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Abstract

Handwritten document understanding is a fundamental research problem in

pattern recognition and it relies on the effective features. In this paper, we pro-

pose a joint feature distribution (JFD) principle to design novel discriminative

features which could be the joint distribution of features on adjacent positions

or the joint distribution of different features on the same location. Following

the proposed JFD principle, we introduce seventeen features, including twelve

textural-based and five grapheme-based features. We evaluate these features

for different applications from four different perspectives to understand hand-

written documents beyond OCR, by writer identification, script recognition,

historical manuscript dating and localization. Extensive experimental results

demonstrate that our novel QuadHinge and CoHinge features following the JFD

principle provide promising results on these four applications.
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1. Introduction

Nowadays, a large number of historical manuscripts have been digitized and

technologies from pattern recognition have been applied to handwritten text

search and retrieval. Automatical reading of the text context by OCR methods

is not enough to completely understand the handwritten manuscripts. In prac-5

tice, current OCR systems are actually far from perfect anyway, such that addi-

tional image information should be used in order to understand more of a given

document. For example, writer, date and geographical prevenance (location)

are very important to correctly understand the valuable historical information

contained in manuscripts by historians and paleographers [1].10

Handwriting can be used as human behavioral biometrics measure [2] as

the individual handwriting style is encoded into the handwritten patterns when

they were written down. This allows for the analysis of the handwriting style

of manuscripts based on handwritten texts to uncover the important context

information, such as the writer, date and location. The main task of handwrit-15

ing style analysis is to design handwriting style-specific features to extract the

visual attributes of writing. Feature representation maps the raw pixels of char-

acters into a discriminant high-dimensional space [3, 4] which captures specific

information of the characters and can be processed by computers and it takes

a very important role in pattern recognition and computer vision field. In fact,20

many efforts have been made to design discriminative and powerful features

in computer vision [4]. Although it is shown that a (deep) learning-based fea-

ture representation may achieve significant results in various applications, the

hand-crafted features are still very important in handwritten document anal-

ysis because the amount of data in historical manuscript collection is usually25

not big enough to train deep neural networks. For example, the ImageNet data

set [5] contains several millions samples for training while most historical books

contain only several thousands pages. Particularly, historical manuscripts from

ancient times are very rare and it is hard to use a complex data-intensive ma-

chine learning methods to learn a shallow model which, with disigned features,30
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may be used on small collections. By harvesting classess using shallow methods,

deep learning can be applied after a critical mass of data has been harvested.

In this paper, we propose a general joint feature distribution (JFD) princi-

ple, which allows researchers to design more powerful and discriminative fea-

tures based on the existing feature extraction methods. Several novel features35

are proposed following the JFD principle, such as the CoLBP inspired by the

co-occurrence pattern distributions [6], CoHinge and QuadHinge based on the

original Hinge kernel [2], and the Ink Context inspired by the junction feature [7]

and shape context [8]. We apply the existing and proposed features for multi-

faceted understanding of handwritten manuscripts beyond OCR and evaluate40

these features from four perspectives: answering 4W questions in paleography

and book history [1]: Who, Which, When and Where, corresponding to writer

identification, script identification, dating and localization problems which can

describe the historical context of manuscripts. Fig. 1 shows the five important

questions with the OCR problem and their corresponding research problems to45

understand handwritten manuscripts.

Although there are many methods proposed in the literature for writer and

script identification, very little work has been done on the evaluation of the

performance of these features on both writer and script identification, and

manuscript dating and localization. Therefore, it is still very hard for histo-50

rians or paleographers to choose the appropriate features to perform specific

tasks on their own data sets. Our work in this paper, therefore, is to pro-

vide a comprehensive performance evaluation of different features for different

applications and to provide new perspectives and insights for feature designing.

The rest of this paper is organized as follows. In Section 2, we introduce the55

joint feature distribution (JFD) principle. Section 3 presents seventeen features,

including twelve textural-based and five grapheme-based features. Section 4

provides the extensive experimental results for writer identification, script iden-

tification, historical manuscript dating and localization and the discussion and

conclusion is presented in Section 5.60
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Who wrote it?

Writer identification

When it has been written?

Manuscript dating

Which script?

Script identification

Where was it from?

Localization

Figure 1: The four interesting questions for handwritten manuscript understanding and their

corresponding problems beyond OCR.
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Figure 2: Feature network: more powerful and discriminative features can be generated fol-

lowing the four JFD principles. xjz is the position on the image and Ki and Kj are the

kernel functions (they can be the same or different type of kernel functions). Each note can

be described by single feature f i(xjz ) or by the joint feature f i,··· ,i+n(xjz ). For example,

notes in layer-1 can be represented by: f(Ki(xjz )) = Ki
(
f(xjz ), f(xjz+1 )

)
, and notes in

layer-2 can be represented by: f(Kj(xjz )) = Kj
(
f(Ki(xjz )), f(K

i(xjz+1 ))
)
.

2. Joint feature distribution principle

Previous studies [2, 6, 9, 10, 11, 12] have shown that the use of spatial co-

occurrence among features is more discriminative and powerful. In this paper,

we extend this idea to the joint feature distribution principle (JFD principle),

which can be divided into three different groups: the spatial joint feature distri-65

bution (JFD-S), the attribute joint feature distribution (JFD-A) and the joint

kernel feature distribution (JFD-K).

We denote by f i(xj) the local feature f i on the position xj in an image.

Following by the JFD-S principle, new features can be derived as:

f i(xj , · · · , xj+n) =
[
f i(xj), · · · , f i(xj+n)

]
joint

(1)

where xj , · · · , xj+n are n + 1 points on the image which have a certain spatial

4



relationship and the new joint feature f i(xj , · · · , xj+n) captures more complex

local structures with a larger supporting region.70

Several feature methods followed the JFD-S principle have been proposed in

the literature. For example, the Gray-Level Co-occurrence Matrices (GLCM)

has been proposed for texture classification [9] and writer identification [13].

Pairwise local features has been studied for food recognition in [10] and co-

occurrence of histogram of orientation gradient (CoHOG) has been studied75

in [11].

Following by the JFD-A principle, new features can be derived as:

f (i,··· ,i+n)(xj) = [f i(xj), · · · , f i+n(xj)]joint (2)

where f i(xj) and f i+n(xj) are different local features on the point xj which

may capture different attributes or properties. The attribute joint feature

f (i,··· ,i+n)(xj) usually has specific meanings. For example, the joint distribution

of ink trace and ink width can capture the property of writing instruments [12].80

In [14], the oriented Basic Image Feature Columns (oBIF Columns) which is

the joint distribution of six Derivative-of-Gaussian filters at two scales has been

applied for writer identification.

Following by the JFD-K principle, new features can be derived as:

f i(xj , · · · , xj+n,K) =[
K
(
f i(xj), f

i(xk)
)
, · · · ,K(

f i(xj+n), f
i(xk+n)

)]
joint

(3)

where K(·) is the kernel function which can describe the relationship between

feature f i on two different positions xj and xk. Any kernel functions can be85

chosen and the features with different kernel functions has different properties.

For example, using the differential kernel operator based on the Hinge feature [2]

derives the ΔnHinge feature [15] which is a rotation-invariant feature for writer

identification.

The difference between spatial joint feature f i(xj , · · · , xj+n) and attribute90

joint feature f (i,··· ,i+n)(xj) is that the spatial joint feature f i(xj , · · · , xj+n)

is the joint distribution of the same type of feature f i on different positions
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xj , · · · , xj+n and the attribute joint feature f (i,··· ,i+n)(xj) is the joint distribu-

tion of different types of features f i, · · · , f i+n on the same position xj . The

f i(xj , · · · , xj+n) inherits the properties of the f i(xj) feature. For example, if95

f i(xj) is sensitive to the rotation changes, the f i(xj , · · · , xj+n) is also sensitive

to the rotations. However, using kernel functions, f i(xj , · · · , xj+n,K) can in-

troduce new properties or solve the transform invariant problems, depending on

the definition of the kernel function K.

