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Abstract--A new algorithm for finding straight lines in images under a bounded error model is described. 
The algorithm is based on a hierarchical and adaptive subdivision of the space of line parameters. It measures 
errors in image space and thereby guarantees that no solution satisfying the given error bounds will be Inst. 
The algorithm can find interpretations ofall the lines in the image that satisfy the constraint that each image 
feature supports at most one line hypothesis. It can be extended to compute efficiently the maxima of the 
probabilistic Hough transform and the generalized Hough transform under a variety of statistical error 
models. 
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I. INTRODUCTION 

Finding straight lines in images is one of the most 
fundamental problems in computer vision. This paper 
describes a new algorithm for finding lines in images. 
The algorithm differs in a number of important ways 
from existing methods. It can also be extended to 
detect other analytic shapes or even arbitrary geometric 
models; in this paper, we will focus our attention on a 
version of the algorithm that finds lines in an image 
subject to given bounds on the deviations of the location 
and orientation of image features from a hypothesized 
line. 

The algorithm can be used to find the maximal or 
"optimal" line in an image, in the sense of finding the 
line for which the greatest total length is supported by 
edge pixels in the image under the given error bounds. 

An extension of the algorithm can be used to find 
quickly a global interpretation of the edge pixels in an 
image as lines in decreasing order of length of support, 
imposing the constraint that no edge pixel can be part 
of two different lines. 

There are a number of fundamental concerns for any 
method for finding lines. These can be roughly grouped 
into correctness and efficiency. Let us illustrate these 
concerns using the simple or standard Hough trans- 
fo rm-p robab ly  the most popular method for finding 
lines in images--as an example. ~1'2) 

The standard Hough transform is implemented in 
the following way. Lines are considered to be para- 
meterized by p, their distance from the origin, and 0, 
their angle wth the x-axis (other parameterizations are 
possible ~31 and used commonly). In the computation 
of the Hough transform, the parameter space is quant- 
ized and represented as a discrete data structure, often 
an array or a hash table. Each "cell" or "bin" in this 

data structure corresponds to a small range of para- 
meters p and 0. 

For each edge pixel (optionally associated with a 
local orientation), there is an associated set of lines that 
the edge pixel could be a part of. This set of lines 
corresponds, in turn, to a set of bins in the quantized 
parameter space. 

The standard Hough transform now considers each 
edge pixel in the input image and increments a counter 
in each of the corresponding bins in the quantized 
parameter space ("vote for that bin" in the language of 
the Hough transform). More sophisticated versions of 
the Hough transform do not increment each counter 
by a fixed amount, but instead compute a "degree of 
membership", for example related to a probability 
distribution, for each edge pixel to a bin in the quantized 
parameter space. 

In a final stage, the quantized parameter space is 
searched for bins that contain a number of Votes that 
is larger than a given threshold and/or forms a local 
maximum. 

There are a nuinber of theoretical and practical 
problems with such a simple approach, and a large 
number of solutions and modifications to the simple 
Hough transform have been proposed and studied in 
the literature. 

First, the quantization of parameter space can easily 
result in the splitting of the votes belonging to a single 
hypothesized line among a number of bins. To over- 
come this problem, parameter space is sometimes sub- 
jected to filtering operations, or, similarly, neighboring 
bins, are considered together in the final evaluation 
of the quantized parameter space34'51 Quantization 
has been found to be a problem, for example, with 
the adaptive Hough transformation, m and methods 
for "anti-aliasing" the Hough transformation have 
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been proposed. (6) The method described in this paper 
explicitly avoids quantization errors, and no separate 
post-processing step to counteract the effects of quan- 
tization is necessary. 

Closely related is the issue that errors in the localiza- 
tion of edge pixels are modeled in parameter space 
rather than in image space. Since properties of the 
processing stages preceding line finding (edge detection, 
pixel chaining, etc.) are most often naturally expressed 
in image space, this complicates the problem of obtain- 
ing solutions with well-defined geometric or statistical 
properties. ~s-9~ 

Furthermore, the votes in a single bin may represent 
multiple, different lines (e.g. nearby parallel lines or 
widely separated colinear segments that should be 
treated separately). This problem has been addressed 
partially in the literature by backmapping the edge 
pixels from a bin in the quantized parameter space into 
the image and applying some kind of verification pro- 
cedure to the set of edge pixels obtained in that way. ~°.~ ~ 
However, such an approach is not entirely satisfactory, 
because the constraints used for verification might also 
profitably be employed during the construction of the 
quantized parameter space, not just in a final verifica- 
tion step. The method described in these papers allows 

a wide range of constraints on the solution of the line 
finding problem to be incorporated at all stages of the 
computation. 

