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a b s t r a c t 

Multi-label classification (MLC) studies the problem where each instance is associated with multiple rel- 

evant labels, which leads to the exponential growth of output space. It confronts with the great challenge 

for the exploration of the latent label relationship and the intrinsic correlation between feature and la- 

bel spaces. MLC gave rise to a framework named label compression (LC) to obtain a compact space for 

efficient learning. Nevertheless, most existing LC methods failed to consider the influence of the feature 

space or misguided by original problematic features, which may result in performance degradation in- 

stead. In this paper, we present a compact learning (CL) framework to embed the features and labels 

simultaneously and with mutual guidance . The proposal is a versatile concept that does not rigidly adhere 

to some specific embedding methods, and is independent of the subsequent learning process. Following 

its spirit, a simple yet effective implementation called compact multi-label learning (CMLL) is proposed to 

learn a compact low-dimensional representation for both spaces. CMLL maximizes the dependence be- 

tween the embedded spaces of the labels and features, and minimizes the loss of label space recovery 

concurrently. Theoretically, we provide a general analysis for different embedding methods. Practically, 

we conduct extensive experiments to validate the effectiveness of the proposed method. 

© 2021 Elsevier Ltd. All rights reserved. 
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. Introduction 

Multi-label classification (MLC) [1] is one of the mostly-studied 

achine learning paradigms, owing its popularity to its capabil- 

ty to fit the pervasive real-world tasks. It allows each instance to 

e equipped with multiple relevant labels for explicitly expressing 

he rich semantic meanings simultaneously. In recent years, the 

eed of MLC is widely witnessed in various applications, such as 

mage annotation [2,3] , face recognition [4,5] , text categorization 

6,7] , etc. 

Formally speaking, let X ⊆ R 

D be the instance space and Y = 

 M] be the label space, where D is the feature space dimension, 

 M] := { 1 , 2 , . . . , M} and M > 2 is the number of classes. The train-

ng set is represented as D = { ( x i , Y i ) ∈ X × Y} N 
i =1 

consisting of a

 -dimensional instance x i ∈ X and the associated label set Y i ⊆ Y . 

LC techniques aim at inducing a multi-label classifier g : X → Y
o assign a set of relevant labels for the unseen instances. 

It is evident that MLC can be regarded as a generalization of 

raditional single-label learning. However, the generality inevitably 

eads to the output space grows exponentially as the number of 
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lasses increases. A prominent phenomenon is the sparsity of the 

abel space, including label-set sparsity and hypercube sparsity [8] . 

he former means that the instances are usually associated with 

ery few relevant labels compared to the label dimensionality, 

hile the latter means that the label combinations covered by lim- 

ted training data are far smaller in number than all possible com- 

inations (i.e., the power sets of the label space). For example, sup- 

ose an image annotation task with 50 candidate labels, an image 

ould often be related to no more than ten objects (i.e., label-set 

parsity) and the collected training examples is far less than 2 50 

ossible label combinations (i.e., hypercube sparsity). When the la- 

el space is considerably large, most of the conventional MLC al- 

orithms become computationally inefficient, let alone tends to be 

orrupted by noisy labeling [9] . Therefore, how to fully capture the 

igh-order correlation behind the observed features and labels ef- 

ciently becomes a major thrust of research. 

There are many attempts to cope with the challenge, among 

hich label compression (LC) [10–13] is the dominant strategy. 

C embeds the original high-dimensional label space into a low- 

imensional subspace so as to gain a tighter label representation 

hat captures the intrinsic structural information among the la- 

els, followed by learning an association between the feature space 

nd embedded label space. And with proper decoding process that 

aps the embedding label space back to the original label space, 

he classification purpose achieves. In this way, problems such as 

https://doi.org/10.1016/j.patcog.2021.107833
http://www.ScienceDirect.com
http://www.elsevier.com/locate/patcog
http://crossmark.crossref.org/dialog/?doi=10.1016/j.patcog.2021.107833&domain=pdf
mailto:xgeng@seu.edu.cn
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edundancy and sparsity existing in the original label space can be 

lleviated to some extent, and also reduce the computational and 

pace complexities. 