One problem of the features derived based on the JFD principle is that the100

feature dimension is very high. For example, if the dimension of f i(xj) is m,

the dimension of the joint feature f i(xj , · · · , xj+n) is mn+1. Therefore, n is

usually set to 1, which results in the spatial co-occurrence features [6, 9, 10].

When n is large, the f i(xj , · · · , xj+n) describes large and complex structures in

handwritten documents, which are called allographs or graphemes. The distri-105

bution of the allographs of documents is sparse in the feature space, which can

be solved by the bag-of-word model [16] and the textural-based feature becomes

the grapheme-based feature.

Following the proposed three principles, a feature network can be built,

as shown in Fig. 2. Each node in the feature network represents the loca-110

tion on the image and can be described by the single feature f i(xj) or by

the joint feature f (i,··· ,i+n)(xj). Recursively using these three principle with

proper local features and kernel functions, new and more abstract features can

be derived directly from this feature network. For example, given the local

feature f0(xi), a new feature f1(xi) can be built using kernel function Ki by:115

f1(xi) = Ki
(
f0(xi), f

0(xj)
)
where xi and xj are spatially adjacent. The new

feature f1(xi) can be also considered as the local feature f0(xi) = f1(xi) to build

more features with the same or a different kernel functoin Kj . The ΔnHinge

feature [15] is a typical example, where the ΔnHinge kernel can be computed di-

rectly from the Δn−1Hinge kernel with the differential operator kernel function120

(see the ΔnHinge feature in Section 3).
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3. Feature representation

In this section, we introduce several typical features developed in the liter-

ature for handwritten document analysis. In addition, we also propose several

new features followed the JFD principles. The features can be roughly catego-125

rized into two groups [2]: textural-based and grapheme-based methods and the

computation details are presented in the following sections.

3.1. Textural-based features

Textural-based method considers the handwritten document as a textural

image and extracts statistical information from text blocks on the entire image.130

Textural features extracted from handwritten images often capture the curva-

ture and slant attributes of handwriting style and they usually do not need any

segmentation method. Several typical textural-based features in the literature

and their extensions are described in this section.

Local Binary Pattern (LBP) [17] LBP is a gray-scale invariant textural

feature and is widely used in texture recognition [18] and writer identifica-

tion [19, 20]. For a pixel xi in an image, the LBP code is defined as:

LBPP,R(xi) =

P−1∑
p=0

s(gp − gxi
) · 2p (4)

s(x) =

⎧⎨
⎩

1, if x ≥ 0

0, if x < 0
(5)

where gxi and gp are the pixel values of point xi and its neighbors, and P and135

R are the number of neighbors and the radius of the neighbor pixels to the

xi, respectively. Following works [17, 20], we set P = 8 and R = 1 and we

use LBP for short to represent LBP8,1 thereafter. Finally, the 255 patterns

without the background one are considered to build the LBP histogram and

the resulting descriptor is of dimension 255. LBP follows the JFD-S principle,140

which joints the binary test s(x) on the eight neighbors of the certain pixel xp:

LBP(xp) = [s(x1 − xp), ..., s(xi − xp), ..., s(x8 − xp)]joint.
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xi

xj

l

Figure 3: Co-occurrence patterns on ink contours.

Co-occurrence Local Binary Pattern (CoLBP) Following the JFD-S princi-

ple, we propose the co-occurrence LBP on handwritten documents, inspired by

the work [6]. Given two pixels xi and xj with a Manhattan distance l along the

ink contour and their LBP uniform codes LBP(xi) and LBP(xj) (see Fig. 3),

the CoLBP is defined as

CoLBP(xi, xj) =
[
LBP(xi),LBP(xj)

]
joint

(6)

The uniform LBP code is defined as the binary pattern where there is at most

2 bitwise transitions from 1 to 0 or vice versa [17]. The reason that we consider

the uniform LBP code is that the most of LBP codes obtained along the ink145

contours are uniform patterns. In order to make CoLBP rotation-invariant, we

only consider the non-redundant patterns
(
LBP(xi) ≤ LBP(xj)

)
. Finally, a 2D

histogram is built to represent the probability of the co-occurrence LBP patterns

along the ink contours and the dimension of the feature vector is 58*(58+1)/2

= 1711. The parameter l is empirically set to 8 in our experiments.150

Run-length Histogram (RLH) Run-length features are widely used in hand-

written document analysis [21, 22, 23]. The run-lengths of certain patterns

along a given direction, such as ‘0’ and ‘1’ on binarized images, are quantized

into a histogram as the feature representation. Usually, run-length histograms

of the ink and background pixels with the maximum length 100 are obtained155

on the horizontal and vertical directions and concatenated together as the final

feature vector with the dimension of 2*2*100 = 400. The run-length feature

follows the JFD-K principle, where the kernel function is defined to count the

length of runs on the scanning direction.
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ly

ly+d

ly+2d

p1

0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0

p2

0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

p3

0 0 0 0 1 1 10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

S

bp1

bp2

bp3

Figure 4: Illustration of run-lengths of local binary pattern P1, P2 and P3 on the sequence

S formed by three parallel scanning lines ly , ly+d and ly+2d with d = 6.

Run-lengths of Local Binary Pattern (LBPruns) The LBPruns feature has160

been proposed in our previous work [24], which computes the run-lengths of lo-

cal binary patterns formed with n parallel scanning lines along a given direction

with inter-line distance d on binarized images. Fig. 4 provides an example of

LBPruns with three lines on the horizontal direction. The number of n deter-

mines the number of possible local binary patterns and the inter-line distance165

d determines the spatial resolution of local binary patterns. Finally, 2n × 2

histograms on horizontal and vertical directions can be obtained and they are

concatenated together to form the final feature vector. In this paper, we empir-

ically set n and d to 5 and more detailed information of the selection of these

parameters can be found in [24]. The maximum length Nmax is set to 100 (the170

discussion of the parameter is presented in Section 4.1.2) and the dimension of

the final feature vector is 2*25*100 = 6400. The LBPruns feature follows the

JFD-N principle, which builds the feature vector using the run-length methods

based on the LPB computations.

Hinge [2] The Hinge feature is the joint probability distribution of the ori-175

entations of legs of two contour fragments attached at a common end pixel on

the ink contours. Fig. 5 shows two examples of the Hinge kernel on contour

fragments with leg length l and the joint probability of the two orientations, α

and β (α < β), are quantized into a 2D histogram. In this paper, we set l = 7

and the number of bins of α and β is set to 23. Finally, the dimension of the180

feature vector is 253. The Hinge feature follows the JFD-A principle, which

considers two different directions (can be considered as two attributes) on each
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contour pixel.

Co-occurrence Hinge (CoHinge) [25] We provide a feature followed the JFD-

S principle: the CoHinge, which is defined as the joint distribution of Hinge

kernel on two different points xi and xj with Manhattan distance l on the

contours, similar as the CoLBP feature:

CoHinge(xi, xj) =
[
Hinge(xi),Hinge(xj)

]
(7)

Each Hinge kernel has two values α and β, and therefore, the CoHinge kernel

has four values [α(xi), β(xi), α(xj), β(xj)], which can be quantized into a 4D185

histogram. The Manhattan distance l is set to 7 (more information of this

parameter is shown in Section 4.1.2). We set the number of bins of the angle to

10, and finally the dimension of the CoHinge feature is 10∗10∗10∗10 = 10, 000.