Finally, Hough space can be big. Even just generating 
and searching a 512 x 512 bin Hough space is non- 
trivial once more sophisticated peak-detection and 
backmapping algorithms are being used. For analytic 
shapes or objects (rigid or non-rigid), parameter space 
might even be much higher dimensional than just two- 
dimensional. Methods like the adaptive Hough trans- 
formS12) (AHT) and the fast Hough transform ~l 3) (FHT) 
have tried to address this problem using recursive 
subdivisions of parameter space. The algorithm present- 
ed in this paper is also based on a recursive subdivision 
of parameter space, but avoids the quantization errors 
common to those algorithms, "~ and extends the method 
in several ways, such as the simultaneous accumulation 
of multiple solutions. 

2. ALGORITHM 

2.1. Line finding 

The basic line finding algorithm is given in Fig. 1. 
The algorithm essentially implements a depth-first 

1 global functions: bound_quality, evaluate_quality 
2 parameters: rmax, error_bounds 
3 global variables: best_quality, best_box, best_feature 
4 procedure rastJines(features) 
5 begin 
6 best_quality := 0 
7 best_box:= none 
8 best_features:= none 
9 box:= ([0, 2n], [0, rmax]) 

10 search(box, features) 
11 end procedure 
12 procedure search(box, features) 
13 begin 
14 consistent_features:= select features consistent with box under the 9iven error_bounds 
16 if not is_done(box, consistent_features) then 
17 bound_on_quality:= bound_quality(consistent_features) 
18 if bound_on-quality < best_quality then 
19 split box into boxl and box2 
20 search(box 1, consistent_ffeatures) 
21 search(box2, consistent_features) 
22 end if 
23 else 
24 quality := evaluate_quality(consistentJ'eatures) 
25 if quality < best_quality then 
26 best_quality := quality 
27 best_box := box 
28 bestJ'eat ures := consistent_features 
29 end if 
30 return from search 
31 end if 
32 end procedure. 

Fig. 1. The basic line finding algorithm. In practice, the algorithm is implemented as a best-first search, and 
there are a number of small modifications described in the text. 
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search of a spatial decomposition of the parameter 
space by a binary tree (in practice, a best-first algorithm 
is actually used). 

That is, at each step, there is a box (or rectangle) 
(variable: box) in parameter space that is under con- 
sideration. Initially, that box consists of the set of all 
possible parameters. During the execution of the algor- 
ithm, the box will be subdivided. Regions or boxes that 
probably cannot contain a solution under the given 
error bounds will be eliminated from further consider- 
ation. 

A representative subdivision of transformation space 
as it is explored during an actual line finding problem 
is shown in Fig. 7. 

Associated with each box is a set of image features 
that are consistent under the given error bound with 
any of the lines corresponding to the parameters con- 
tained in box. It is crucial to realize that consistency 
with the box is defined here as consistency under the 
given error bounds as measured in the image. In this, 
the algorithm differs from other line finding algorithms 
based on the Hough transform or based on recursive 
subdivisions of parameter space. 

The next ingredient of the algorithm is a function 
bound_quality that, given box and the set of image 
features consistent with box, estimates an upper bound 
on the quality of any solution to the line finding problem 
for all the combinations of line parameters contained 
in box under the given error bound; by "quality" we 
mean for the purposes of this paper the total length 
of segments of the line accounted for by edge pixels in 
the image under the given error bound. 

However, other notions of quality are desirable in 
some applications. For  example, we might want to 
penalize hypothesized lines that are supported by a 
large number of fragmented, short stretches of edge 
pixels, compared with hypothesized lines that are com- 
posed of a small number of long, connected stretches 
of edge pixels. 

Another notion of quality might weight features 
differently depending on the amount of their deviation 
from the hypothesized line. For  example, if we assume 
that pixel deviations from the line are given by some 
distribution ~,  we might weight the additional support 
that a feature gives to a hypothesized line by some 
function F(d), where d is the distance of the feature 
from the line; such methods are described in the liter- 
ature.(5.6.s. 9) 

For using any kind of quality measure with the line 
finding algorithm described in this paper, all that is 
necessary is that we can quickly bound the largest 
possible quality for any hypothesized line described by 
line parameters contained in box. 

We can now sketch the operation of the function 
search, the heart of the algorithm. Initially, it is given 
a rectangular region in parameter space, box, and a set 
of features, features. The subset of features consistent 
with box under the given error bound is found (con- 
sistent_features). Now, there are two major cases. 

