
Pergamon
Pattern Recoynitton, Vol. 29, No. 1 pp. 167 178. 1996

Elsevier Science Ltd
Copyright ,~ 1996 Pattern Recognition Society

Printed in Great Britain. All rights reserved
0031 3203/96 $15.00+.00

0031-3203(94)00158-8

FINDING LINES UNDER BOUNDED ERROR

THOMAS M. BREUEL
IDIAP, C.P. 609, 1920 Martigny, Switzerland

(Received 25 October 1993; received for publication 14 December 1994)

Abstract--A new algorithm for finding straight lines in images under a bounded error model is described.
The algorithm is based on a hierarchical and adaptive subdivision of the space of line parameters. It measures
errors in image space and thereby guarantees that no solution satisfying the given error bounds will be Inst.
The algorithm can find interpretations ofall the lines in the image that satisfy the constraint that each image
feature supports at most one line hypothesis. It can be extended to compute efficiently the maxima of the
probabilistic Hough transform and the generalized Hough transform under a variety of statistical error
models.

Straight lines Hough transformation Recursive subdivisions
Bounded error models Vision Object recognition

Parameter space

I. INTRODUCTION

Finding straight lines in images is one of the most
fundamental problems in computer vision. This paper
describes a new algorithm for finding lines in images.
The algorithm differs in a number of important ways
from existing methods. It can also be extended to
detect other analytic shapes or even arbitrary geometric
models; in this paper, we will focus our attention on a
version of the algorithm that finds lines in an image
subject to given bounds on the deviations of the location
and orientation of image features from a hypothesized
line.

The algorithm can be used to find the maximal or
"optimal" line in an image, in the sense of finding the
line for which the greatest total length is supported by
edge pixels in the image under the given error bounds.

An extension of the algorithm can be used to find
quickly a global interpretation of the edge pixels in an
image as lines in decreasing order of length of support,
imposing the constraint that no edge pixel can be part
of two different lines.

There are a number of fundamental concerns for any
method for finding lines. These can be roughly grouped
into correctness and efficiency. Let us illustrate these
concerns using the simple or standard Hough trans-
fo rm-p robab ly the most popular method for finding
lines in images--as an example. ~1'2)

The standard Hough transform is implemented in
the following way. Lines are considered to be para-
meterized by p, their distance from the origin, and 0,
their angle wth the x-axis (other parameterizations are
possible ~31 and used commonly). In the computation
of the Hough transform, the parameter space is quant-
ized and represented as a discrete data structure, often
an array or a hash table. Each "cell" or "bin" in this

data structure corresponds to a small range of para-
meters p and 0.

For each edge pixel (optionally associated with a
local orientation), there is an associated set of lines that
the edge pixel could be a part of. This set of lines
corresponds, in turn, to a set of bins in the quantized
parameter space.

The standard Hough transform now considers each
edge pixel in the input image and increments a counter
in each of the corresponding bins in the quantized
parameter space ("vote for that bin" in the language of
the Hough transform). More sophisticated versions of
the Hough transform do not increment each counter
by a fixed amount, but instead compute a "degree of
membership", for example related to a probability
distribution, for each edge pixel to a bin in the quantized
parameter space.

In a final stage, the quantized parameter space is
searched for bins that contain a number of Votes that
is larger than a given threshold and/or forms a local
maximum.

There are a nuinber of theoretical and practical
problems with such a simple approach, and a large
number of solutions and modifications to the simple
Hough transform have been proposed and studied in
the literature.

First, the quantization of parameter space can easily
result in the splitting of the votes belonging to a single
hypothesized line among a number of bins. To over-
come this problem, parameter space is sometimes sub-
jected to filtering operations, or, similarly, neighboring
bins, are considered together in the final evaluation
of the quantized parameter space34'51 Quantization
has been found to be a problem, for example, with
the adaptive Hough transformation, m and methods
for "anti-aliasing" the Hough transformation have

167

168 T.M. BREUEL.

been proposed. (6) The method described in this paper
explicitly avoids quantization errors, and no separate
post-processing step to counteract the effects of quan-
tization is necessary.

Closely related is the issue that errors in the localiza-
tion of edge pixels are modeled in parameter space
rather than in image space. Since properties of the
processing stages preceding line finding (edge detection,
pixel chaining, etc.) are most often naturally expressed
in image space, this complicates the problem of obtain-
ing solutions with well-defined geometric or statistical
properties. ~s-9~

Furthermore, the votes in a single bin may represent
multiple, different lines (e.g. nearby parallel lines or
widely separated colinear segments that should be
treated separately). This problem has been addressed
partially in the literature by backmapping the edge
pixels from a bin in the quantized parameter space into
the image and applying some kind of verification pro-
cedure to the set of edge pixels obtained in that way. ~°.~ ~
However, such an approach is not entirely satisfactory,
because the constraints used for verification might also
profitably be employed during the construction of the
quantized parameter space, not just in a final verifica-
tion step. The method described in these papers allows

a wide range of constraints on the solution of the line
finding problem to be incorporated at all stages of the
computation.