ΔnHinge: The ΔnHinge is a rotation-invariant texture features, which has

been proposed in [15]. The ΔnHinge feature can be computed from the feature

network (see Fig. 2), with the differential operator between Hinge kernels as the

kernel function K:

fn(xi) = K
(
fn−1(xi), f

n−1(xi + δl)
)

= K
(
fn−1, ·) (8)

where fn(xi) = (Δnα,Δnβ) is the Hinge kernel and n is the order of the differ-

ential operator. We use K
(
fn−1, ·) for short representation and the ΔnHinge

can be recursively computed by:

fn(xi) = K
(
fn−1, ·)

= K
(
K
(
fn−2, ·), ·)

= K

(
K
(
K
(
fn−3, ·), ·), ·

)

= · · ·

(9)

where f0 = (α, β) is the original Hinge kernel [2]. More precisely, the ΔnHinge

kernel is defined as:190

⎧⎨
⎩

Δnα(xi) =
Δn−1α(xi)−Δn−1α(xi+δl)

δl

Δnβ(xi) =
Δn−1β(xi)−Δn−1β(xi+δl)

δl

(10)
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Although many different features can be generated based on the feature

network with different n, in this paper, we only report the performance of the

Δ1Hinge feature and the feature dimension is 780.

Triple Chain Code (TCC) [26] The chain code on a pixel of the writing

contours is the one of eight directions where the next pixel on, denoted from 1

to 8. Following the JFD-S principle, we evaluate the performance of triple chain

code (TCC) feature which is also used in [26] for writer identification.

TCC(xi, xi+l, xi+2l) = [CC(xi),CC(xi+l),CC(xi+2l)] (11)

where CC(xi) ∈ {1, 2, · · · , 8} is the chain code value on position xi, and l is the

Manhattan distance along the writing contours. In this paper, we set l to 7,195

the same as the value of the CoHinge feature. Finally, the feature dimension is

8× 8× 8 = 512.

Quill and QuillHinge [12] The Quill feature is the joint probability distri-

bution p(α,w) of the relation between ink direction α and the ink width w,

which captures the writing instrument property. It follows the JFD-A principle,200

because the feature types, the ink direction and ink width, are different. The

QuillHinge is an extension of the Quill and Hinge, and it is the probability of

p(α, β, w), resulting in a 3D histogram. We use the same parameters of the

Quill and QuillHinge as the original paper [12], and the dimensions of Quill and

QuillHinge are 1600 and 31,200, respectively.205

Quadruple Hinge (QuadHinge) [25] We also provide the QuadHinge feature

to demonstrate the powerful of the features following the JFD-A principle. In

order to incorporate the curvature information of the contour fragments in the

Hinge kernel, we define a fragment curvature measurement (FCM) C(Fc) for

contour fragments, inspired by [27]:210

Definition. Let Fc be a contour fragment on the ink trace, p1 = (x1, y1)

and p2 = (x2, y2) are the Cartesian coordinates of the two end points. Then the

fragment curvature measurement C(Fc) is defined as the proportion of the Eu-

clidean distance d2(p1, p2) between two end points to the length of the contour
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α1

β1

C(F1)=1.06

C(F2)=1.06

α2

β2

C(F2)=1.06

C(F1)=0.53

Figure 5: The left and right figures show two contour fragments with the same Hinge kernel

(α1=α2 and β1=β2) but different fragment curvature values C(Fc).

fragments s.

C(Fc) = d2(p1, p2)/s (12)

where d2(p1, p2) =
√

(x1 − x2)2 + (y1 − y2)2 . Note that all the pixels of the

contour fragments are represented in the Cartesian coordinates and the Cheby-

shev distance between two neighbor pixels is equal to 1.

A novel Quadruple Hinge kernel, which integrates the C(Fc) into the original

Hinge kernel, defined as: H(p, s) =
{
α, β, C(F1), C(F2)

}
, where p is the center215

point, s is the fragment length, C(F1) and C(F2) are the fragment curvature

measurements of the two contour fragments, respectively (see the examples in

Fig. 5). Adding the curvature information of the two contour fragments can

improve the discriminative of the Hinge kernel. For example, the Hinge kernels

{α, β} of the left and right fragments in Fig. 5 are the same. However, the220

curvatures of the fragments are different, yielding different Quadruple Hinge

kernels. Finally, the Quadruple Hinge kernels on all contour pixels are collected

and quantized into a 4-D histogram. In order to capture the scale information,

we agglomerate the Quadruple Hinge kernels with multiple scales, where the

scale factor s is set as: s = s0 ∗ (t + 1). The s0 is the basic fragment length225

and t = {0, 1, · · · , T} and T is the index of maximal scales. In this paper, we

set the number of angle bins Na to 12, the number of C(F) bins Nl to 6 s0 = 5

and T = 10, and the final feature dimension is 6 ∗ 6 ∗ 12 ∗ 12 = 5, 184. More

information of the selection of these parameters can be found in Section 4.1.2.
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Cloud Of Line Distribution (COLD) Inspired by the fact that writing con-230

tours can be approximated by a set of line segments obtained by the sequential

polygonization algorithm [26] and the lengths and orientations of these straight

lines can capture the handwriting styles, we design a new curvature-free fea-

tures called Cloud of Line Distribution (COLD). The COLD feature is the joint

probability distribution of the length and orientation of these lines followed the235

JFD-A principle and the computational procedure is described as follows (see

Fig. 6): First, the ordered high-curvature points on the writing contours are ob-

tain using the method [28], denoted by P = {pi(xi, yi), i = 0, 1, 2, · · · , n}, where
(xi, yi) is the coordinate of the point pi. The line segments can be obtained be-

tween any pair of the dominant points (pi, pi+k), where k the parameter which240

denotes the distance on the dominant sequence P. Each line can be measured

by a pair (θ, ρ) in the polar coordinate space, where θ is the line orientation

and ρ is the line length. All the lines in a given handwritten document can

form a distribution in the polar coordinate space and can be quantized into a

log-polar histogram inspired by the Shape Context [8]. The features obtained245

with k = 1, 2, 3 in the log-polar space with the radius 7 and the angular intervals

12 are concatenated into one feature vector with the dimension: 7∗12∗3 = 252.

3.2. Grapheme-based features

Grapheme-based features capture the statistical distribution of the allograph

segmented from the handwritten texts and it is assume that individuals have250

their own prototypes in their brain to draw characters. Although any spatial co-

occurrence features can be generalized to the grapheme-based features, in this

section, we introduce several typical grapheme-based features for handwritten

manuscript understanding. In fact, all the grapheme-based features follow the

JFD-S principle, which concatenate the spatial information together to obtain255

a large structure of the ink trace.

Connected-Component Contours (CO3) [29] The CO3 is the contour ob-

tained from each connected component of the binarized handwritten images. In

order to measure the similarity between CO3s, each CO3 is resampled to contain

13



(a) (b) (c)

(d) (e)

(f) (g)

k = 1

k = 2

Figure 6: Illustration of the process of the COLD construction: (a) The given binarized

connected component; (b) The contour extracted from the binarized image (a); (c) Detected

dominant points (red points); (d) Line segments (red lines) obtained between pair dominant

points when k = 1; (e) The distribution of lines from (d) in the polar coordinate space; (f)

Line segments when k = 2 (Note that some long lines are not shown in order to make the

figure more clear); (g) The distribution of lines from (f) in the polar coordinate space.

a fixed number of coordinate pairs (xi, yi) and the normalized coordinate pairs

can be considered as the feature vector.⎧⎨
⎩

xi = (xi − μx)/σx

yi = (yi − μy)/σy

(13)

where the μx and μy are averages of the xi and yi coordinates and the σx and σy

are the corresponding standard deviations. In this paper, we sample 100 points

on each contour and size of the contour descriptor is 2*100 = 200.

k Contour Fragments (kCF) [30] One limitation of the CO3 is that it is260

sensitive to the cursive handwriting where characters are always touched with

each other and the resulting CO3s are very large and less repeatable. In order

to solve such problem, we extract the contour fragments from the contours,

inspired by [31]. The dominant points P = {pi(xi, yi), i = 0, 1, 2, · · · , n} are

obtained first, using the same method as in the COLD feature. We compute the265

break points B = {bi(xi, yi), i = 0, 1, 2, · · · , n} as the midpoints of each pair of

dominant point (pi, pi+1), and the contour fragments can be obtained between

any pair of the break points (bi, bi+k), denoted as kCF. Similar as the CO3
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m

Figure 7: An illustration of the stroke-length distribution on a reference point (the blue point

in the center). The green rays are the partial length in each direction, and the yellow curve

is the distribution of the partial length in the polar space. The red line is the skeleton line of

the stroke ink. m is the maximum measurable stroke length.

method, 100 points are sampled from each contour fragment and normalized

using the method described in Eq.(13) to describe each kCF.270

Junction features (Junclets) [7] Junction feature is the stroke-length distri-

bution in every directions from 0 to 2π around a reference point (see Fig. 7)

inside the ink trace. When the center point lies on the junction points, such as

the fork points and high curvature points on the skeleton line of the ink strokes,

the corresponding feature is the junction feature, which contain the junction275

information around the joint point. In this paper, we compute the stroke length

distribution in 120 directions equidistantly sampled from 0 to 2π and the feature

dimension of each junction is 120.

k Stroke Fragments (kSF) [30] The connected component of handwritten

texts can be decomposed into fragments based on the fork points. Fig. 8 shows280

an example of a connected component and seven primary stroke fragments are

obtained by segmenting at the fork points, which are denoted by numbers 1 to 7.