First, the current box does not yet represent an 

accurate solution to the line finding problem for the 
set of consistent_features. This is determined by the 
function is_done (we will discuss how this is determined 
in more detail in Section 2.3). In that case, the current 
box is split into two halves, and the search is repeated 
for each half of box in parameter space. 

Of course, a conceptually trivial and quite useful 
modification of this step is to explore that half of box 
first that has the larger upper bound on the potential 
solution, a kind of best-first algorithm. To keep the 
presentation simple, this is not shown in Fig. 1. 

The second case is that the current box and the 
current set of consistent_features represent a possible 
solution. In that case, the algorithm compares this 
possible solution against the best solution found so far. 
If it is better, it is recorded in the variables bestquali ty,  
besLbox, and best_features. In either case, the algorithm 
returns in order to allow the exploration of other parts 
of parameter space. 

At the end of this process, the best solution, in the 
sense of the quality measure, is left in the variables 
bestquality, best_box, and bestfeatures. Of course, 
often we are interested in identifying multiple lines in 
an image, not just in finding a single "optimal" or 
"maximal" line; how we can go about doing this is 
discussed in Section 2.4. 

2.2. Testing for consistency 

One of the key components of the algorithm is the 
test of whether an individual feature is "consistent" 
with a given box of line parameters under the given 
error_bounds. 

The exact nature that this test takes depends on the 
primitive features that we extract from the image. The 
two kinds of features we are considering in this paper 
are point features and line seoment features. 

Point features correspond to individual edge pixels 
in the image. Each point feature has a location and an 
associated orientation. 

Line segment features can result, for example, from 
a polygonal approximation to the output of an edge 
detector. Line segment features have two end points 
and an orientation (the orientation may either be the 
orientation of the line passing through the end points 
of the segment, or it may be measured from the gradient 
associated with the edge pixels making up the line 
segment). 

To test for consistency of either kind of feature with 
a hypothesized line under bounded error, we use two 
primitive tests: a test of whether a point is within a 
given error bound of some line described by the line 
parameters contained in box and a spatial error bound, 
(point_consistent), and a test whether the orientation 
is within a given angular error bound from within the 
orientation of a range of orientations, (a n 9 l e_co n s iste nt). 

The implementation of angle_consistent is relatively 
straightforward and will not be discussed here. The 
implementation of poinhconsistent, however, involves 
some subtleties. 
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Fig. 2. The geometry of consistency between a point and a box of line parameters [0o,01], [Po, Pl] in 
parameter space under an error bound of ~. See the text for a more detailed explanation. 

We parameterize lines by their angle 0 with the 
x-axis and their distance p from the origin. A box in 
transformation space consists of a range of angles [0o, 01] 
and a range of possible radii [Po, Pl].  

Figure 2 shows the four lines parameterized by (00, Po), 
(01, Po), (0o, p 1), and (01, P 0, co rresponding to the four 
corners of the box. These four lines enclose a bow-tie 
shaped region in image space. Since we want to deter- 
mine whether a given image point p lies within a 
distance ofe of any one of the lines determined by any 
pair (0, p) of parameters contained in box, we might at 
first sight conclude that all we need to determine is 
whether p is either directly contained in that bow tie 
shaped region, or whether it is at least located within 
a distance of e of that region. This test is neither very 

difficult nor very expensive: we need two dot products 
to determine whether a point is above or at most a 
distance e below either line (0o, Po) or (01, Po)- Likewise, 
we need two dot products to determine whether a 
point is below or at most a distance e above either line 
(00, p ~ ) or line (01, P 1)- 

However, this is not quite accurate. In fact, some 
points that lie on lines parameterized by parameters 
(O,p) contained in the box are actually outside this 
bow-tie shaped region. We therefore need to modify 
the above procedure slightly. This is illustrated in more 
detail in Fig. 3. 

Here, two lines, corresponding to the lower two lines 
delimiting the bow tie, are shown (marked (0o, Po) and 
(01, Po))- But consider now the line ((01 + 00)/2, Po)- Its 

Fig. 3. The derivation of the distance r in the previous diagram. 
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parameters are certainly contained within the box of 
parameters [0 o, 01] x [Po, Pl]- However, there is a non- 
negligible segment of that line between points A' and 
B' that falls outside the bow tie region. Therefore, if we 
simply used the bow tie region to test for consistency 
of a feature with the set of lines corresponding to the 
parameters inside the box, we would run the risk of 
falsely classifying a point as "inconsistent", even though 
it actually can be found within the given error bound 
of some line contained in the box. 