While most LC methods only concentrated on the embedding 

f labels while keeping the features unchanged. Some of them 

8,10,14,15] made assumptions on the embedded label space but 

otally ignored the influence of the features, which causes the loss 

f discriminant information. There are a few initial effort s in jointly 

tilizing the features [16,17] . However, learning informative fea- 

ures which are discriminative to the targets and also represen- 

ative to the instances is still being explored, hence it is unreal- 

stic to hope to obtain features without noise and redundancy for 

roviding perfect guidance for label embedding. Correspondingly, 

ome feature embedding (FE) methods [18,19] have been proposed 

o tackle the problem in feature space. Experience proves that the 

redictability of features is always task-dependent, in other words, 

abel-specific, thus the FE process should also be guided by the la- 

els. The separate embedding of a single space driven by another 

roblematic space provokes the propagation and accumulation of 

rrors. 

In light of the above observations, we focus on studying a gen- 

ral framework that co-embeds the two spaces to fully capture the 

igh-order correlation between features and labels. First we argue 

hat: 

• The embedding process of the label space and the feature space 

should be linked to each other and performed simultaneously ; 
• The embedding process of one space should be guided by an- 

other well-disposed space rather than the original problematic 

space. 

Such a framework is named Compact Learning (CL) in the sense 

hat the learning is based on the two compact spaces. Then, to this 

nd, we propose a simple yet effective algorithm called Compact 

ulti-Label Learning (CMLL). CMLL aims to learn a more compact 

epresentation for both labels and features by maximizing the de- 

endence between the embedded spaces of the labels and features, 

nd simultaneously minimizing the recovery loss from the embed- 

ed labels to the original ones. In this way, the embedding pro- 

esses of the two spaces are seamless and mutually guided, and 

he feature-only embedding or label-only embedding can be re- 

arded as a simplified version of it. We conduct comprehensive 

xperiments over twelve benchmark datasets to validate the effec- 

iveness of CMLL in improving the classification performance. 

The rest of the paper is organized as follows. Section 2 briefly 

iscusses the related work. Section 3 presents the technical details 

f the proposed CMLL approach. Then, Section 4 conducts some 

heoretical analyses on LC and CL framework. Section 5 reports the 

xperimental results. At last, Section 6 concludes this paper. 

. Related work 

In this section, we mainly introduce the LC framework and re- 

iew the important works in the field of LC. LC is a popular strat- 

gy for MLC where the target is to embed the original labels into 

 low-dimensional latent space. Generally speaking, LC consists of 

he following three processes: 

1. Encoding/embedding process: It embeds the original label vec- 

tors into a compressed space through a specific transforma- 

tion e : Y → V, where V = [ m ](m � M) is the embedded m -

dimensional label space. 

2. Learning process. It induces a multi-label classifier from the 

feature space to the embedded space g ′ : X → V . 

3. Decoding/recovery process: It recovers the original labels from 

the embedded label space via a decoder d : V → Y . 

For a new instance x , the predicted labels ̂  Y is: ̂  Y = d(g ′ ( x )) . 
2 
Most LC methods learned the embedding labels with the fea- 

ure unchanged. Hsu et al. [10] conducted LC via compressive sens- 

ng, which is time-consuming in the decoding process since it 

eeds to solve an optimization problem for each new instance. Un- 

ike compressive sensing, Tai and Lin [8] proposed a principle label 

pace transformation (PLST) method, which is essentially a princi- 

al components analysis in the label space. Then, based on canon- 

cal correlation analysis [20] , Conditional PL ST (CPL ST) [16] and 

CA-OC [21] improved PLST from the point of feature informa- 

ion. Zhang et al. [22] put forward a method to maximize the de- 

endence between features and embedding labels. Some LC meth- 

ds applied the randomized techniques to speed up the computing 

23,24] . 

Aside from the linear mapping methods mentioned above, an- 

ther kind of LC methods reduced the label-space dimensional- 

ty via a nonlinear mapping. Li and Guo [15] applied the kernel 

rick to the label space. Jing et al. [25] added a trace norm reg- 

larization to identify the low-dimensional representation of the 

riginal space. To address the unsatisfactory accuracy caused by 

he violation of low rank assumption, Bhatia et al. [26] learned 

 small ensemble of local distance preserving embeddings which 

on-linearly captures label correlations. Rai et al. [11] presented a 

calable Bayesian framework via a non-linear mapping. Jian et al. 