In order to extract longer and more complex stroke fragments, a stroke fragment

graph (SFG) is built where the nodes correspond to the primary strokes and

two nodes are linked if their corresponding stroke fragments connect to each285

other (An example is shown in Fig. 8(b)). From the SFG, we can obtain the
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Figure 8: Fig.(a) shows an example of a connected component in a historical document. The

red line is the skeleton line of the ink, green points are the fork points and blue points are the

end points. The connected component can be decomposed into seven parts segmenting at the

fork points. Fig.(b) shows the corresponding stroke fragment graph (SFG).

(a)

#pixels

(b) (c)

Figure 9: Figure (a) shows the stroke length distribution in the directions θm from 0 to 2π.

The red point is the fork point and blue lines are the stroke length. Figure (b) shows the

scale-invariant log-polar space on the fork point. The scale factor w is equal to the half of the

stroke width on the fork point. The ink context is built to count the number of ink pixels in

each bin. Figure (c) shows the resulting descriptors.

more complex stroke fragments (kSF) from any connected sub-graph in the

SFG with the path length k without any loops. Then Ns reference points

are sampled equidistantly on the skeleton line of the stroke fragment and each

point is described by the junction features. Finally, all the Ns junction features290

concatenated together to form the final feature vector. In this paper, we set Ns

to 10 and the size of kSF descriptor is 120*10=1,200.

Ink Context (IC) Given a reference point inside the ink, a scale-invariant
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log-polar space is built with the scale factor w, which is the half stroke width

on the reference point (see Fig. 9). The scale factor w can be computed by295

w = min{len(θm)}, where len(θm) is the stroke length in the direction θm.

Inspired by the Shape Context [8], a coarse histogram is computed by counting

the number of ink pixels in each bin of the log-polar space. In this paper, we

set the parameters of the log-polar space as: the radius is set 4 and the angular

intervals is set 120. Finally, the size of the IC histogram is 4*120 = 480.300

For all the five grapheme-based features, we randomly select handwritten

documents to train the codebook using the 2D Kohonen Self-Organizing Map

(SOM) [2, 32] with the cell size 30× 30 = 900.

4. Applications

In this section, we evaluate the twelve textural-based features and five grapheme-305

based features to answer the 4W questions to understand the handwritten

manuscript, corresponding to the writer identification, script identification, manuscript

dating and localization problems.

4.1. Writer identification

Writer identification is to answer the question: “who wrote the given docu-310

ment?” according to the characteristic handwriting style encoded in the hand-

written text and it has been widely studied in the literature [21, 29, 2, 26, 12, 7].

Given the query handwritten document qsiwx
, where si is the script of the hand-

written text and wx is the writer which needs to be identified, all the documents

in the database psiwi
∈ Dsi with labels of writer wi and script sj are sorted ac-315

cording to the feature distance between qsiwx
and psiwi

to output a hitlist where

the writer of the top document is assigned to wx. In this paper, three different

experimental settings are considered as following:

• Writer identification based on single-script. Both the query document qsiwx

and documents on the database psiwi
∈ Dsi are written with the same script320

si.
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• Writer identification based on mixed-scripts. Both the query document

q
(si,sj)
wx and documents on the database p

(si,sj)
wi ∈ D(si,sj) are written with

two different scripts (si, sj).

• Writer retrieval. For the query handwritten document qsi , there are more325

than one documents from the same hand on the database Dsi . For the task

of writer retrieval, our aim is to retrieve the list of handwritten documents

which are from the same hand with the query document qsi .

Writer identification is performed in a “leave-one-out” manner [2, 7, 12, 26]:

taking the query document out and sorting the rest documents according to the330

distance function to output a hit list. The query document is recognized as the

writer of the document on the top x of the hit list, corresponding to the Top-x

performance. In this paper, Top-1 and Top-10 are adopted in all experiments.

χ2 distance is used because it is the best distance function for the probability

feature vector [2].335

4.1.1. Data sets

Several public databases are available for writer identification, such as the

Firemaker [33], IAM [34], CERUG [7], ICFHR2012 Arabic data set [35] and

ICDAR2013 [36]. The Firemaker set contains four pages of handwriting written

by 250 Dutch subjects: page 1 and page 4 contain the lower-case letters, page340

2 was written by only uppercase letters, and Page 3 contains the “forged” text.

We use the page 1 vs 4 in our experiments, similar as works in [2, 12, 7]. The

IAM set contains 650 writers written in English, modified following the work [2]

from the original IAM database [34]. The CERUG set is a cross-script data set,

written by 105 Chinese subjects on four pages: page 1 and page 2 were written345

in Chinese, page 3 contains the English text and page 4 contains both Chinese

and English characters. The data set used for the ICFHR2012 competition on

writer identification with Arabic scripts [35] contains 204 writers and we only

use the first two paragraphs to perform writer identification. The data set used

for the ICDAR2013 competition on writer identification [36] contains 250 writers350
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Figure 10: Writer identification performance of the LBPruns feature with different values of

the maximum run-length Nmax on the Firemaker data set.

with four pages (2 English and 2 Greek).

4.1.2. Parameter evaluation

In this section, we present the evaluation of the parameter selection for

different features.

Fig. 10 shows the Top-1 performance of writer identification on the Fire-355

maker data set with different maximum run-length Nmax. From the figure we

can find that the performance is quite stable when Nmax ∈ [40, 120]. As men-

tioned above, we set it to 100, following the work [22].

Fig. 11 shows the Top-1 performance of writer identification on the Fire-

maker data set with different Manhattan distance l between two different points360

xi and xj of the CoHinge feature. From the figure we can find that l = 7 provides

the optimal result.

There are four parameters of the QuadHinge feature: the number of angle

bins Na, the number of curvature C(F) bins Nl, the maximal scale T and the

basic fragment length s0. Fig. 12 shows the performance of writer identification365

on the Firemaker data set with different values of the parameter Na, Nl and T .

We can see that the best values are: Na = 12, Nl = 6 and T = 10. The basic

fragment length s0 should be approximately equal to the average stroke width

of the input document. We have found the average stroke width of the whole

Firemaker data set is approximately equal to 5. Therefore, we empirically set370

s0 = 5.

4.1.3. Performance of writer identification based on single-script

In this section, we evaluate the feature performance for writer identification

based on single-script and the results on five data sets are given in Table 1,
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Figure 11: Writer identification performance of the CoHinge feature with different values of

the Manhattan distance l between two points on the Firemaker data set.
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Figure 12: Writer identification performance of the QuadHinge feature with different parame-

ters (the number of curvature bins Na, the number of angle bins Nl and the value of maximal

scales T ) on the Firemaker data set.

from which we can see that the textural-based features provide better results375

than the grapheme-based features. The results of CoLBP are better than LBP.

LBPruns provides better results on the five data sets than LBP and RLH,

except ICFHR2012 with Arabic handwriting. CoHinge and QuadHinge give the

better results than Hinge on all the five data sets. These results demonstrate

that the joint feature distribution followed the JFD principle can improve the380

performance of writer identification.