Finally, Hough space can be big. Even just generating
and searching a 512 x 512 bin Hough space is non-
trivial once more sophisticated peak-detection and
backmapping algorithms are being used. For analytic
shapes or objects (rigid or non-rigid), parameter space
might even be much higher dimensional than just two-
dimensional. Methods like the adaptive Hough trans-
formS12) (AHT) and the fast Hough transform ~l 3) (FHT)
have tried to address this problem using recursive
subdivisions of parameter space. The algorithm present-
ed in this paper is also based on a recursive subdivision
of parameter space, but avoids the quantization errors
common to those algorithms, "~ and extends the method
in several ways, such as the simultaneous accumulation
of multiple solutions.

2. ALGORITHM

2.1. Line finding

The basic line finding algorithm is given in Fig. 1.
The algorithm essentially implements a depth-first

1 global functions: bound_quality, evaluate_quality
2 parameters: rmax, error_bounds
3 global variables: best_quality, best_box, best_feature
4 procedure rastJines(features)
5 begin
6 best_quality := 0
7 best_box:= none
8 best_features:= none
9 box:= ([0, 2n], [0, rmax])

10 search(box, features)
11 end procedure
12 procedure search(box, features)
13 begin
14 consistent_features:= select features consistent with box under the 9iven error_bounds
16 if not is_done(box, consistent_features) then
17 bound_on_quality:= bound_quality(consistent_features)
18 if bound_on-quality < best_quality then
19 split box into boxl and box2
20 search(box 1, consistent_ffeatures)
21 search(box2, consistent_features)
22 end if
23 else
24 quality := evaluate_quality(consistentJ'eatures)
25 if quality < best_quality then
26 best_quality := quality
27 best_box := box
28 bestJ'eat ures := consistent_features
29 end if
30 return from search
31 end if
32 end procedure.

Fig. 1. The basic line finding algorithm. In practice, the algorithm is implemented as a best-first search, and
there are a number of small modifications described in the text.

Finding lines under bounded error 169

search of a spatial decomposition of the parameter
space by a binary tree (in practice, a best-first algorithm
is actually used).

That is, at each step, there is a box (or rectangle)
(variable: box) in parameter space that is under con-
sideration. Initially, that box consists of the set of all
possible parameters. During the execution of the algor-
ithm, the box will be subdivided. Regions or boxes that
probably cannot contain a solution under the given
error bounds will be eliminated from further consider-
ation.

A representative subdivision of transformation space
as it is explored during an actual line finding problem
is shown in Fig. 7.

Associated with each box is a set of image features
that are consistent under the given error bound with
any of the lines corresponding to the parameters con-
tained in box. It is crucial to realize that consistency
with the box is defined here as consistency under the
given error bounds as measured in the image. In this,
the algorithm differs from other line finding algorithms
based on the Hough transform or based on recursive
subdivisions of parameter space.

The next ingredient of the algorithm is a function
bound_quality that, given box and the set of image
features consistent with box, estimates an upper bound
on the quality of any solution to the line finding problem
for all the combinations of line parameters contained
in box under the given error bound; by "quality" we
mean for the purposes of this paper the total length
of segments of the line accounted for by edge pixels in
the image under the given error bound.

However, other notions of quality are desirable in
some applications. For example, we might want to
penalize hypothesized lines that are supported by a
large number of fragmented, short stretches of edge
pixels, compared with hypothesized lines that are com-
posed of a small number of long, connected stretches
of edge pixels.

Another notion of quality might weight features
differently depending on the amount of their deviation
from the hypothesized line. For example, if we assume
that pixel deviations from the line are given by some
distribution ~, we might weight the additional support
that a feature gives to a hypothesized line by some
function F(d), where d is the distance of the feature
from the line; such methods are described in the liter-
ature.(5.6.s. 9)

For using any kind of quality measure with the line
finding algorithm described in this paper, all that is
necessary is that we can quickly bound the largest
possible quality for any hypothesized line described by
line parameters contained in box.

We can now sketch the operation of the function
search, the heart of the algorithm. Initially, it is given
a rectangular region in parameter space, box, and a set
of features, features. The subset of features consistent
with box under the given error bound is found (con-
sistent_features). Now, there are two major cases.

First, the current box does not yet represent an

accurate solution to the line finding problem for the
set of consistent_features. This is determined by the
function is_done (we will discuss how this is determined
in more detail in Section 2.3). In that case, the current
box is split into two halves, and the search is repeated
for each half of box in parameter space.

Of course, a conceptually trivial and quite useful
modification of this step is to explore that half of box
first that has the larger upper bound on the potential
solution, a kind of best-first algorithm. To keep the
presentation simple, this is not shown in Fig. 1.

The second case is that the current box and the
current set of consistent_features represent a possible
solution. In that case, the algorithm compares this
possible solution against the best solution found so far.
If it is better, it is recorded in the variables bestquali ty,
besLbox, and best_features. In either case, the algorithm
returns in order to allow the exploration of other parts
of parameter space.

At the end of this process, the best solution, in the
sense of the quality measure, is left in the variables
bestquality, best_box, and bestfeatures. Of course,
often we are interested in identifying multiple lines in
an image, not just in finding a single "optimal" or
"maximal" line; how we can go about doing this is
discussed in Section 2.4.