27] decomposed the original label space to a low-dimensional 

pace to reduce the noisy information in the label space. Wicker 

t al. [28] proposed a model that compresses the labels by autoen- 

oders and then used the same structure to decompress the labels, 

hich is able to capture non-linear label dependencies. 

Previous researches on embedding mostly required an explicit 

ncoding function for mapping the original labels to the embed- 

ing labels. However, since the optimal mapping can be compli- 

ated and even indescribable, assuming an explicit encoding func- 

ion may not model it well. For this reason, some methods made 

o assumptions on the encoding process but directly learned a 

ode matrix [14,17] . 

Quite different from the approach of existing LC methods, we 

ropose CMLL following the spirit of CL. There are several quite 

elated works have been proposed which transformed both fea- 

ure and label space onto the same space. From now on, we dis- 

uss the main differences between our proposal with them, and 

ater in Section 5 , we experimentally validate our superiority. One 

s canonical correlated autoencoder (C2AE) [12] , whose embed- 

ed space is shared by feature and label, and the tasks of la- 

el embedding and multi-label prediction are integrated into the 

ame framework. The other is co-hashing (CoH) proposed in Shen 

t al. [29] , which also learned a common latent hamming space 

nd then applied k -nearest neighbor ( k NN) for predicting. Both of 

hese two methods can be categorized as an implementation of 

L, but they are coupled with some specifical learning algorithms, 

nd cannot be a routine extension of feature-only embedding or 

abel-only embedding. In our work, we surmount these difficulties 

hrough introducing a method that learn two embedding spaces 

or the feature and the label respectively, and moreover, inducing 

he classifier is independent of the encoder and the decoder, so 

hat any parametric or non-parametric learning model is compati- 

le. Futhermore, embedding to a single space makes the compres- 

ion ratios of two spaces mutual restrict, by contrast, CMLL sup- 

orts the compression ratio for each space varies independently. 

. Proposed algorithm 

In this section, a novel method CMLL in the spirit of CL is pro- 

osed. In addition to a encoding process e for the labels, a map- 

ing that projects features is also required, i.e., e ′ : X → U , where

 = R 

d is the embedded d-dimensional feature space ( d ≤ D ). For 
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n unseen instance x u , the predicted relavant labels ̂ Y u are: ̂ Y u = 

(g(e ′ ( x u ))) , where g : U → V is a multi-label classifier. 

In most cases, the classifier learned by a MLC system is a real- 

alued function [1] f : X → R 

c + , where f ( x ) can be regarded as the

onfidences of the labels being the relevant labels of x . Specifically, 

iven a multi-label example ( x , Y ) , if i ∈ Y , j / ∈ Y , the i -element in

f ( x ) should be larger than the j-element in f ( x ) . Note that the

ulti-label classifier g can be derived from the real-valued func- 

ion f via: g( x ) = I ( f ( x ) , δ) = { i | f ( x ) i > δ} , where δ ∈ (0 , 1) is a

hreshold and f ( x ) i is the i -element of f ( x ) . 

.1. The objective of CMLL 

For boosting the performance, we should make the instances 

ore predictable in the learning process and the embedded label 

ectors more recoverable in the decoding process. In this section, 

e propose a simple yet effective instantiation CMLL of CL frame- 

ork. 

It has been widely acknowledged that strong correlation usu- 

lly leads to better predictability, hence CMLL maximizes the de- 

endence between the embedded label space V and the embed- 

ed feature space U . At the same time, CMLL minimizes the re- 

overy loss from Y to V . Let X ∈ R 

N×D be the feature matrix and 

 ∈ { 0 , 1 } N×M be the corresponding label matrix. Given the train-

ng dataset S = { X , Y } , we denote �( V , Y ) as the recovery loss and

( V , U ) as the measure of dependence, where V 

N×m is the em- 

edded label matrix and U 

N×d is the the embedded feature matrix. 

hen, the objective can be formulized as follows: 

ax 
U , V 

α�( V , U ) − �( V , Y ) , (1) 

here α is a hyper-parameter that balances the importance of 

he dependence and the recovery loss. Next we discuss these two 

erms in Eq. (1) respectively with the concrete form. 