There are two possible solutions to this problem. 
First, we could simply carry out the exact test. This 
would require testing whether a given point is within 
a distance e of the curved triangle ABC. Such a test is 
not too difficult to carry out, but the runtime cost is 
non-negligible. Given that the consistency test is in the 
inner loop of the algorithm, and, as it turns out, actually 
dominates the running time of the algorithm as de- 
termined by an execution profile, we would prefer a 
method that affects the running time of the algorithm 
less. 

The second solution is to overestimate the region in 
which points are accepted as consistent slightly. This 
does not present a problem as long as the overestima- 
tion is sufficiently small in absolute terms and goes to 
zero quickly as the dimensions of box shrink during 
the execution of the algorithm. This was the approach 
adopted in the algorithm actually implemented. 

There are two simple methods that offer themselves 
for modifying the constraints in order to ensure that 
no consistent image point is falsely rejected. We can 
either translate both lines (0o, Po) and (01, Po) closer to 
the origin by a small amount z, or we can introduce a 
third line passing through AB with line parameters of 
((0 z + 00)/2, p - z) and say that a point is consistent if it 
is consistent under bound e with either (but not neces- 
sarily both) of the two linear constraints for P0 or the 
line AB, and if it is consistent under bound e with either 
of the two linear constraints for Pl. 

Using elementary geometry, the distance 3, which is 
the same in both cases, can be read from Fig. 3 as 

cosT) 
where A0 is the difference between 01 and 0 o. It should 
be noted that z approaches 0 as the square of A0. 

Now, we can return to the original problem of 
determining when a point feature (edge pixel) or a line 
segment is consistent with a given box. We say that a 
point feature or edge pixel is consistent with a given 
box if its location satisfies the point_consistent test and 
its orientation satisfies the angle_consistent test with 
the parameters contained in the box. 

For  a line segment feature, we would like to say that 
it is consistent with a given box if all the edge pixels 
that make up the line segment feature satisfy the point_ 
consistency test. However, such a test is, again, relatively 
costly. A simpler approach is to test whether each of 
the two end points satisfies the point_consistent test. 

While this does not imply that all the individual edge 
pixels that make up the line segment feature are con- 
tained in the image region swept out by the lines 
described by parameters in the box under the given 
error bound, the approximation to the precise test 
becomes nearly perfect as the current box shrinks. In 
the limit of AO = O, the test is easily seen to be exact. 
In addition to testing the end points, we also test 
whether the orientation of the line segment feature 
satisfies the angle_consistent test, since very short line 
segment features would otherwise be nearly uncon- 
strained in their orientation. 

2.3. Termination 

Before going on, we should discuss the issue of 
termination, that is, when the function is_done in Fig. 1 
returns true. There are, in fact, a number of different 
criteria we might want to use for stopping. 

Ideally, we would like to determine exactly whether 
the set of edge segments represented by the variable 
consistent_features represents a solution to the line 
finding problem under the given error bounds. If yes, 
then we can simply accept this set as a solution and 
return. While such a computation is possible in principle, 
in practice it is far too expensive, given that the test for 
termination is one of the most frequently executed 
operations in the algorithm. 

A much simpler termination condition is to check 
whether the current box has become "sufficiently" small. 
The notion of "sufficiently" here requires some expla- 
nation. 

As we saw above, the test for consistency of a feature 
with the current box allows for two kinds of uncertainty: 
the first results from the given error_bounds, while the 
second results from the finite dimensions of the box 
itself. That is, the current setof  consistent-features is 
not necessarily an exact match under the given error_ 
bounds, but instead a match under slightly larger error 
bounds that are determined, for a given image, by the 
dimensions of the box. 

lfwe terminate the search when the box has become 
sufficiently small, rather than by verifying consistency 
exactly of the result with the given error bounds, the 
line finding algorithm is transformed into a weak geo- 
metric algorithm." 4) That is, the error bounds satisfied 
by the maximal solution are uncertain by at most a 
small bounded amount determined by the maximal 
dimensions of the input image and the chosen dimen- 
sions for the terminal box. 

The Hough transform, of course, also suffers from 
the same problem. The weakness of the Hough trans- 
form is related to the size of the individual bins in the 
quantized parameter space. However, in contrast to 
the Hough transform, with the present methods, we 
can easily choose error bounds and the weakness of 
the solution completely independently. While for the 
Hough transform, the dimension of the individual bins 
is related to the size of the accumulator array as the 
inverse square, which means that making the individual 
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bins significantly smaller increases both the running 
time and the amount of space required by the Hough 
transform greatly, the running time and amount of 
space required by the present algorithm only varies 
proportionally to the logarithm of the weakness para- 
meter (see below). 

