������
end
Complexity: Let P¼ ðVP ,EP ,oPÞ and D¼ ðVD,ED,oDÞ be two

weighted trees. The initialization of LP and LD is in OðjVPj �

dPþjVDj � dT Þ time complexity.
Observe that, for pAVP ,

X
p0AN ðpÞ

jancðP,p,p0Þ\fpgj ¼ jVP j�1:

As a result,X
ðp,p0 ÞALP

jancðP,p,p0Þ\fpgj ¼ ðjVPj�1Þ � jVP j:

Combining the time complexities of computing the refor-
mulations (given in the Section 4.3.4) with the loops of the
algorithm, and taking into account the above observation, we
obtain that the total computation time of this algorithm is in
O(S2*(N*23*N+S2*N)) complexity, with N and S defined as in
Section 4.3.4.

If the maximal degree is bounded, the total computation is in
O(S4) time complexity.
5. Cut operation

For the purpose of removing spurious branches without
any cost, we propose to integrate the cut operation in our
alignment.

In [30], Wang et al. propose a new operation allowing to
consider only a part of a tree. Let G¼ ðV ,A,oÞ be a weighted tree.
Cutting G at an arc aAA, means removing a, thus dividing G into
two subtrees G1 and G2. The cut operation consists of cutting G at
an arc aAA, then considering only one of the two subtrees. Let K a
subset of A. We use Cut(G,K,v) to denote the subtree of G
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Fig. 9. Examples of cut operations. Top row: on an unrooted tree. Bottom row: on

a rooted forest.

Frequencies for |Vp| = 7, on rooted trees

B. Raynal et al. / Pattern Recognition 43 (2010) 2937–29492946
containing v and resulting from cutting G at all arcs in K. In the
case of a rooted tree, we consider that the root rG of G cannot be
removed by the cut operation, and then we use the notation
Cut(G,K)¼Cut(G,K,rG). In the case of a rooted forest, we consider
that the root of each rooted tree composing the rooted forest
cannot be removed by the cut operation, and then we use the
same notation than above: Cut(G,K).

See Fig. 9 for some examples of cut operation.
Our main problem can be stated as follows: Given a weighted

tree P¼ ðVP ,AP ,oPÞ (the pattern tree) and a weighted tree
GD ¼ ðVD,AD,oDÞ (the data tree), find ZcutðP,DÞ ¼minK DAD ,vAVD

fZðP,CutðD,K ,vÞÞg and the associated homeomorphic alignment.
In the case of rooted trees and rooted forests, ZcutðP,DÞ ¼
minK DAD

fZðP,CutðD,KÞÞg.
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5.1. Integration of cut operation in our algorithm

It can be seen that the cut operation can be integrated in the
homeomorphic alignment by replacing the deletion of complete
subtrees by their cut.

In order to obtain the algorithms for the computation of Zcut ,
we just need to replace:
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Fig. 10. Frequencies of alignment and homeomorphic alignment for variable sizes

of data tree, for the different rooting cases.
Proposition 3 by the following:

Proposition 7. Let iAVP\fpg,jAVD\fdg,iaAancðiÞ,jaAancðjÞ,

Zcutð|,|Þ ¼ 0

ZcutðPði,iaÞ,|Þ ¼ ZcutðF ðP,iÞ,|ÞþgðoPðia,iÞ,0Þ

ZcutðF ðP,iaÞ,|Þ ¼
X

i0ACðiaÞ
ZcutðPði

0,iaÞ,|Þ

Zcutð|,Dðj,jaÞÞ ¼ 0

Zcutð|,F ðD,jaÞÞ ¼ 0:

It is interesting to remark that the complexity is not modified.
6. Experimentation

6.1. Usage of homeomorphic alignment

There are several ways to use the homeomorphic alignment:
�
 If we have no a priori knowledge both on pattern tree P and on
data tree D, we need to use the homeomorphic alignment on
the two unrooted trees. In this case, the complexity is in
OðjVP j

2 � jVDj
2Þ.
�
 If we want to be sure that a specific vertex v in the data tree is
aligned with a specific vertex w in the data tree (for example if
we are sure than the vertex of the head in the data is the one
with the highest z-coordinate), we can use the homeomorphic
alignment between Pv and Dw. In this case, the complexity is in
OðjVP j � jVDj � hP � hDÞ, where hP (respectively, hD) represents
the height of P (respectively, D).

�
 If we want to be sure that a specific vertex v in the model tree

is aligned (i.e. there is no merging on v), we can use the
homeomorphic alignment between Pv and D, by successively
computing the homeomorphic alignment between Pv and Dw,
for all wAVD, and using optimizations as in Section 4.4.2. In
this case, the complexity is in OðjVPj � hP � jVDj

2Þ.

�
 If we want to be sure that a specific vertex v in the data tree is

aligned (i.e. there is no merging or cut on v), we can use the
homeomorphic alignment between P and Dv, using the same
method as above. In this case, the complexity is in
OðjVP j

2 � jVDj � hDÞ.
In our application, consisting to find the initial pose of a subject,
we can at least assume that the torso of the subject will be
aligned. Then, we can use the matching with OðjVP j � hP � jVDj

2Þ for
the initialization. For the tracking, if a part of the subject is static,
we can use the last alignment of this part for obtain a matching in
OðjVP j � jVDj � hP � hDÞ.
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Fig. 12. Special case where alignment is better than homeomorphic alignment.