To characterize the dependence between two spaces, we utilize 

ilbert-Schmidt Independence Criterion (HSIC) [19,30] due to its 

imple form and theoretical properties. HSIC calculates the squared 

orm of the cross-covariance operator over the domain X × Y in 

eproducing kernel Hilbert spaces. An empirical estimate of HSIC 

s given by: 

SIC(X , Y) = (N − 1) −2 tr[ H KH L ] , 

here tr[ ·] denotes the trace of a matrix, H = I − 1 
N ee T , e N×1 is 

n all-one vector, and I N×N is the unit matrix. K i j = k ( x i , x j ) = 

 φ( x i ) , φ( x j ) 〉 and L i j = l( y i , y j ) = 〈 ϕ ( y i ) , ϕ ( y j ) 〉 , where 〈·〉 repre-

ents the inner product operation, k (·) and l(·) are the kernel func- 

ions, and φ(·) and ϕ(·) are the corresponding mapping functions. 

dopting HSIC and dropping the normalization term, the measure 

f dependence can be represented as: 

( V , U ) = tr[ H KH L ] , 

here K = U U 

t and L = V V 

t . We first consider the linear embed- 

ing of features in CMLL, i.e. U = XP , where P D ×d is the learnt 

rojection matrix. Constraining the basis of the projection matrix 

o be orthonormal, we derive: 

( V , U ) = tr[ HX P P t X 

t H V V 

t ] 

s.t. P t P = I . 
(2) 

In order to minimize the loss of recovery, CMLL searches a de- 

oding matrix W 

m ×M through the ridge regression [31] to conduct 

 linear decoding. That is, 

�( V , Y , W ) = || Y − V W || 2 2 + λ|| W || 2 F , (3) 

here || · || F means the Frobenious norm and λ is the tradeoff pa- 

ameter. Given the specific V and Y , the goal is to find the W to 

inimize �( V , Y , W ) . To avoid redundancy in the embedded label 
3 
pace, we assume that the components of the embedded space are 

rthonormal and uncorrelated, i.e., V 

t V = I . Then, let the partial 

erivative of �( V , Y , W ) with respect to W be zero: 

∂�

∂ W 

= 

tr[ Y Y 

t + W W 

t V 

t V − 2 W 

t V 

t Y + λW 

t W ] 

∂ W 

= 2 V 

t V W − 2 V 

t Y + 2 λW = 0 . 

e can obtain: 

 = ( V 

t V + λI ) −1 V 

t Y = 

1 

1 + λ
V 

t Y . (4) 

ubstituting Eq. (4) into Eq. (3) and dropping unrelated items, we 

ield: 

( V , Y ) = − 1 

1 + λ
tr[ Y 

t V V 

t Y ] 

s.t. V 

t V = I . 
(5) 

Then substituting Eqs. (5) and (2) into Eq. (1) , the terms in 

he objective can be derived as follows: 

α tr[ H U U 

t H V V 

t ] + 

1 

1 + λ
tr[ Y 

t V V 

t Y ] 

 α(1 + λ) tr[ V 

t H U U 

t H V ] + tr[ V 

t Y Y 

t V ] 

 tr[ V 

t (βH U U 

t H + Y Y 

t ) V ] , 

here β = α(1 + λ) is the normalized balance parameter. Adding 

he corresponding constraints, the learning objective becomes: 

max 
V , P 

tr[ V 

t (βHX P P t X 

t H + Y Y 

t ) V ] 

s.t. V 

t V = I , P t P = I . 
(6) 

.2. Solution for CMLL 

We solve Eq. (6) by alternating minimization. In each iteration, 

xing one of { P , V } and updating the other with coordinate ascent 

31] , in which way a close-form solution can be obtained. 

To be specific, when P is fixed, the problem is converted into 

n eigen-decomposition problem after applying the Lagrangian 

ethod. Let A = (βH U U 

t H + Y Y t ) , the eigen-decomposition prob- 

em is specified as: 

max 
V 

m ∑ 

j=1 

γ j 

s.t. A V . j = γ j V . j , V 

t 
.i V . j = I (i = j) , 

here V . j is the jth column of V , and γ j means the eigenvalue. 

he optimal V consists of m normalized eigenvectors correspond- 

ng to the top m largest eigenvalues of A . Notice that m is usually 

uch smaller than M, so we can utilize some iterative approaches 

uch as Arnoldi iteration [32] to accelerate computing to a minimal 

omputational complexity O(Nm 

2 ) . When V is fixed, the optimal 

 consists of d normalized eigenvectors corresponding to the top d

argest eigenvalues of B = X 

t H V V 

t HX . 