We can also find that none of these features achieves the best results on all

the five data sets. The QuadHinge feature achieves the best results on Fire-

maker, IAM and CERUG with Chinese data sets, because the QuadHinge cap-
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Table 1: The writer identification performances based on single-script on five data sets: Fire-

maker, IAM, CERUG, ICFHR2012 and ICDAR2013. The column “Dim” is the dimensionality

of each feature. The Top-1 identification rates which are greater than 90% are highlighted

with gray color.

Feature Dim

Firemaker IAM CERUG ICFHR2012 ICDAR2013

250 writers 650 writers 105 writers 204 writers 250 writers

Dutch English Chinese English Arabic English Greek

Top-1 Top-10 Top-1 Top-10 Top-1 Top-10 Top-1 Top-10 Top-1 Top-10 Top-1 Top-10 Top-1 Top-10

T
ex
tu
ra
l-
b
a
se
d

LBP 255 51.2 80.2 62.8 83.5 44.8 68.1 11.9 26.7 38.2 77.2 46.8 74.2 53.2 79.8

CoLBP 1,711 68.8 92.6 66.5 88.0 73.8 95.7 23.3 52.4 56.9 89.9 54.0 85.8 72.2 93.0

RLH 400 59.6 86.2 71.1 89.0 77.1 92.9 25.7 64.8 51.2 80.1 63.0 90.2 74.6 91.8

LBPruns 6,400 72.2 91.8 81.4 94.4 88.6 95.7 77.1 98.1 42.9 73.0 83.2 97.6 82.4 97.0

Hinge 253 84.8 95.8 85.8 95.1 90.9 95.7 22.8 47.1 75.5 92.4 86.2 95.4 80.4 96.2

CoHinge 10,000 91.6 96.4 92.4 96.5 95.2 98.1 42.8 78.1 93.6 99.3 93.0 96.2 93.8 98.8

Δ1Hinge 780 75.6 94.0 82.1 95.7 80.5 93.3 90.5 98.6 61.3 89.5 75.6 93.8 78.6 92.8

TCC 512 86.2 95.2 88.1 95.6 92.9 97.1 23.8 47.6 85.8 97.8 86.6 94.0 87.6 96.4

QuadHinge 5,184 92.2 97.2 93.2 96.5 96.2 98.6 46.7 83.3 87.0 98.3 94.2 96.8 95.2 98.6

Quill 1,600 69.2 86.8 89.1 95.8 87.1 92.4 28.1 67.6 90.4 99.3 92.8 97.2 95.2 97.2

QuillHinge 31,200 77.4 93.8 89.1 97.0 89.0 93.3 97.1 99.0 85.0 97.1 95.2 98.4 96.0 98.4

COLD 252 83.0 94.6 83.6 95.9 88.5 97.6 92.4 97.1 61.3 90.4 81.6 93.6 82.0 96.6

G
ra
p
h
em

e-
b
a
se
d

CO3 900 56.0 71.8 73.5 88.8 79.0 94.8 75.7 94.8 61.5 86.5 89.8 95.8 90.8 97.8

kCF 900 67.0 89.0 78.5 91.3 89.0 98.1 77.1 93.8 46.8 79.2 88.2 93.8 86.6 95.6

Junclets 900 80.2 93.4 85.8 95.5 93.3 98.1 92.9 97.1 56.4 85.5 91.0 96.2 90.4 97.2

kSF 900 71.8 88.0 74.0 89.0 89.5 95.7 80.0 95.7 33.1 63.7 78.8 94.2 74.8 92.6

IC 900 77.0 93.8 84.9 95.6 89.0 95.2 91.4 98.1 30.8 63.7 90.4 97.6 92.4 98.2

tures the curvature information of handwriting based on the writing angle and385

the curvature measure of the contour fragments with a multiple scale strategy.

The QuillHinge feature provides the best results on CERUG with English and

ICDAR2013 data sets because the handwritten documents on these two data

sets were written with different pens and the QuillHinge feature can capture the

writing instrument property. However, the dimension of the QuillHinge is also390

high, which needs more computational time than other features. The second

best performance is achieved by COLD on the CERUG data set with English

handwriting because the English handwriting written by Chinese subjects con-

tain less curvature [7] and the curvature-less COLD can capture this property.

The best result on the ICFHR2012 data set is achieved by the CoHinge feature,395

and its performance is significantly better than other features.
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For the grapheme-based features, the Junclets provides the best results on

the Firemaker, IAM, CERUG with Chinese and ICDAR2013 with English data

sets. However, CO3 provides the best Top-1 results on the ICFHR2012 with

Arabic data set and the IC feature gives the best results on the Greek hand-400

writing of ICDAR2013 data set.

4.1.4. Performance of writer identification based on mixed-scripts

Table 2: The performance of writer identification based on mixed-scripts on the MIXED data

sets. The up-right arrow means the performance increases and down-right arrow means the

performance decreases compared to the performance on the single script in Table 1.

Feature

CERUG-MIXED CERUG-Synthetic ICDAR2013-Synthetic

210 writers 210 writers 250 writers

Chinese-English Chinese-English Greek-English

Top-1 Top-10 Top-1 Top-10 Top-1 Top-10

LBP 70.9 ↑ 91.9 ↑ 33.3 ↓ 66.7 ↓ 65.4 ↑ 87.8 ↑

CoLBP 82.4 ↑ 97.6 ↑ 61.4 ↓ 87.1 ↓ 80.8 ↑ 96.2 ↑

RLH 47.1 ↓ 82.9 ↓ 83.3 ↑ 95.2 ↑ 87.2 ↑ 98.0 ↑

LBPruns 91.0 ↑ 100 ↑ 92.8 ↑ 96.2 ↑ 95.6 ↑ 99.8 ↑

Hinge 85.2 ↓ 95.7 ↓ 84.3 ↓ 97.6 ↓ 92.2 ↑ 97.8 ↑

CoHinge 96.7 ↑ 98.6 ↑ 89.5 ↓ 98.6 ↓ 97.6 ↑ 98.4 ↑

Δ1Hinge 88.6 ↓ 99.5 ↑ 88.1 ↓ 97.1 ↓ 86.8 ↑ 96.2 ↑

TCC 92.9 96.7 ↓ 84.2 ↓ 95.7 ↓ 93.4 ↑ 97.8 ↑

QuadHinge 93.8 ↓ 97.6 ↓ 91.4 ↓ 97.6 ↓ 97.4 ↑ 99.4 ↑

Quill 75.2 ↓ 90.9 ↓ 73.3 ↓ 91.4 ↓ 95.8 ↑ 99.4 ↑

QuillHinge 85.2 ↓ 98.1 ↓ 94.8 ↓ 98.1 ↓ 99.0 ↑ 100 ↑

COLD 93.8 ↑ 100 ↑ 93.3 ↑ 97.7 ↑ 90.2 ↑ 97.2 ↑

CO3 56.2 ↓ 89.5 ↓ 89.0 ↑ 96.7 ↑ 97.8 ↑ 99.6 ↑

kCF 67.1 ↓ 91.0 ↓ 94.3 98.1 93.8 ↑ 97.8 ↑

Junclets 91.4 ↓ 100 ↑ 95.7 ↑ 99.0 ↑ 96.0 ↑ 99.2 ↑

kSF 84.8 ↓ 97.1 ↑ 94.7 ↑ 99.0 ↑ 94.0 ↑ 98.8 ↑

IC 84.8 ↓ 98.6 ↑ 94.8 ↑ 99.5 ↑ 97.8 ↑ 100 ↑

In this section, we evaluate the performance of writer identification based

on the mixed-script handwriting. To our best knowledge, the page 4 of the

CERUG data set is the only one real mixed-script data set, which is split into two405

parts for writer identification, named CERUG-MIXED data set. We also create

the synthetic mixed-scripts data set by merging two handwritten documents

with different scripts from the same hand into one document. By this way,

two synthetic mixed-scripts data sets can be generated: the CERUG-Synthetic
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data set which contains the synthetic handwritten documents with Chinese and410

English, and the ICDAR2013-Synthetic data set which contains the synthetic

handwritten documents with English and Greek.