2.4. Global interpretation 

In the algorithm shown in Fig. 1, only a single maxi- 
mal solution is found, where "maximal" refers to the 
line that corresponds to the greatest total length of 
edge segments in the image compatible with that line 
under the given error bounds. 

Often, we are not interested in just finding a single 
maximal line, but instead in finding all "reasonable" 
lines in the image. For the Hough transform, probably 
the most common approach is to report all those bins 
in Hough space that form local maxima and that are 
above some threshold. 

Such an approach is somewhat unsatisfactory because 
it usually results in the reporting of multiple lines that 
are really only slightly different interpretations of nearly 
identical sets of edge segments. To alleviate this problem, 
it is possible to permit the reporting of only a single 
local maximum within a bounded region in Hough 
space. 

We will use a similar idea below. Before proceeding, 
however, it is a good idea to reflect upon the real-world 
constraints that give us the intuition that multiple 
nearby line hypotheses are unlikely and undesirable in 
the first place. There are essentially two basic reasons. 

First, image acquisition is a band-limited process, 
and edge detection itself usually involve some kind of 
convolution operation. This, however, limits the density 
of parallel lines that can be resolved, and postulating 
that two lines that are closer to each other than this 
limit are present simultaneously in the image is not 
sensible, given that there is no way we could support 
such a conclusion from the input data to the line 
finding algorithm. This suggests that if there are two 
very similar line hypotheses, we should choose only one. 

Furthermore, in many applications we can use the 
assumption of a "general viewpoint", that is, that the 
image was taken with very high probability from a 
position such that different lines do not coincide. This 
means that we should not allow two different line 
hypotheses to share any edge pixels. 

Incorporating these additional constraint then sug- 
gests the following approach to finding a global inter- 
pretation of the lines in the image. We start by running 
the line finding algorithm to find the maximal solution 
given all edge pixels in the image. We then remember 
this solution and remove the corresponding edge pixels 
from the image (they would not be allowed to partici- 
pate in the match of any other line). We then re-apply 
the line finding algorithm to the remaining edge pixels 
and repeat this process until we have explained all the 
edge pixels in the image: Restarting the algorithm 
multiple times seems somewhat costly, however (and 

that suspicion is born out in practice, being nearly 10 
times slower than the alternative approaches described 
below). 

We might reduce this cost if we somehow run it in 
a way to find a representation of the set all possible 
solutions, and then enforce the constraint of unique 
correspondence in a second step. 

If we discretize parameter space sufficiently coarsely 
(similar to a Hough transform) and set a lower threshold 
on the total length of support for a line that we are 
interested in, this turns out to be a feasible approach 
(the FHT algorithm, ~13) for example, also returns such 
a complete representation of Hough space). While the 
list of all solutions contains many redundancies and 
duplications, the simple greedy postprocessing algor- 
ithm shown in Fig. 4 then quickly finds the desired 
interpretation. 

This greedy algorithm works similarly to the se- 
quential interpretation process we described above. 
That is, from the list of all hypotheses, it picks the best 
hypothesis. Then, it removes all the features associated 
with this best hypothesis from the support for all the 
remaining hypotheses and recomputes the quality for 
each remaining hypothesis. The process is then repeated 
until either no hypotheses remain, or until the quality 
of the remaining best hypothesis falls below some 
threshold. 

But ideally, we would like to avoid generating a 
complete list of hypotheses. In particular, if we choose 
as our termination criterion simply the dimensions of 
the box in parameter space, the number of hypotheses 
generated in this way can be seen to grow as the square 
of the dimensions of the box at a leaf. Clearly, this is 
not very desirable, and we would like to be able to 
choose the termination criterion, which determines the 
accuracy or weakness of the solution, without paying 
such a high cost. 

A solution to this dilemma is to accumulate solutions 
for small regions of transformation space. That is, we 
replace the variables best_quality, best_box, and best_ 
features themselves with arrays corresponding to 
quantized versions of parameter space. We can choose 
the quantization of those arrays to be significantly 
coarser than the dimensions of the terminal box in the 
search algorithm. The effect of this is that locally sub- 
maximal solutions near (in parameter space) a locally 
maximal solution tend to be suppressed. By choosing 
the quantization of the arrays holding the locally opti- 
mal solutions suitably, we can make certain that sub- 
maximal solutions only are suppressed if they share a 
significant number of features with the nearby maximal 
solution. 