The procedures of CMLL are summarized in Algorithm 1 . It is 

nteresting to note that if we replace V with Y in B , regardless 

f the embedding for the labels, the solution for P is actually the 

ame as MDDM [19] , a typical FE method for MLC. And if we re-

lace U with X in A , a standard LC algorithm regardless of the 

mbedding for the features is derived, which we named as CMLL y . 

oth MDDM and CMLL y can be regarded as the simplified versions 

f CMLL. 

.3. Kernelization for CMLL 

We can utilize kernel tricks to extend CMLL to the non-linear 

ase, denoted by k-CMLL. Assume the projection matrix P can 

e spanned by kernel feature vectors, i.e. P = �( X ) R 

N×d , where 

( X ) = [ φ( x ) , φ( x ) , . . . , φ( x )] . φ(. ) is the projection function
1 2 N 
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Algorithm 1 CMLL. 

Input: Training dataset S = { X, Y } , testing feature matrix X test , 

hyper-parameters β, λ, dimensionality of the embedded label 

space m and feature space d, maximal iteration count maxc, 

toleration tol. 

Output: Predicted label matrix ̂ Y pre . 

1: Initialize j = 0 , V 

0 
N∗m 

, P 

0 
D ∗d 

with a random matrix. 

2: Get 
0 = tr[ V 

0 (βHXP 

0 (P 

0 ) t X 

t H + Y Y 

t ) V 

0 ] . 

3: repeat 

4: Get A 

j+1 = βHXP 

j+1 (P 

j+1 ) t X 

t H + Y Y 

t , then obtain 

V 

j+1 via eigen-decomposition. 

5: Get B 

j+1 = X 

t HV 

j+1 (V 

j+1 ) t HX , then obtain P 

j+1 via 

eigen-decomposition. 

6: Get 
 j+1 using P 

j+1 and V 

j+1 

7: Compute � = | 
 j+1 − 
 j | / (
 j ) . 

8: Let j = j + 1 , P = P 

j , V = V 

j . 

9: until ( j > maxc) or ( � < tol) 

10: Compute W = 

1 
1+ λV 

t Y . 

11: Learn the classifier: g : XP → V . 

12: Conduct prediction: V pre = g(X test P ) . 

13: Perform decoding: ̂ Y pre = I (V pre W , δ) . 
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orresponding to the kernel and R is the matrix of the correspond- 

ng linear combination coefficients. 

Let q ( x i , x j ) = 〈 φ( x i ) , φ( x j ) 〉 be the kernel function and Q =
( X ) t �( X ) be the kernel matrix. Then, U = �( X ) t P = Q R , K =
 U 

t = QRR 

t Q , and the constraint P t P = R 

t Q R = I . So the objective 

f the kernel CMLL becomes: 

max 
O,R 

tr [ V 

t (βH QRR 

t Q H + Y Y 

t ) V ] , 

s.t. V 

t V = I , R 

t Q R = I . 

The solution for k-CMLL is similar to that of the linear case. 

hen R is fixed, the optimal V consists of the top m eigenvec- 

ors of A 

′ = βH QRR 

t Q H + Y Y t . And when V is fixed, the optimal 

 consists of the top d generalized eigenvectors of B 

′ = QH V V 

t HQ 

nd Q . Given an unseen instance x , the projection is u = P t φ( x ) =
 

t q ( X , x ) , where q ( X , x ) = [ q ( x 1 , x ) , q ( x 2 , x ) , . . . , q ( x N , x ) ] 
t . 

. Theoretical analysis 

In this section, we will conduct a general theoretical analysis for 

ifferent embedding strategies and compare them basing on the 

roposed Theorem 1 . 

heorem 1. Given an instance x in a multi-label dataset S, denote y 

s its true label vector, and ̂ y as its predicted real-valued label vector 

btained via a specific embedding framework. Assume a fixed thresh- 

ld δ ∈ (0 , 1) is used in the final step to binarize ̂ y . The zero-one

oss in MLC is defined by � 01 ( y ̂ y ) = 

∑ M 

i =1 I ( ̂  y i ≥ δ) I ( y i = 0) + I ( ̂  y i <

) I ( y i = 1) where y i / ̂  y i is i th dimension of y / ̂  y , then it is upper-

ounded by: 

 01 ( y ̂ y ) ≤ τ || ̂  y − y || 2 2 , τ = max { 1 

δ2 
, 

1 

(1 − δ) 2 
} . 

roof. 