Table 2 shows the performance of different features on the three mixed-

scripts data sets. The Top-1 performance of the LBP, CoLBP, LBPruns, Co-

Hinge and COLD increases on the CERUG-MIXED data set and the perfor-415

mance of others features decreases compared to their performance on the single-

script data set shown in Table 1. On the CERUG-Synthetic data set, only the

RLH, LBPruns and COLD features provide better results among the textural-

based features. The performance of all the grapheme-based features are im-

proved on the the CERUG-Synthetic data set and the performances of all of420

seventeen features are improved on the ICDAR2013-Synthetic data set. The

main reason is that each document on the CERUG-Synthetic and ICDAR2013-

Synthetic data sets contains more handwritten texts, which makes the codebook-

based features more stable. The LBPruns, COLD and Junclets features reach

100% Top-10 recognition rates on CERUG-MIXED data set and the IC and425

QuillHinge features reach 100% Top-10 rate on ICDAR2015-Synthetic data set.

Another interesting observation can be found that only the LBPruns and

COLD features improve the performance on the three mixed data sets. The

reason might be that the LBPruns and COLD features are the curvature-free

features which can handle the difference between different scripts.430

4.1.5. Performance of writer identification on a large mixed data set

In this section, we give the performance of the seventeen features on a large

and mixed data set. Following the work [2], we merge the Firemaker, IAM,

CERUG, CVL, ICFHR2012 and ICDAR2013 data sets to obtain a large and

combined data set which contains 5177 handwritten documents from 1760 hands435

with six languages: Dutch, English, Chinese, German, Arabic and Greek. We

call this data set as “Large Multi-script Handwritten Set” in the following sec-

tions.

Table 3 shows the performances of the different features on this large set.
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Table 3: The performance of writer identification on the Large Multi-script Handwritten Set.

Features Top-1 Top-10 Features Top-1 Top-10

CoHinge 93.8 97.6 Δ1Hinge 78.7 92.5

QuadHinge 92.2 96.9 LBPruns 78.6 92.6

QuillHinge 88.6 96.5 kCF 78.1 91.4

TCC 86.4 93.7 CO3 75.2 88.5

Quill 85.9 93.9 kSF 73.5 87.1

Junclets 84.7 94.0 RLH 67.6 87.8

Hinge 82.7 92.6 CoLBP 62.8 81.2

COLD 81.8 94.1 LBP 61.4 81.0

IC 81.2 92.2

The CoHinge feature achieves the best results and Top-1 recognition rate is440

93.8%. The QuadHinge feature also provides a comparable result with 92.2%.

which is better than the QuillHinge feature. This indicates that the handwriting

styles captured by CoHinge and QuadHinge take more important information

than the property of writing instruments captured by the Quill and QuillHinge

feature on this large data set where handwritten documents are written with445

different pens and scripts. For the grapheme-based features, the performances

of the Junclets and IC are comparable, which outperform other three methods.

The results of the feature combinations between textural-based and grapheme-

based features are presented in Table 4. Generally, combining two features pro-

vide an improvement for writer identification [2, 26]. However, from Table 4 we450

can see that combining CoHinge and QuadHinge with other grapheme-based

features provides a worse performance, which demonstrates that the CoHinge

and QuadHinge contain the discriminative information of handwriting style and

linearly combining them with other grapheme-based features can not introduce

more useful information.455

4.1.6. Performance of writer retrieval

In this section, we perform the task of writer retrieval based on handwritten

documents with different text lines, similar as our work [25]. We segment the

handwritten documents into text lines and conduct experiments on handwrit-

ten documents with different number of text lines from one to five for writer460

retrieval. We use the CVL data set [37], which contains handwritten documents
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Table 4: The Top-1 performance of writer identification based on dual feature combination

on the Large Multi-script Handwritten Set. The recognition rates in bold increase while with

italic type decrease, compared to the best performance of the individual features (shown in

Table 3) involved in the combination.

���������
Feature1

Feature2

Grapheme-based features

CO3 kCF Junclets kSF IC

Top-1 Top-10 Top-1 Top-10 Top-1 Top-10 Top-1 Top-10 Top-1 Top-10

T
ex
tu
ra
l-
b
a
se
d
fe
a
tu
re
s

LBP 81.9 92.7 84.0 94.5 88.2 95.9 79.2 91.8 85.3 94.8

CoLBP 78.5 91.0 81.8 93.7 86.0 94.8 75.9 89.3 82.9 93.8

RLH 88.3 96.3 87.7 96.4 89.3 96.9 85.2 95.3 87.7 96.8

LBPruns 85.4 95.3 84.2 95.0 83.9 95.0 82.2 94.0 83.6 94.9

Hinge 83.4 93.8 86.7 95.6 88.9 95.9 82.6 93.2 86.4 95.4

CoHinge 90.4 96.5 93.1 97.3 92.9 97.4 91.1 97.0 91.6 97.2

Δ1Hinge 82.9 93.3 86.3 96.7 89.9 96.3 83.4 93.4 86.1 95.0

TCC 84.0 94.3 87.7 95.7 89.5 96.3 83.8 93.6 87.5 95.6

QuadHinge 87.6 95.8 91.0 96.6 92.3 97.1 89.2 96.1 90.3 96.6

Quill 86.4 95.1 89.8 96.5 90.8 96.9 86.3 95.7 89.0 96.6

QuillHinge 88.7 96.0 91.3 97.1 91.4 97.1 88.9 96.4 89.7 96.7

COLD 87.9 96.0 89.1 96.3 90.1 96.6 86.2 95.2 89.1 96.3
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Figure 13: Performance of writer retrieval with respect to amount of text in a sample: (a)

writer retrieval on the CERUG-CN data set with Chinese handwriting, and (b) writer re-

trieval on the CVL data set with English handwriting. Solid lines represent textural-based

features and dashed lines represent grapheme-based features. Note that the legend is sorted

in descending order of performance.

from 310 writers, 27 of which wrote 7 texts and 283 writers have 5 texts. In

this experiment, only English handwriting from 310 writers are considered. In

addition, we also evaluate the performance of writer retrieval on the Chinese

handwriting from the CERUG data set. Table 5 shows the number of query465
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Table 5: The number of query samples with different line texts on the CERUG and CVL data

sets for writer retrieval.

Data set line 1 line 2 line 3 line 4 line 5

CERUG

2095 1012 617 450 345201 writers

Chinese

CVL

10820 5038 3187 2118 1686310 writers

English

samples on the two data sets with different text lines.

We use the mean Average Precision (mAP) to measure the performance of

writer retrieval, which is defined as:

mAP =
1

N

N∑
q=1

AveP (q) (14)

where N is the number query samples and AveP (q) is the average precision of

the query q.

Fig. 13 shows the results on the two CERUG Chinese and CVL English

data sets. The performance is improved when the number of lines increases.470

All of the features give the reasonable results on the handwritten documents

with at least three lines. The results of the CoHinge and QuadHinge features

provide the best performance than other features on the two data sets and the

performance of the Junclets feature is higher than other four grapheme-based

features.475

4.2. Script identification

Script identification is the problem to automatically recognize the script

of a given document [38], and it has been widely studied on printed docu-

ments [39, 40, 41, 42] and on handwritten documents [43, 44]. Identifying script

on handwritten documents is more difficult because the handwritten texts con-480

tain not only the script shape information, but also the handwriting styles from
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Western script

Arabic Chinese Greek

Figure 14: Example of handwriting from four major different languages.

different writers. In this section, we evaluate the seventeen features for script

identification. Furthermore, we investigate the relationship of feature perfor-

mance between writer identification and script identification based on the Large

Multi-script Handwritten Set, which is mentioned on the previous section. There485

are four major different scripts: Chinese, Arabic, Greek and Western scripts (in-

cluding English, German and Dutch) and Fig. 14 gives an example handwriting

of the four different scripts.