Because of the quantization of the arrays holding 
the locally maximal solutions, this approach does not 
guarantee, however, that solutions in different bins do 
not share features. Therefore, even in this approach, 
we still need to run the greedy algorithm shown in 
Fig. 4 to make sure that all the line hypotheses found 
by the line finder are supported by disjoint sets of 
features in the image. 
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1 g l o b a l  p a r a m e t e r :  minimum_quality 

2 f u n c t i o n  greedy_post_process(set_of_hypotheses) 
3 Note: each hypothesis in set_of_hypotheses consists of a pair 
4 of line parameters (0, p) and a set of edge segments that 
5 are matched by that hypothesis; the set of features associated with 
6 each hypothesis is destructively modified during the execution of 
7 the algorithm. 
8 b e g i n  

9 i f  set_of_hypotheses = the empty set t h e n  

10 r e t u r n  the empty set 
11 e n d  i f  

12 best : =  the hypothesis in set_of_hypotheses whose features 
13 have the best total quality 
14 i f  quality(best) i minimum_quality then~ 

15 r e t u r n  the empty set 
16 else 

17 remaining := set_of_hypotheses - {best} 
18 remove the features matched by the hypothesis best f r o m  

19 each hypothesis in r e m a i n i n g  

20  processed := greedy_post_process(remaining_hypotheses) 
21 return {besZ} U processed 
22  e n d  i f  

23  e n d  f u n c t i o n  

Fig. 4. The greedy algorithm used for post-processing a list of hypotheses to ensure that the set of features 
matched by any two hypothesized lines are disjoint from one another. 

3. RESULTS 

The algorithm as described above has been imple- 
mented in CMU CommonLisp (is) on a SparcStation 
2. The input to the algorithm was obtained by using a 
Canny Deriche edge detector  t16'17) implemented in 
ANSI C. 

The algorithm is currently being used in the develop- 
ment of a vision system for an industrial inspection 
task. However, for the following discussion, we will use 
the example image in Fig. 5, a 566 x 544 pixel image of 
5 Bic razors. For all the experiments described below, 
the error bounds were set to two pixeis. 

As we mentioned above, the line finder described in 
this paper can cope with both point features and with 
line segment features. 

Using point features is perhaps the most straight- 
forward comparison with the Hough transform. The 
image shown in Fig. 5 yields 4533 point features (edge 
pixels with associated orientation). If we apply the line 
finder described above directly to these features, finding 
the solution (essentially the same solution as shown in 
Fig. 6) takes 388 s (a little less than 7 min). While this 
is quite slow compared with a simple Hough transform, 
it should be kept in mind that the algorithm finds 
solutions under well-defined error bounds, that it 

ensures a unique interpretation of each edge pixel, and 
that it is not subject to the aliasing problems of the 
standard Hough transform. 

Fortunately, we have means at our disposal for 
speeding up the operation of the algorithm significantly. 
In particular, instead of using point features as input 
to the algorithm, we can use line segment features. 

For the standard Hough transform, there is no signifi- 
cant advantage to grouping edge pixels into line seg- 
ments before carrying out the Hough transform--each 
edge pixel is only considered once by the algorithm, 
and all the "intelligence" for the Hough transform is 
put into post-processing the accumulator space. 

The line finder described in this paper, however, 
carries out repeated geometric operations involving 
the input features. It pays therefore to pre-process the 
input features in such a way as to represent them 
more compactly and better suited for carrying out 
these geometric operations. 

In order to do this, each connected chain of pixels 
in the edge image output by the Canny-Deriche edge 
detector is identified and approximated to within an 
error bound of one pixel by a polygonal chain using a 
splitting algorithm. 

This step greatly reduces the number of features that 
need to be considered by the line finding algorithm. 
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Fig. 5. The input image (a collection of five Bic razors) used for Fig. 6. Applying the Canny-Deriche edge 
detector to this image yields 4553 edge pixels that can be grouped into 111 line segment features within an 

error bound of one pixel. 

Instead of 4533 point features, it can now operate on 
! 11 line segment features. The time required for the 
execution of the line finding algorithm is reduced from 
388 s to 9 s. The subdivision of transformation space 
explored during this line finding problem is shown in 
Fig. 7. 

In using this grouping step, we have to ask ourselves, 
however, whether it affects the accuracy or robustness 
of the line finding algorithm significantly. 

With regards to accuracy, a point on the segment is 
at most one pixel away from the location of the cor- 
responding edge pixel, and this amount could be re- 
duced as much as desired using sub-pixel accuracy 
edge detection and approximation. 