 01 ( y ̂ y ) = 

M ∑ 

i =1 

I ( ̂  y 
i ≥ δ) I ( y i = 0) + I ( ̂  y 

i 
< δ) I ( y i = 1) (7) 

≤
M ∑ 

i =1 

( ̂  y 
i − y i ) 

2 
I ( y i = 0) 

δ2 
+ 

( ̂  y 
i − y i ) 

2 
I ( y i = 1) 

(1 − δ) 2 

≤
M ∑ 

i =1 

max { 1 

δ2 
, 

1 

(1 − δ) 2 
} ( ̂  y 

i − y i ) 
2 = τ || ̂  y − y || 2 2 . 
� a

4 
Eq. (7) takes the equal sign if and only if δ = 0 . 5 , τ = 4 . Ac-

ording to this theorem, we can minimize the surrogate loss ( � 2 
oss) to upper bound the classification error, i.e., the standard per- 

ormance measure in classification. From now on, we make an pre- 

iminary analysis on the risk of these different embedding frame- 

orks based on Theorem 1 . Assume that h : U → Y, a natural re-

ult inferred directly from the Theorem 1 is that: 

̂ R F E = 

N ∑ 

i =1 

τ || h (e ′ ( x i )) − y i || 2 2 , 

̂ R LC = 

N ∑ 

i =1 

τ || d(g ′ ( x i )) − y i || 2 2 , 

̂ R CL = 

N ∑ 

i =1 

τ || d(g(e ′ ( x i ))) − y i || 2 2 , 

here ̂ R denotes the empirical risk. And the common practice 

f supervised classification, empirical risk minimization (ERM), is 

sed. 

While in practical implementation, LC usually formalizes as an 

quivalent form: 

˜ 

 LC = 

N ∑ 

i =1 

τ‖ [ d(g ′ (x i )) − d(e (y i ))] + [ d(e (y i )) − y i ] ‖ 

2 
2 , (8) 

because directly minimizing the original ̂ R LC is not intuitional and 

easible when designing a concrete algorithm [8,15–17,22] . That is, 

C tries to make the encoded labels e ( y ) more predictable for x 

nd more recoverable to y . For example, substituting the concrete 

orm of PLST to Eq. (8) yields: 

˜ 

 PLST = 

N ∑ 

i =1 

4 ‖ [ g ′ (x i ) − y i O ] O 

T + [ y i O O 

T − y i ] ‖ 

2 

2 , 

where O is the orthonormal projection matrix learnt by PLST. Note 

hat ̂ R PLST is derived through the equivalent transformation [8] . 

Similarly, ̂ R CL can be formalized as follows: 

˜ 

 CL = 

N ∑ 

i =1 

τ‖ [ d(g(e ′ ( x i ))) − d(e (y i ))] + [ d(e (y i )) − y i ] ‖ 

2 
2 

Compared to FE and LC, CL considers the transformation for 

oth label and feature space simultaneously, and thus provides a 

reater possibility as well as a more flexible and superior way to 

ake upper bound tighter. Think of a specific example CMLL, the 

mpirical risk can be expressed as: 

̂ 

 CMLL = 

N ∑ 

i =1 

4 || [ g(e ′ ( x i )) − v i ] W + [ v i W − y i ] || 2 2 . 

he derivation process of CMLL shows that CMLL indeed takes 

oth terms into account, i.e., minimizes the first term by maxi- 

izing the dependence between the two embedded spaces, and 

t the same time minimizes the recovery loss that measures how 

ell v W approximates y . Besides, CL can also degenerate to FE or 

C when necessary, as the example of special cases of CMLL (i.e. 

DDM and CMLL y ) indicates. 