2.2. Testing for consistency

One of the key components of the algorithm is the
test of whether an individual feature is "consistent"
with a given box of line parameters under the given
error_bounds.

The exact nature that this test takes depends on the
primitive features that we extract from the image. The
two kinds of features we are considering in this paper
are point features and line seoment features.

Point features correspond to individual edge pixels
in the image. Each point feature has a location and an
associated orientation.

Line segment features can result, for example, from
a polygonal approximation to the output of an edge
detector. Line segment features have two end points
and an orientation (the orientation may either be the
orientation of the line passing through the end points
of the segment, or it may be measured from the gradient
associated with the edge pixels making up the line
segment).

To test for consistency of either kind of feature with
a hypothesized line under bounded error, we use two
primitive tests: a test of whether a point is within a
given error bound of some line described by the line
parameters contained in box and a spatial error bound,
(point_consistent), and a test whether the orientation
is within a given angular error bound from within the
orientation of a range of orientations, (a n 9 l e_co n s iste nt).

The implementation of angle_consistent is relatively
straightforward and will not be discussed here. The
implementation of poinhconsistent, however, involves
some subtleties.

170 T.M. BREUEL

00,p 1

01 ,p l

O0,pO

01,p0

~ I . U U I I ~ 1 1 I

Fig. 2. The geometry of consistency between a point and a box of line parameters [0o,01], [Po, Pl] in
parameter space under an error bound of ~. See the text for a more detailed explanation.

We parameterize lines by their angle 0 with the
x-axis and their distance p from the origin. A box in
transformation space consists of a range of angles [0o, 01]
and a range of possible radii [Po, Pl].

Figure 2 shows the four lines parameterized by (00, Po),
(01, Po), (0o, p 1), and (01, P 0, co rresponding to the four
corners of the box. These four lines enclose a bow-tie
shaped region in image space. Since we want to deter-
mine whether a given image point p lies within a
distance ofe of any one of the lines determined by any
pair (0, p) of parameters contained in box, we might at
first sight conclude that all we need to determine is
whether p is either directly contained in that bow tie
shaped region, or whether it is at least located within
a distance of e of that region. This test is neither very

difficult nor very expensive: we need two dot products
to determine whether a point is above or at most a
distance e below either line (0o, Po) or (01, Po)- Likewise,
we need two dot products to determine whether a
point is below or at most a distance e above either line
(00, p ~) or line (01, P 1)-

However, this is not quite accurate. In fact, some
points that lie on lines parameterized by parameters
(O,p) contained in the box are actually outside this
bow-tie shaped region. We therefore need to modify
the above procedure slightly. This is illustrated in more
detail in Fig. 3.

Here, two lines, corresponding to the lower two lines
delimiting the bow tie, are shown (marked (0o, Po) and
(01, Po))- But consider now the line ((01 + 00)/2, Po)- Its

Fig. 3. The derivation of the distance r in the previous diagram.

Finding lines under bounded error 171

parameters are certainly contained within the box of
parameters [0 o, 01] x [Po, Pl]- However, there is a non-
negligible segment of that line between points A' and
B' that falls outside the bow tie region. Therefore, if we
simply used the bow tie region to test for consistency
of a feature with the set of lines corresponding to the
parameters inside the box, we would run the risk of
falsely classifying a point as "inconsistent", even though
it actually can be found within the given error bound
of some line contained in the box.

There are two possible solutions to this problem.
First, we could simply carry out the exact test. This
would require testing whether a given point is within
a distance e of the curved triangle ABC. Such a test is
not too difficult to carry out, but the runtime cost is
non-negligible. Given that the consistency test is in the
inner loop of the algorithm, and, as it turns out, actually
dominates the running time of the algorithm as de-
termined by an execution profile, we would prefer a
method that affects the running time of the algorithm
less.

The second solution is to overestimate the region in
which points are accepted as consistent slightly. This
does not present a problem as long as the overestima-
tion is sufficiently small in absolute terms and goes to
zero quickly as the dimensions of box shrink during
the execution of the algorithm. This was the approach
adopted in the algorithm actually implemented.

There are two simple methods that offer themselves
for modifying the constraints in order to ensure that
no consistent image point is falsely rejected. We can
either translate both lines (0o, Po) and (01, Po) closer to
the origin by a small amount z, or we can introduce a
third line passing through AB with line parameters of
((0 z + 00)/2, p - z) and say that a point is consistent if it
is consistent under bound e with either (but not neces-
sarily both) of the two linear constraints for P0 or the
line AB, and if it is consistent under bound e with either
of the two linear constraints for Pl.

Using elementary geometry, the distance 3, which is
the same in both cases, can be read from Fig. 3 as

cosT)
where A0 is the difference between 01 and 0 o. It should
be noted that z approaches 0 as the square of A0.

Now, we can return to the original problem of
determining when a point feature (edge pixel) or a line
segment is consistent with a given box. We say that a
point feature or edge pixel is consistent with a given
box if its location satisfies the point_consistent test and
its orientation satisfies the angle_consistent test with
the parameters contained in the box.