With regard to robustness, we have to ask ourselves 
whether the grouping of edge pixels into line segments 
prior to the line finding algorithm perhaps precludes 
some important line hypotheses from being found. But 
line segments are only extracted for connected chains 
of pixels and are (by necessity) broken at points of high 

curvature. Therefore only pixels that naturally form 
part of the same line hypothesis are grouped together, 
and the subset structure imposed on the set of all edge 
pixels by the grouping step is still completely compatible 
with all "reasonable" line hypotheses. 

The next question that is important to ask is how 
the running time of the line finding algorithm is related 
to the number of input features. From benchmarks and 
the analysis of a related algorithm, 118~ we expect a 
nearly linear dependence of the running time on the 
number of input features. To see whether this is true 
of the line finding algorithm as well, the line finding 
algorithm was applied to randomly generated test 
images. 

Each of the test images consisted of between 20 and 
380 randomly placed line segments that were each 30 
pixels long. In addition, each image contained five 
randomly placed long lines. Each of those lines was 
visible as five line segments in the image with a total 
length of 170 pixels. The line finding algorithm was 
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Fig. 6. The features found by the method described in the text. Detection of candidate lines took 9 s using 
the algorithm described in the text, and post-processing to obtain a unique interpretation for each edge 
segment took 0.1 s on a SparcStation 2 in CommonLisp. Error bounds were set to 2 pixels, and the minimum 
required total length for the edge segments corresponding to a line was set to be 60pixels, a choice which 

selected specifically the handles and heads of the razors. 

required to find any line that was supported by at least 
150 pixels in the image. An example of one of these 
images is shown in Fig. 8. 

The results of these simulations are shown in Fig. 9. 
Each"  x " symbol  represents the average running time 
of 100 trials. We find a nearly linear relationship be- 
tween the number of edge pixels (or, equivalently, line 
segments) in the image and the running time of the 
algorithm. 

Another interesting question to ask is how the run- 
ning time of the algorithm depends on the termination 
condition. For  the experiments above, we chose to 
terminate the exploration of a solution as soon as the 
box in transformation space had dimensions smaller 
than 1 pixel in the p dimension and 0.29 ° in the 0 
dimension. For  the present example, this corresponds 
to a Hough space of about  800 by 630 pixels. 

As we saw above, this adds some additional un- 
certainty ("weakness") to the error bounds, and for 

certain applications, we may prefer more exact solu- 
tions. Figure 10 shows the dependence of the running 
time of the algorithm for different choices of the dimen- 
sions of terminal box when applied to the image in 
Fig. 5. The horizontal axis (on a logarithmic scale) 
shows the size of the terminal box, with a scale of 1 
corresponding to a terminal box of dimensions 1 pixel 
by 0.29 ° . (To compensate for variability due to garbage 
collection times and operating system overhead, each 
data point is the average of five runs on the same data.) 

As we can see, the running time of the algorithm 
is approximately logarithmic in the inverse of the 
dimensions of the terminal box (a similar relationship 
holds for the amount  of space required). This is similar 
to the adaptive or multiresolution Hough transforms, 
but is in significant contrast to the standard Hough 
transform, for which the running time and space re- 
quirements are quadratic in the inverse of the dimensions 
of each Hough bin. 
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Fig. 7. The subdivision of parameter space explored during the detection of the features shown in Fig. 6. 

Fig. 8. A representative example of a simulated image used 
for the benchmarks for 380 randomly placed background 

segments. 
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Fig. 9. The running time of the algorithm on simulated images. 
Each image contained five different groups of four colinear 
edge segments of a total length of 170 pixels plus between 20 

and 380 randomly placed segments of 30 pixels each. 
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Fig. 10. The running time of the algorithm for different 
choices of the size of the terminal box ("weakness"). The 

image used in this benchmark was the same as in Fig. 5. 

4. DISCUSSION 

This paper has described an efficient algorithm for 
finding lines with well-defined geometric and combina- 
torial properties. In particular, lines found by the 
algorithm satisfy a bounded error criterion, and it is 
guaranteed that each feature is counted towards only 
a single line hypothesis. 

In applications, we have found that picking para- 
meters for the algorithm is simple and intuitive. The 
only parameters that are critical are the error bounds 
on location and orientation of features relative to a 
hypothesized line and the minimum total length of 
edge pixels by which a hypothesized line must he 
supported in the image; these parameters depend, of 
course, on the application. 