Fig. 15 shows the script identification performance with respect to the num-

ber of K using the K nearest neighbor (KNN) method. From the figure we can490

see that the results of all the features decrease slightly when K increases from

5 to 50. The best performance is achieved by the kCF and QuadHinge feature

when K=10, which demonstrates that the character shapes take an important

role for script identification (a similar observation has also been shown in [44]).
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Figure 15: Script identification rates of the seventeen features with respect ot the number of

K using the KNN method. Note that the features are sorted with descending order of the

performance when K=10.

We also study the feature performance for both writer and script identifica-495
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Figure 16: The performance of script recognition with K=10 with respect to the Top-10

performance of writer identification. Note that the features closed to the top-right corner are

discriminative both for script identification and writer identification.

tion. Fig. 16 shows the relationship of feature performance of script identifica-

tion with K=10 and the Top-10 performance of writer identification. From the

figure we can see that QuadHinge is more closed to the top-right corner, which

means that the QuadHinge feature is discriminative both for script identifica-

tion and writer identification. In addition, the Δ1Hinge, Junclets, Quill and500

COLD features close to the dignoal line, indicating that they have the similar

performance on both writer and script identification.

4.3. Historical manuscript dating

Historical manuscript dating has been studied recently in [45, 46, 47, 48, 49,

50, 51], which is the problem of automatically determining the date information505

of historical documents based on their handwriting styles and provides an effi-

cient tool for historians or paleographers. The main challenge is how to extract

the evolution of the handwriting styles over time. In this section, we provide the

performance of different features which could capture the handwriting style on

the historical manuscript dating problem on the Medieval Paleographical Scale510
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Figure 17: The time line of considered years on the MPS data set. Each document is labeled

with one of the 11 key years.

(MPS) data set [52, 30, 51, 53] 1. The MPS data set consists of 2858 images of

charters produced between 1300-1550BC in four corners of old Dutch language

area: Arnhem, Leiden, Leuven and Groningen 2. Fig. 17 shows the time line of

the MPS data set.

4.3.1. Evaluation criterion515

For the dating problem, two measurements are widely used to measure the

performance: the Mean Absolute Error (MAE) and Cumulative Score (CS) [54],

which are defined as:⎧⎨
⎩

MAE =
∑N

i=1 |K(yi)−K(yi)|/N
CS(α) = Ne≤α/N × 100%

(15)

where K(yi) is the ground-truth of the input query document yi and K(yi) is

the corresponding estimated key year, | · | is the absolute operator, N is the

number of query documents and Ne≤α is the number of test images on which

the key year estimation K(yi) makes an absolute error e = |K(yi) −K(yi)| no
higher than the acceptable error level: α years. For historians or paleographers,520

an error of ±25 is, more often than not, acceptable when dating the medieval

historical documents on the MPS data set. Therefore, the error level α is set to

25 years in this section.

1The MPS data set has been collected by Petros Samara and Prof. Jan Burgers who study

paleography.
2The project website is: http://application02.target.rug.nl/monk/Projects/MPS/
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4.3.2. Dating by writer identity

The writers of 1127 documents are labeled, produced by 143 writers with525

at least two samples on the MPS data set formed the MPS-Writer Known with

Multiple samples (MPS-WKM) subset, and the writers of 899 documents are

unknown, formed the MPS-Writer Unknown(MPS-WU) subset. Following our

previous work [30], we perform the writer identification on the MPS-WKM set

and perform the dating using the K nearest neighbors (KNN) method on the530

MPS-WU data set, considering the rest of documents as training samples, whose

writers are known.

Table 6 shows the results of writer identification and dating by writer iden-

tity on the MPS data set with different features. From Table 6 we can see that

the CoHinge and QuadHinge provide the best results for writer identification535

and Junclets gives the best results among the grapheme-based features. For dat-

ing by KNN, the best performance is achieved by Junclets when K≤10 and by

CO3 when K>10. For each feature, the performance of dating decreases when

K increases. Among the textural-based features, CoHinge gives the best perfor-

mance when K=5 and QuadHinge provides the best results when K>5. Fig. 18540

shows the relationship of Top-10 performance of different features for writer

identification and dating by KNN with K=10 on the MPS data set. From the

figure we can see that the CoHinge and QuadHinge features are discriminative

both for writer identification and dating.

4.3.3. Dating by general handwriting style classification545

In this section, we conduct historical manuscript dating by general handwrit-

ing style classification, in which all documents from each key year are considered

as a class (there is an obvious border between nearby key years in the MPS data

set) and a linear Support Vector Machine (SVM) is trained to predict the date

information, following the work [30, 55]. All the documents on the MPS data550

set are randomly divided into two parts: a training set (70%) and a testing set

(30%). The experiments are repeated 20 times and the average results with

standard deviations are reported in this section.
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Table 6: The performance of writer identification and dating by writer identify in terms of

MAEs and CS(α = 25) of different features on the MPS data set using nearest neighbor

method.

Feature

Writer identification Dating by hit-document key year (KNN)

143 writers 1959 training and 899 query samples

1127 documents K=5 K=10 K=20 K=50

Top-1 Top-10 MAEs CS(α = 25) MAEs CS(α = 25) MAEs CS(α = 25) MAEs CS(α = 25)

LBP 36.0 68.7 54.1 49.4% 50.1 51.7% 50.3 50.0% 50.0 49.8%

CoLBP 50.5 77.3 39.2 61.2% 39.2 60.0% 39.4 60.1% 42.8 55.6%

RLH 54.4 78.8 33.8 66.8% 32.3 66.2% 33.2 65.1% 34.2 62.1%

LBPruns 64.8 83.0 27.3 72.5% 27.8 70.1% 27.6 69.7% 30.3 66.9%

Hinge 67.9 83.1 27.2 71.6% 27.9 71.5% 28.6 69.1% 33.5 63.6%

CoHinge 76.5 89.1 19.2 78.9% 21.8 76.0% 26.5 69.1% 32.3 64.1%

Δ1Hinge 59.5 79.4 36.1 66.1% 37.1 64.2% 37.1 62.9% 40.7 58.2%

TCC 70.8 86.1 25.5 71.8% 27.3 68.8% 29.8 66.5% 37.0 60.5%

QuadHinge 75.8 89.4 20.4 78.6% 21.6 75.8% 25.0 72.4% 30.8 66.0%

Quill 65.0 83.1 34.1 67.1% 36.1 65.3% 38.9 62.7% 43.9 57.4%

QuillHinge 65.3 85.3 25.5 74.4% 26.9 71.9% 26.4 70.4% 31.5 65.2%

COLD 70.6 85.3 25.9 71.8% 29.0 67.8% 31.1 66.1% 39.9 57.8%

CO3 65.5 82.5 24.5 75.2% 23.1 76.4% 23.4 75.2% 27.8 70.2%

kCF 64.7 84.6 22.9 76.4% 24.1 74.2% 24.5 73.1% 26.7 70.8%

Junclets 72.9 87.6 18.4 81.7% 20.6 78.7% 24.3 73.6% 29.4 67.4%

kSF 60.9 79.8 30.6 70.2% 30.3 67.6% 31.1 66.0% 35.5 61.1%

IC 58.7 80.0 29.5 72.5% 29.2 71.4% 31.0 69.1% 37.2 62.5%
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Figure 18: The Top-10 performance of writer identification with respect to the dating by KNN

with K=10. Note that the features closed to the top-left corner are discriminative both for

writer identification and dating on the MPS data set. (The LBP is not on the figure because

its low writer identification performance (<75%))

Two different evaluation scenarios are considered, depending on whether

including the writer duplicates on the training and testing data sets [50]:555
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1. wr.excl. scenario: documents from the same writer are carefully selected

and they should be only in the training or testing sets, never appear in

both training and testing sets.

2. wr.incl. scenario: documents are randomly splitting into training and

testing sets, without the consideration of the writer labels.560

Table 7 shows the results of different features on the MPS data set. The best

three results are achieved by CoHinge, QuadHinge and Junclets, which are much

better than the Hinge and Quill features. Table 8 gives the performance of the

feature combination between the texture-based and grapheme-based features.