For a line segment feature, we would like to say that
it is consistent with a given box if all the edge pixels
that make up the line segment feature satisfy the point_
consistency test. However, such a test is, again, relatively
costly. A simpler approach is to test whether each of
the two end points satisfies the point_consistent test.

While this does not imply that all the individual edge
pixels that make up the line segment feature are con-
tained in the image region swept out by the lines
described by parameters in the box under the given
error bound, the approximation to the precise test
becomes nearly perfect as the current box shrinks. In
the limit of AO = O, the test is easily seen to be exact.
In addition to testing the end points, we also test
whether the orientation of the line segment feature
satisfies the angle_consistent test, since very short line
segment features would otherwise be nearly uncon-
strained in their orientation.

2.3. Termination

Before going on, we should discuss the issue of
termination, that is, when the function is_done in Fig. 1
returns true. There are, in fact, a number of different
criteria we might want to use for stopping.

Ideally, we would like to determine exactly whether
the set of edge segments represented by the variable
consistent_features represents a solution to the line
finding problem under the given error bounds. If yes,
then we can simply accept this set as a solution and
return. While such a computation is possible in principle,
in practice it is far too expensive, given that the test for
termination is one of the most frequently executed
operations in the algorithm.

A much simpler termination condition is to check
whether the current box has become "sufficiently" small.
The notion of "sufficiently" here requires some expla-
nation.

As we saw above, the test for consistency of a feature
with the current box allows for two kinds of uncertainty:
the first results from the given error_bounds, while the
second results from the finite dimensions of the box
itself. That is, the current setof consistent-features is
not necessarily an exact match under the given error_
bounds, but instead a match under slightly larger error
bounds that are determined, for a given image, by the
dimensions of the box.

lfwe terminate the search when the box has become
sufficiently small, rather than by verifying consistency
exactly of the result with the given error bounds, the
line finding algorithm is transformed into a weak geo-
metric algorithm." 4) That is, the error bounds satisfied
by the maximal solution are uncertain by at most a
small bounded amount determined by the maximal
dimensions of the input image and the chosen dimen-
sions for the terminal box.

The Hough transform, of course, also suffers from
the same problem. The weakness of the Hough trans-
form is related to the size of the individual bins in the
quantized parameter space. However, in contrast to
the Hough transform, with the present methods, we
can easily choose error bounds and the weakness of
the solution completely independently. While for the
Hough transform, the dimension of the individual bins
is related to the size of the accumulator array as the
inverse square, which means that making the individual

172 T.M. BREUEL

bins significantly smaller increases both the running
time and the amount of space required by the Hough
transform greatly, the running time and amount of
space required by the present algorithm only varies
proportionally to the logarithm of the weakness para-
meter (see below).

2.4. Global interpretation

In the algorithm shown in Fig. 1, only a single maxi-
mal solution is found, where "maximal" refers to the
line that corresponds to the greatest total length of
edge segments in the image compatible with that line
under the given error bounds.

Often, we are not interested in just finding a single
maximal line, but instead in finding all "reasonable"
lines in the image. For the Hough transform, probably
the most common approach is to report all those bins
in Hough space that form local maxima and that are
above some threshold.

Such an approach is somewhat unsatisfactory because
it usually results in the reporting of multiple lines that
are really only slightly different interpretations of nearly
identical sets of edge segments. To alleviate this problem,
it is possible to permit the reporting of only a single
local maximum within a bounded region in Hough
space.

We will use a similar idea below. Before proceeding,
however, it is a good idea to reflect upon the real-world
constraints that give us the intuition that multiple
nearby line hypotheses are unlikely and undesirable in
the first place. There are essentially two basic reasons.

First, image acquisition is a band-limited process,
and edge detection itself usually involve some kind of
convolution operation. This, however, limits the density
of parallel lines that can be resolved, and postulating
that two lines that are closer to each other than this
limit are present simultaneously in the image is not
sensible, given that there is no way we could support
such a conclusion from the input data to the line
finding algorithm. This suggests that if there are two
very similar line hypotheses, we should choose only one.

Furthermore, in many applications we can use the
assumption of a "general viewpoint", that is, that the
image was taken with very high probability from a
position such that different lines do not coincide. This
means that we should not allow two different line
hypotheses to share any edge pixels.

Incorporating these additional constraint then sug-
gests the following approach to finding a global inter-
pretation of the lines in the image. We start by running
the line finding algorithm to find the maximal solution
given all edge pixels in the image. We then remember
this solution and remove the corresponding edge pixels
from the image (they would not be allowed to partici-
pate in the match of any other line). We then re-apply
the line finding algorithm to the remaining edge pixels
and repeat this process until we have explained all the
edge pixels in the image: Restarting the algorithm
multiple times seems somewhat costly, however (and

that suspicion is born out in practice, being nearly 10
times slower than the alternative approaches described
below).

We might reduce this cost if we somehow run it in
a way to find a representation of the set all possible
solutions, and then enforce the constraint of unique
correspondence in a second step.