The only other parameters that need to be picked 
are the weakness parameters (the dimensions of the 
box or rectangle in parameter space at which we 
terminate the search), and the size of the bins for the 
local maximization of results. Because the running 
time of the algorithm depends only linearly on the 
magnitude of the algorithm of the weakness parameters, 
we can pick them conservatively in applications that 
require that the specified error bounds be satisfied 
accurately. The choice of the size of the bins for the 
local maximization of line hypotheses depends on 
properties of the edge detector and on the particular 
applications, but in most applications, we do not require 
the detection of very closely spaced parallel lines, and 
bins that are of the order of magnitude of 8 pixels in 
the p dimension and 11 ° in the 0 dimension have 
proven sufficient for several applications. 

Given the vast amount of research on the subject, it 
is not surprising that the line finder described in 
this paper has close relations to a number of other 
approaches. 

Foremost, the algorithm is similar to an adaptive or 
dynamically quantized version of the Hough trans- 
form. (z3'12'19-22) It is also somewhat reminiscent of an 
exploration of Hough transform space using the con- 
verging squares algorithm, t23~ Like those methods, it 
begins with a coarse subdivision of parameter space 
and refines it in regions that look "promising", in the 
sense of possibly containing good line hypotheses. 
However, the present method differs from those other 
methods in its error model. 

Other methods compute the set of all possible trans- 
formations that would be compatible with a given edge 
pixel in image space without explicitly taking into 
consideration the amount of error that may be present 
on the location of that edge pixel. Some robustness 
against errors is then achieved by integrating votes 
over local regions in parameter space, usually collec- 
tions of small, non-overlapping rectangles. 

From our foregoing geometric analysis in Section 
2.2, the problems with such an approach should be 
clear: a rectangle in parameter space corresponds to a 
bow-tie region (plus a curved triangle) in image space, 
something that hardly constitutes a good implemen- 
tation of any interesting noise model of lines in images. 
Furthermore, the fact that the accumulator rectangles 
in parameter space are non-overlapping in many Hough 
transform based line detection methods means that 
votes may be split among several rectangles. 

The line finder presented in this paper interprets the 
subdivision of parameter space more carefully. For 
each rectangle in parameter space, it asks which edge 
pixels are compatible with any of the lines described 
by parameters in that rectangle under the given error 
bounds. In the standard Hough transform view, this 
would mean that each rectangle in the subdivision is 
dilated before testing it against the line parameters 
corresponding to a particular edge pixel. 

More importantly, other error models, such as those 
based on influence functions or probabilistic consid- 
erations ~s'9'6'SJ can easily be used with the current 
algorithm, in place of the uniform error bounds used 
in the description and derivation above. Even the 
direct incorporation of constraints such as connectivity 
requirements in image space (I 1) into the current algor- 
ithm is easy. 

It is also interesting to relate the current algorithm 
to the optimization view of the Hough transform. ~5) 
Stephens views the problem of line detection as the 
problem of maximizing the logarithm of the likelihood 
function of the line parameters given the edge pixels in 
the image, and he proposes the use of local optimization 
algorithms like gradient ascent to find optimal solutions 
for line parameters. The scheme described in this paper 
can be viewed as a simple yet powerful 910bal optimiza- 
tion aloorithm applied to the maximization of a likeli- 
hood function. 

Abstractly, in order to maximize a function f on a 
region D, it divides D into two subregions DI and D 2, 
and computes an upper bound bi on maxx~o,f(x). It 
then explores Di further only if bi is greater than the 
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best maximal solution found so far; if it is not, then D~ 
can safely be excluded from further exploration. 

An approach for finding lines that are completely 
different from the Hough transform is based on 
search. (2.-26) In that approach, pairs of lines are grouped 
together if they satisfy certain tests of colinearity and/or 
proximity. Such an approach can also be regarded as 
related to the line finder described in this paper. Like 
the line finder described here, such methods are often 
based on more complex features than individual edge 
pixel--for example, line segments. However, the search 
strategy itself is entirely different, since search based 
methods are organized around extending collections 
of features, rather than around regions in parameter 
space. This dichotomy is similar to the dichotomy 
between search-based approach to object recognition 
and parameter space based approaches for object 
recognition such as the Hough transform; the main 
disadvantage of search based approaches is that they 
tend to have exponential time complexity unless they 
incorporate heuristic pruning methods. (27) 

In summary, this paper has presented an efficient 
algorithm for finding lines under bounded error, useful 
for many practical applications. In addition, the key 
idea of organizing the search around adaptive sub- 
divisions of parameter space while at the same time 
measuring errors in image space should prove fruitful 
for a much larger class of problems, including efficient 
computation of the probabilistic Hough transform 
and general object recognition. Some tentative steps 
in that direction have already been undertaken." s) 
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