We can observe that the performance of feature combination is not necessary565

better than the best result of the individual features involved in the combination.

For the informative Junclets feature, only combining with Hinge, CoHinge and

TCC gives an improvement in the scenario of wr.incl. Combining different

grapheme-based features with QuadHinge provides a worse result, except the

kSF feature in the wr.incl. scenario.570

Table 7: The MAEs and CS(α = 25)s of the historical manuscript dating using SVM on the

MPS data set. The best three performance are highlighted.

Feature
wr.excl. scenario wr.incl. scenario

MAEs CS(α = 25) MAEs CS(α = 25)

LBP 39.9±4.9 59.3±6.3% 34.3±8.1 65.2±7.7%

CoLBP 48.0±16.1 53.8±13.1% 41.2±19.7 59.6±18.3%

RLH 39.9±3.5 61.6±3.7% 31.4±1.2 68.3±2.1%

LBPruns 26.2±5.4 77.5±5.2% 17.0±2.9 84.3±3.5%

Hinge 23.6±3.3 77.9±3.2% 13.4±0.7 87.4±1.1%

CoHinge 16.6±3.0 85.9±3.7% 7.4±0.6 93.3±1.1%

Δ1Hinge 32.2±3.6 69.1±4.3% 20.5±0.9 80.7±1.4%

TCC 18.2±2.5 83.9±3.3% 9.7±0.8 90.8±1.3%

QuadHinge 14.0±1.6 89.5±2.5% 6.4±0.5 94.8±1.0%

Quill 27.6±2.8 75.5±3.1% 16.6±1.2 84.3±1.9%

QuillHinge 20.5±2.9 82.4±3.3% 10.3±0.6 90.7±1.1%

COLD 23.8±2.9 77.6±3.7% 13.4±1.1 87.1±1.7%

CO3 20.3±2.9 82.1±3.2% 11.5±0.8 89.5±1.5%

kCF 24.0±3.1 79.3±3.4% 14.7±1.1 86.6±1.7%

Junclets 14.5±1.7 89.3±1.8% 7.4±0.4 94.1±1.1%

kSF 18.7±2.6 84.4±3.1% 9.6±1.0 91.7±1.2%

IC 21.7±2.4 80.9±3.0% 12.5±0.8 88.2±1.7%
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Table 8: The performance of historical manuscript dating based on feature combination on the

MPS data set. The MAEs with red color decreases while with blue color increases compared

to the best result of the individual features involved in the combination. Note that the smaller

the MAE, the better the performance achieved.
���������
Feature1

Feature2
CO3 kCF Junclets kSF IC Average

wr.excl. wr.incl. wr.excl. wr.incl. wr.excl. wr.incl. wr.excl. wr.incl. wr.excl. wr.incl. wr.excl. wr.incl.

LBP 18.8±2.3 10.7±0.9 22.7±3.0 13.2±0.9 15.6±2.6 7.5±0.6 20.0±2.7 9.8±1.3 20.7±2.4 11.4±0.8 19.56 10.52

CoLBP 20.3±3.0 10.9±0.8 23.1±5.9 16.0±4.1 16.8±2.4 8.7±1.0 20.4±2.8 12.4±2.2 19.9±3.0 11.4±1.4 20.10 11.88

RLH 21.9±3.7 12.3±1.0 23.8±3.4 15.1±1.1 17.6±2.4 9.1±0.9 23.0±2.6 13.4±1.1 22.1±3.5 13.4±0.9 21.68 12.66

LBPruns 25.8±3.9 15.1±2.4 26.4±6.4 16.4±4.8 28.7±7.9 15.6±2.6 29.6±6.7 17.3±4.8 25.3±3.8 14.9±2.0 29.16 15.86

Hinge 16.5±2.3 8.9±0.8 19.0±2.4 11.1±0.9 15.7±1.5 7.0±0.7 16.3±3.3 8.4±0.6 18.3±1.9 9.9±1.1 17.16 9.06

CoHinge 15.9±2.0 7.9±0.6 17.0±2.2 8.5±0.8 14.8±2.2 6.8±0.6 14.5±2.3 7.0±0.7 16.2±1.8 8.4±0.5 15.68 7.72

Δ1Hinge 18.9±2.1 10.2±0.8 22.2±3.2 12.8±0.8 15.8±2.5 7.5±0.6 18.4±2.5 9.1±0.6 19.0±3.2 10.1±0.9 18.86 9.94

TCC 16.7±2.8 8.9±0.7 17.7±2.4 9.7±0.8 14.9±2.3 6.9±0.5 14.3±2.0 7.9±0.7 16.9±2.9 8.6±0.8 16.10 8.40

QuadHinge 15.9±2.4 8.7±0.7 16.7±2.0 8.6±0.6 13.6±2.2 6.6±0.5 13.7±2.1 6.9±0.7 16.9±2.8 8.6±0.9 15.30 7.88

Quill 18.1±2.1 10.1±0.7 21.7±2.6 12.5±0.9 14.8±2.7 7.6±0.9 17.3±1.9 9.2±0.8 18.5±1.9 10.9±0.9 18.08 10.06

QuillHinge 19.1±2.5 10.2±0.5 21.2±2.5 12.0±0.8 15.1±2.3 7.5±0.6 17.2±2.7 8.7±0.8 19.6±2.1 11.0±0.9 18.44 9.88

COLD 19.8±2.9 9.9±0.8 19.9±2.3 11.0±0.8 17.9±2.3 8.8±0.7 19.5±2.3 10.4±0.8 18.5±2.1 9.9±0.9 19.12 10.00

Average 18.97 10.32 20.95 12.24 16.78 8.30 18.68 10.01 19.33 7.99 - -

4.4. Manuscript localization

In this section, we conduct the experiments of historical manuscript local-

ization based on the MPS data set, where the historical manuscripts are from

four cities: Arnhem, Leiden, Leuven and Groningen. The KNN and linear SVM

are used to evaluate the performance of the features for manuscript localization.575

Fig. 19 presents the results of different features with respect to the number

of K using the KNN method. The best result is achieved by the LBP feature

and the performance of the CoHinge and QuadHinge features are comparable,

which are better other features, except LBP. Fig. 20 shows the performance

using the linear SVM classification. The QuadHinge reaches the recognition580

rate 94.0% and CoHinge reaches 92.8%, which are higher than other features,

as well as their performance when using the KNN method.

5. Discussion and conclusion

In this paper, we have presented a joint feature distribution principle to

demonstrate how to design novel and effective features based on the existed585
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Figure 19: The localization rates of the features with respect to the number of K using the

KNN method on the MPS data set. Note that the legend is on the descending order according

to the performance when K=10.
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Figure 20: The localization rates with different features using the linear SVM classification.

feature methods. Seventeen features have been evaluated for handwritten docu-

ment understanding beyond OCR. From the experimental results we can obtain

the conclusions that: (1) The co-occurrence features are powerful than their

original features for writer identification. For example, CoLBP provides better

results than LBP and LBPruns gives better results than LBP and Run-lengths;590

(2) The proposed CoHinge and QuadHinge features provide the best results for

writer identification on five data sets. The CoHinge and QuadHinge features

are so discriminative that combining them with other grapheme-based features

can not provide an improvement; (3) The best results of script identification are

given by the contour fragments kCF and the QuadHinge features, because they595
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can capture the character shape information, which takes an important role for

script identification. The QuadHinge feature obtains the best results when doing

the writer and script identification simultaneously. (4) The CoHinge, Junclets

and QuadHinge are more powerful for historical manuscript dating and local-

ization. However, LBP obtains the best performance for manuscript dating600

using the KNN method. From the experimental results, we can conclude that

our novel QuadHinge and CoHinge features present the promising results for

the four problems: writer and script identification, historical document dating

and localization. In future work, more kernel functions could be investigated to

achieve more powerful, as well as transform-invariant features.605
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