If we discretize parameter space sufficiently coarsely
(similar to a Hough transform) and set a lower threshold
on the total length of support for a line that we are
interested in, this turns out to be a feasible approach
(the FHT algorithm, ~13) for example, also returns such
a complete representation of Hough space). While the
list of all solutions contains many redundancies and
duplications, the simple greedy postprocessing algor-
ithm shown in Fig. 4 then quickly finds the desired
interpretation.

This greedy algorithm works similarly to the se-
quential interpretation process we described above.
That is, from the list of all hypotheses, it picks the best
hypothesis. Then, it removes all the features associated
with this best hypothesis from the support for all the
remaining hypotheses and recomputes the quality for
each remaining hypothesis. The process is then repeated
until either no hypotheses remain, or until the quality
of the remaining best hypothesis falls below some
threshold.

But ideally, we would like to avoid generating a
complete list of hypotheses. In particular, if we choose
as our termination criterion simply the dimensions of
the box in parameter space, the number of hypotheses
generated in this way can be seen to grow as the square
of the dimensions of the box at a leaf. Clearly, this is
not very desirable, and we would like to be able to
choose the termination criterion, which determines the
accuracy or weakness of the solution, without paying
such a high cost.

A solution to this dilemma is to accumulate solutions
for small regions of transformation space. That is, we
replace the variables best_quality, best_box, and best_
features themselves with arrays corresponding to
quantized versions of parameter space. We can choose
the quantization of those arrays to be significantly
coarser than the dimensions of the terminal box in the
search algorithm. The effect of this is that locally sub-
maximal solutions near (in parameter space) a locally
maximal solution tend to be suppressed. By choosing
the quantization of the arrays holding the locally opti-
mal solutions suitably, we can make certain that sub-
maximal solutions only are suppressed if they share a
significant number of features with the nearby maximal
solution.

Because of the quantization of the arrays holding
the locally maximal solutions, this approach does not
guarantee, however, that solutions in different bins do
not share features. Therefore, even in this approach,
we still need to run the greedy algorithm shown in
Fig. 4 to make sure that all the line hypotheses found
by the line finder are supported by disjoint sets of
features in the image.

Finding lines under bounded error 173

1 g l o b a l p a r a m e t e r : minimum_quality

2 f u n c t i o n greedy_post_process(set_of_hypotheses)
3 Note: each hypothesis in set_of_hypotheses consists of a pair
4 of line parameters (0, p) and a set of edge segments that
5 are matched by that hypothesis; the set of features associated with
6 each hypothesis is destructively modified during the execution of
7 the algorithm.
8 b e g i n

9 i f set_of_hypotheses = the empty set t h e n

10 r e t u r n the empty set
11 e n d i f

12 best : = the hypothesis in set_of_hypotheses whose features
13 have the best total quality
14 i f quality(best) i minimum_quality then~

15 r e t u r n the empty set
16 else

17 remaining := set_of_hypotheses - {best}
18 remove the features matched by the hypothesis best f r o m

19 each hypothesis in r e m a i n i n g

20 processed := greedy_post_process(remaining_hypotheses)
21 return {besZ} U processed
22 e n d i f

23 e n d f u n c t i o n

Fig. 4. The greedy algorithm used for post-processing a list of hypotheses to ensure that the set of features
matched by any two hypothesized lines are disjoint from one another.

3. RESULTS

The algorithm as described above has been imple-
mented in CMU CommonLisp (is) on a SparcStation
2. The input to the algorithm was obtained by using a
Canny Deriche edge detector t16'17) implemented in
ANSI C.

The algorithm is currently being used in the develop-
ment of a vision system for an industrial inspection
task. However, for the following discussion, we will use
the example image in Fig. 5, a 566 x 544 pixel image of
5 Bic razors. For all the experiments described below,
the error bounds were set to two pixeis.

As we mentioned above, the line finder described in
this paper can cope with both point features and with
line segment features.

Using point features is perhaps the most straight-
forward comparison with the Hough transform. The
image shown in Fig. 5 yields 4533 point features (edge
pixels with associated orientation). If we apply the line
finder described above directly to these features, finding
the solution (essentially the same solution as shown in
Fig. 6) takes 388 s (a little less than 7 min). While this
is quite slow compared with a simple Hough transform,
it should be kept in mind that the algorithm finds
solutions under well-defined error bounds, that it

ensures a unique interpretation of each edge pixel, and
that it is not subject to the aliasing problems of the
standard Hough transform.

Fortunately, we have means at our disposal for
speeding up the operation of the algorithm significantly.
In particular, instead of using point features as input
to the algorithm, we can use line segment features.

For the standard Hough transform, there is no signifi-
cant advantage to grouping edge pixels into line seg-
ments before carrying out the Hough transform--each
edge pixel is only considered once by the algorithm,
and all the "intelligence" for the Hough transform is
put into post-processing the accumulator space.

The line finder described in this paper, however,
carries out repeated geometric operations involving
the input features. It pays therefore to pre-process the
input features in such a way as to represent them
more compactly and better suited for carrying out
these geometric operations.

In order to do this, each connected chain of pixels
in the edge image output by the Canny-Deriche edge
detector is identified and approximated to within an
error bound of one pixel by a polygonal chain using a
splitting algorithm.