First column: P is the pattern tree, D is obtained from P by a weight variation of

20% on {a,b}, and by adding a new 1-degree vertex c, linked to b by an edge

weighted by 1. Second column: optimal alignment. P0 ¼ P and D0 ¼ CutðD,ffb,cgg,bÞ.

Accuracy is equal to 100%. Last column: homeomorphic alignment. P and D are

already homeomorphic. P
00

¼ P and D
00

¼MKðDÞ. Accuracy is equal to 50%.

B. Raynal et al. / Pattern Recognition 43 (2010) 2937–2949 2947
6.2. Results

Our model tree contains seven vertices, representing head,
torso, crotch, the two hands and the two feet. Experimentally, the
data tree obtained from the skeleton of the visual hull has a
degree bounded by 4, and its number of vertices is between 7 and
20, with a Gaussian probability repartition centered on ten.

All the results have been obtained on a computer with a
processor Intel(R) Core(TM) 2 Quad Q8200 at 2.33 GHz and 3 Go of
RAM, with Linux, Ubuntu 9.04. The algorithms have been
implemented in C++.

6.2.1. Speed

Protocol: To find the average computation time of involved
algorithms, we have randomly generated 32 pattern trees, and for
each one, 32 data trees, yielding 1024 pairs of trees. Each pattern
tree has seven vertices, one of which has a degree equal to 4. Each
data tree has at least one 4-degree vertex. The results for both
alignment and homeomorphic alignment algorithms, for the
different kinds of trees, are shown in Fig. 10.

Discussion: For our purpose of initializing the pose of a subject,
we can see that in the average case (jVdj ¼ 12), the homeomorphic
alignment can be computed very quickly (frequency Z100), even
in the case of unrooted trees. However, we prefer to use the
homeomorphic alignment with a rooted pattern tree, because of
its better speed, without loss of precision.

The main observation we can do, in regard of the results, is the
weak difference of performances between alignment and home-
omorphic alignment in practice, even if there is a significant
difference of complexity between alignment and homeomorphic
alignment. It is due to small size of the trees involved here, and to
the fact that, even if the degree of the trees is bounded, and by this
way, can be considered as a constant, the computation of the
alignment (or homeomorphic alignment) of subforests take a
large part of the computation time. This computation part being
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Fig. 11. Precision with different percents of weight variation, for different sizes of patte

vertices. Columns, from left to right: 0%, 10% and 50% of weight variation.
similar for both algorithms, the rest (where the complexity
differs) is less significant in regard of the speed.

6.2.2. Accuracy

Protocol: Each experiment consists of the following:
1.
50

50
tur

nt

rn t
We randomly generate a pattern tree P.

2.
 We generate a data tree D from P in two steps:

weight variation: we randomly alter the edge weights by
a given amount of variation.
structural noise: we randomly add new vertices by three
ways, corresponding to the different types of noise:
splitting an existing vertex, and linking the two parts
by a 0-weighted edge (splitted vertices), adding a new
2-degree vertex by the split of an edge (useless 2-degree

vertices), and adding a new 1-degree vertex, linked by an
randomly weighted edge (spurious branches and ghost

limbs).
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Fig. 13. Examples of results obtained on 3D shapes with different resolutions and noises: green voxels represent the points matching with pattern tree. (For interpretation

of the references to color in this figure legend, the reader is referred to the web version of this article.)
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3.
 We compute the alignment and the homeomorphic alignment
between P and D.
4.
 The precision is given by the percentage of good matchings,
that is the percentage of pattern tree vertices that match with
their equivalent in the data tree (which is known, according to
the above protocol to generate the data tree).

The results, obtained by averaging precisions over 1000 experi-
ments, are shown on Fig. 11.

Discussion: The first important point which can observed is
that homeomorphic alignment give always perfect matchings
when only structural noise occurs. In the other cases, the
homeomorphic alignment globally gives a more accurate match-
ing than the alignment, specially in regard of the structural noise.
However, in case of high weight variation and low structural
noise, the results of alignment are better than those of home-
omorphic alignment. It is due to a special case of subtree and
weight variation, which affects the accuracy of homeomorphic
alignment but not the alignment (see Fig. 12 for an example).

In the case of our application, we empirically observe weight
variation between 0% and 33%, and structural noise between 0%
and 200%. For the majority of these cases, homeomorphic
alignment give sensibly better results.

6.2.3. Pose initialization

We have checked the alignment on several types of visual
hulls, with different resolutions (643 and 1283), with or without
spurious branches and ghosts limbs. Some of these results are
shown in Fig. 13.

The ghost limb can be matched by the algorithm only if its
position on the skeleton is the same as another limb, and if it has
approximately the same length. In the other cases, it is
successfully removed.

The spurious branches do not disturb the good alignment of
the model on the data.

The only case of bad alignment has been obtained on a very
low quality visual hull, where the length of legs was shorter
than the length of arms. This case can be solved by rooting the
model tree on the head, and the data tree on the vertex with
highest z-coordinate.
7. Conclusion

In this paper, we have introduced a new type of alignment
between weighted trees, the homeomorphic alignment, taking
into account the topology and avoiding the noise induced by
spurious branches, splitted and useless 2-degree vertices. We
have also developed several robust algorithms to compute it with
a good complexity, which enable its application in real time for
motion capture purpose.
In future works, we will take into account more useful
information on the model, such as spatial coordinates of data
vertices, and include them in our algorithm, for a better
robustness. Finally, using this alignment, we will propose a new
fast method of pose initialization for motion capture applications.
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