This step greatly reduces the number of features that
need to be considered by the line finding algorithm.

174 T.M. BREUEL

Fig. 5. The input image (a collection of five Bic razors) used for Fig. 6. Applying the Canny-Deriche edge
detector to this image yields 4553 edge pixels that can be grouped into 111 line segment features within an

error bound of one pixel.

Instead of 4533 point features, it can now operate on
! 11 line segment features. The time required for the
execution of the line finding algorithm is reduced from
388 s to 9 s. The subdivision of transformation space
explored during this line finding problem is shown in
Fig. 7.

In using this grouping step, we have to ask ourselves,
however, whether it affects the accuracy or robustness
of the line finding algorithm significantly.

With regards to accuracy, a point on the segment is
at most one pixel away from the location of the cor-
responding edge pixel, and this amount could be re-
duced as much as desired using sub-pixel accuracy
edge detection and approximation.

With regard to robustness, we have to ask ourselves
whether the grouping of edge pixels into line segments
prior to the line finding algorithm perhaps precludes
some important line hypotheses from being found. But
line segments are only extracted for connected chains
of pixels and are (by necessity) broken at points of high

curvature. Therefore only pixels that naturally form
part of the same line hypothesis are grouped together,
and the subset structure imposed on the set of all edge
pixels by the grouping step is still completely compatible
with all "reasonable" line hypotheses.

The next question that is important to ask is how
the running time of the line finding algorithm is related
to the number of input features. From benchmarks and
the analysis of a related algorithm, 118~ we expect a
nearly linear dependence of the running time on the
number of input features. To see whether this is true
of the line finding algorithm as well, the line finding
algorithm was applied to randomly generated test
images.

Each of the test images consisted of between 20 and
380 randomly placed line segments that were each 30
pixels long. In addition, each image contained five
randomly placed long lines. Each of those lines was
visible as five line segments in the image with a total
length of 170 pixels. The line finding algorithm was

Finding lines under bounded error 175

Fig. 6. The features found by the method described in the text. Detection of candidate lines took 9 s using
the algorithm described in the text, and post-processing to obtain a unique interpretation for each edge
segment took 0.1 s on a SparcStation 2 in CommonLisp. Error bounds were set to 2 pixels, and the minimum
required total length for the edge segments corresponding to a line was set to be 60pixels, a choice which

selected specifically the handles and heads of the razors.

required to find any line that was supported by at least
150 pixels in the image. An example of one of these
images is shown in Fig. 8.

The results of these simulations are shown in Fig. 9.
Each" x " symbol represents the average running time
of 100 trials. We find a nearly linear relationship be-
tween the number of edge pixels (or, equivalently, line
segments) in the image and the running time of the
algorithm.

Another interesting question to ask is how the run-
ning time of the algorithm depends on the termination
condition. For the experiments above, we chose to
terminate the exploration of a solution as soon as the
box in transformation space had dimensions smaller
than 1 pixel in the p dimension and 0.29 ° in the 0
dimension. For the present example, this corresponds
to a Hough space of about 800 by 630 pixels.

As we saw above, this adds some additional un-
certainty ("weakness") to the error bounds, and for

certain applications, we may prefer more exact solu-
tions. Figure 10 shows the dependence of the running
time of the algorithm for different choices of the dimen-
sions of terminal box when applied to the image in
Fig. 5. The horizontal axis (on a logarithmic scale)
shows the size of the terminal box, with a scale of 1
corresponding to a terminal box of dimensions 1 pixel
by 0.29 ° . (To compensate for variability due to garbage
collection times and operating system overhead, each
data point is the average of five runs on the same data.)

As we can see, the running time of the algorithm
is approximately logarithmic in the inverse of the
dimensions of the terminal box (a similar relationship
holds for the amount of space required). This is similar
to the adaptive or multiresolution Hough transforms,
but is in significant contrast to the standard Hough
transform, for which the running time and space re-
quirements are quadratic in the inverse of the dimensions
of each Hough bin.

176 T.M. BREUEL

ib

'="";""i:'ill, l . ! ' - '] l l l

_ ' ° 1 1 Ill==, d h

Fig. 7. The subdivision of parameter space explored during the detection of the features shown in Fig. 6.

Fig. 8. A representative example of a simulated image used
for the benchmarks for 380 randomly placed background

segments.

20

1 5 . i : / i

¢D

~ '10 .
E) yZ .[

o
2000 4000 6000 8000 10000 12000

Number of Edge Pixel= in the Image

Fig. 9. The running time of the algorithm on simulated images.
Each image contained five different groups of four colinear
edge segments of a total length of 170 pixels plus between 20

and 380 randomly placed segments of 30 pixels each.

Finding lines under bounded error 177

22
i !iiiiii! i !iiii!!! ! !iiiiii! i iiiiiii! i !iiiiii

2o

i= 14

"2

'° i,iii i. " '. . iii
0.0001 0.001 0.01 0.1 1 10

Weakness (1 oorresl0onde to 1 pixel, 0.29 °)

Fig. 10. The running time of the algorithm for different
choices of the size of the terminal box ("weakness"). The

image used in this benchmark was the same as in Fig. 5.

4. DISCUSSION

This paper has described an efficient algorithm for
finding lines with well-defined geometric and combina-
torial properties. In particular, lines found by the
algorithm satisfy a bounded error criterion, and it is
guaranteed that each feature is counted towards only
a single line hypothesis.

In applications, we have found that picking para-
meters for the algorithm is simple and intuitive. The
only parameters that are critical are the error bounds
on location and orientation of features relative to a
hypothesized line and the minimum total length of
edge pixels by which a hypothesized line must he
supported in the image; these parameters depend, of
course, on the application.

The only other parameters that need to be picked
are the weakness parameters (the dimensions of the
box or rectangle in parameter space at which we
terminate the search), and the size of the bins for the
local maximization of results. Because the running
time of the algorithm depends only linearly on the
magnitude of the algorithm of the weakness parameters,
we can pick them conservatively in applications that
require that the specified error bounds be satisfied
accurately. The choice of the size of the bins for the
local maximization of line hypotheses depends on
properties of the edge detector and on the particular
applications, but in most applications, we do not require
the detection of very closely spaced parallel lines, and
bins that are of the order of magnitude of 8 pixels in
the p dimension and 11 ° in the 0 dimension have
proven sufficient for several applications.

Given the vast amount of research on the subject, it
is not surprising that the line finder described in
this paper has close relations to a number of other
approaches.

Foremost, the algorithm is similar to an adaptive or
dynamically quantized version of the Hough trans-
form. (z3'12'19-22) It is also somewhat reminiscent of an
exploration of Hough transform space using the con-
verging squares algorithm, t23~ Like those methods, it
begins with a coarse subdivision of parameter space
and refines it in regions that look "promising", in the
sense of possibly containing good line hypotheses.
However, the present method differs from those other
methods in its error model.

Other methods compute the set of all possible trans-
formations that would be compatible with a given edge
pixel in image space without explicitly taking into
consideration the amount of error that may be present
on the location of that edge pixel. Some robustness
against errors is then achieved by integrating votes
over local regions in parameter space, usually collec-
tions of small, non-overlapping rectangles.

From our foregoing geometric analysis in Section
2.2, the problems with such an approach should be
clear: a rectangle in parameter space corresponds to a
bow-tie region (plus a curved triangle) in image space,
something that hardly constitutes a good implemen-
tation of any interesting noise model of lines in images.
Furthermore, the fact that the accumulator rectangles
in parameter space are non-overlapping in many Hough
transform based line detection methods means that
votes may be split among several rectangles.

The line finder presented in this paper interprets the
subdivision of parameter space more carefully. For
each rectangle in parameter space, it asks which edge
pixels are compatible with any of the lines described
by parameters in that rectangle under the given error
bounds. In the standard Hough transform view, this
would mean that each rectangle in the subdivision is
dilated before testing it against the line parameters
corresponding to a particular edge pixel.

More importantly, other error models, such as those
based on influence functions or probabilistic consid-
erations ~s'9'6'SJ can easily be used with the current
algorithm, in place of the uniform error bounds used
in the description and derivation above. Even the
direct incorporation of constraints such as connectivity
requirements in image space (I 1) into the current algor-
ithm is easy.

It is also interesting to relate the current algorithm
to the optimization view of the Hough transform. ~5)
Stephens views the problem of line detection as the
problem of maximizing the logarithm of the likelihood
function of the line parameters given the edge pixels in
the image, and he proposes the use of local optimization
algorithms like gradient ascent to find optimal solutions
for line parameters. The scheme described in this paper
can be viewed as a simple yet powerful 910bal optimiza-
tion aloorithm applied to the maximization of a likeli-
hood function.

Abstractly, in order to maximize a function f on a
region D, it divides D into two subregions DI and D 2,
and computes an upper bound bi on maxx~o,f(x). It
then explores Di further only if bi is greater than the

178 T.M. BREUEL

best maximal solution found so far; if it is not, then D~
can safely be excluded from further exploration.

An approach for finding lines that are completely
different from the Hough transform is based on
search. (2.-26) In that approach, pairs of lines are grouped
together if they satisfy certain tests of colinearity and/or
proximity. Such an approach can also be regarded as
related to the line finder described in this paper. Like
the line finder described here, such methods are often
based on more complex features than individual edge
pixel--for example, line segments. However, the search
strategy itself is entirely different, since search based
methods are organized around extending collections
of features, rather than around regions in parameter
space. This dichotomy is similar to the dichotomy
between search-based approach to object recognition
and parameter space based approaches for object
recognition such as the Hough transform; the main
disadvantage of search based approaches is that they
tend to have exponential time complexity unless they
incorporate heuristic pruning methods. (27)

In summary, this paper has presented an efficient
algorithm for finding lines under bounded error, useful
for many practical applications. In addition, the key
idea of organizing the search around adaptive sub-
divisions of parameter space while at the same time
measuring errors in image space should prove fruitful
for a much larger class of problems, including efficient
computation of the probabilistic Hough transform
and general object recognition. Some tentative steps
in that direction have already been undertaken." s)

REFERENCES

1. J. Illingworth and J. Kittler, A survey of the Hough
transform, Comput. Vision Graphics Image Process. 44,
87-116 (1988).

2. V. F. Leavers, Which Hough transform? lEE Colloquium
Hough Transform, London, Savoy Place, London (1993).

3. T. Risse, Hough transform for line recognition: complexity
of evidence accumulation and cluster detection, Comput.
Vision Graphics Image Process. 46, 327-345 (1989).

4. V. F. Leavers and J. F. Boyce, The radon transform and
its application of shape parameterization in machine
vision, Image Vision Comput. 5(2) 161-166 (1987).

5. R.S. Stephens, Probabilistic approach to the Hough
transform, Image Vision Comput. 9(1), 66-71 (1991).

6. N.K. Kiryati and A.M. Bruckstein, Antialiasing the
Hough transform, Comput. Vision Graphics Image Process,
53(3) 213-222 (1991).

7. I.D. Svalbe, Natural representations for straight lines
and the Hough transform on discrete arrays, IEEE T-
PAMI 11(9), 941-950 (1989).

8. I. Weiss, Line Fitting in a Noisy Image, IEEE T-PAMI
11(3), 325-329 (1989).

9. J. Princen, J. Illingworth and J. Kittler, Hypothesis testing:
a framework for analyzing and optimizing the Hough
transform performance, Proc. 3rd Int. Conf. Computer
Vision, pp. 427-434, Osaka, Japan (1990).

10. G. Gerig, Linking image-space and accumulator-space: a
new approach for object recognition, First Int. Conf.
Computer Vision, pp. 112-117, London (1987).

11. S. Y. K. Yuen, Connective Hough transform, British
Machine Vision Conf. pp. 127-135, Glasgow (1991).

12 .J. IUingworth and J. Kittler, The adaptive Hough transform,
IEEE PAMI 9(5) 690-698 (1987).

13. H. Li, M.A. Lavin, and R.J. LeMaster, Fast hough
transformPa hierarchical approach, Comput. Vision
Graphics Image Process. 36(2, 3), 139-161 (1986).

14. M. Gr6tschel, L. Lov~sz, and A. Schrijver, Geometric
Algorithm and Combinatorial Optimization. Springer,
Heidelberg (1988).

15. R.A. MacLachlan, CMU common lisp user's manual
(version 16f). ETP: lisp-rtl.slisp.cs.cmu.edu,/afs-/cs.cmu.
edu/project/clisp/release.

16. J. F. Canny, A computational approach to edge detection,
IEEE Trans. Pattern Anal. Mach. Intell. PAMI 8(6),
679-698 (1986).

17. R. Deriche, Using Canny's criteria to derive a recursively
implemented optimal edge detector, Int. J. Comput. Vision
1, 167-187 (1987).

18. T. M. Breuel, Fast recognition using adaptive subdivisions
of transformation space. Proc. IEEE Conf. Computer
Vision and Pattern Recognition, pp. 445-451 (1992).

19. K. R. Sloan, Dynamically quantized pyramids. Proc. Int.
Jt Conf. Artificial Intelligence (IJCAI), pp. 734-736 (1981).

20. J. O'Rourke, Dynamically quantized spaces for focusing
the Hough transform. Proc. Int. Jt Conf. Artificial Intelli-
gence (IJCAI), pp. 737-739 (1981).

21. S. C.JengandW. H.Tsai, Fast generalized Hough trans-
form, Pattern Recognition Lett. 11(11), 725-733 (1990).

22. M. Atiquzzaman, Multiresolution Hough transform--an
efficient method of detecting patterns in images, IEEE
PAMI 14(11), 1090-1095 (1992).

23. L. O'Gorman and A. C. Sanderson, The converging squares
algorithm: an efficient method for locating peaks in multi-
dimensions, IEEE T-PAMI 6, 280-288 (1984).

24. R. Weiss and M. Boldt, Geometric grouping applied to
straight lines, Proc. IEEE Conf. Computer 14sion and
Pattern Recognition, pp. 489-495 (1981).

25. David G. Lowe, Perceptual Organization and Visual
Recognition, Kluwer Academic, Boston, MA (1986).

26. A. Etemadi, J-P. Schmidt, G. Matas, J. Illingworth, and
J. Kittler, Log-level grouping of stright line segments.
FEX and LPEG Software Distribution (a.eternadi@ee.
surrey.ac.uk) (1991).

27. Eric Grimson, Object Recognition by Computer. MIT
Press, Cambridge, MA (1990).

About the Author--THOMAS M. BREUEL holds B.A. and M.A. degrees from Harvard University. He did his
graduate work on 3D object recognition at the M.I.T. Artificial Intelligence Laboratory and received a
Ph.D. in Computational Neurosciences from the Department of Brain and Cognitive Sciences. He is
currently Directeur de Recherche for Computer Vision at the Institut Dalle Molle d'Intelligence Artificielle
Perceptive (IDIAP) in Martigny, Switzerland. His research interests include OCR, object recognition,
applications of computer vision, and the human visual system.