The upper bound derived here seems loose because it aims at 

mbedding strategies rather than any concrete algorithm. There 

re few research on the analysis of the framework of embed- 

ing yet, although many related methods have been proposed. 

his section makes an initial attempt to analyze the reasonabil- 

ty of CL as well as LC and FE, on which existing LC methods 

an be explained/derived based. It provides guidance on the as- 

ects that should be considered when designing a new CL or LC 

lgorithm. 
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Table 1 

Characteristics of the real-world multi-label datasets. 

Datasets #Label #Feature #Example Feature Type Cardinality Density Distinct Domain 

plant 12 440 978 numeric 1.079 0.090 32 biology 

msra 19 898 1868 numeric 6.315 0.332 947 images 

enron 53 1001 1702 nominal 3.378 0.064 753 text 

llog 74 1004 1460 nominal 1.128 0.015 286 text 

bibtex 159 1836 5000 nominal 2.397 0.015 2127 text 

eurlex-sm 201 5000 5000 numeric 2.224 0.011 1236 text 

bookmarks 208 2150 5000 nominal 2.016 0.010 1840 text 

corel5k 374 499 5000 nominal 3.522 0.009 3175 images 

eurlex-dc 412 5000 5000 numeric 1.296 0.003 859 text 

espgame 1932 516 5000 numeric 4.689 0.002 4734 images 

Delicious 983 500 16,105 numeric 19.020 0.002 15,806 text 

Mediamill 101 120 43,907 numeric 4.376 0.004 6555 vedio 
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. Experiments 

.1. Datasets 

We evaluate the proposed method on a total of twelve public 

eal-world multi-label datasets, which show obvious label sparsity. 

he dataset of espgame collected here is organized by Lin et al. 

17] , and other small-scale datasets (the number of examples is 

ess than 50 0 0) can be downloaded from Mulan 

1 and Meka. 2 In 

ddition, the extreme multi-label learning [33] which aims to learn 

elevant labels from an extremely large label set is a possible ap- 

lication domain of LC, thus, we also adopt two extreme classifi- 

ation datasets Mediamill and Delicious. 3 Table 1 summarizes the 

etailed characteristics of these datasets, which are organized in 

scending order of the number of examples. Cardinality means the 

verage number of relevant labels per instance, Density is the ratio 

f Cardinality to the number of classes, and Distinct is the num- 

er of distinct label combinations contained in the dataset. As in- 

icated by quite small values of Density and Distinct compared to 

ll the possible label combinations (i.e. 2 # Label ), all datasets suffer 

rom evident hypercube sparsity or label-set sparsity in the label 

pace. 

.2. Setups 

We compare CMLL with its special cases CMLL y , one FE al- 

orithm MDDM [19] , one state-of-the-art large-scale multi-label 

earning algorithm POP [33] , and five well-established LC algo- 

ithms: PLST [8] , CPLST [16] , FaIE [17] , DMLR [22] and C2AE [12] . 

The hyper-parameters of the baselines were selected according 

o the suggested parameter settings in original papers. The bal- 

nce parameter of CMLL, CMLL y , FaIE, DMLR was selected from 

 10 −5 , 10 −4 , . . . , 10 4 , 10 5 } . POP used Binary Relevance as the base

lassifier. The tradeoff parameter λ of CMLL and CMLL y was se- 

ected from { 0 , 10 −3 , 10 −1 } , and tol = 10 −5 , maxc = 50 . And δ = 0 . 5

n the final step for binarizing the real-valued outputs. Besides, 

e also compared our kernel versions k-CMLL and k-CMLL y with 

he baselines (except PLST and POP that can hardly be extended 

o the kernel version) and C2AE, which adopted the DNN archi- 

ectures. And the RBF kernel was applied. Following the previous 

orks [8,22] , we used the ridge regression and the kernel ridge 

egression to train the learning model for linear case and kernel 

ase, respectively. We denote ORI to represent the classifier learn- 

ng from the original spaces. 

We denote by μ = 

d 
D , ν = 

m 

M 

the feature and the label com- 

ression ratio, and all LC methods run with μ ranging from 10% 
1 http://mulan.sourceforge.net/datasets-mlc.html 
2 http://meka.sourceforge.net/#datasets 
3 http://manikvarma.org/downloads/XC/XMLRepository.html 

t

a

i

p

e

5 
o 100% with the interval of 10% and MDDM runs with ν simi- 

arly. CMLL and C2AE run with both ν and μ. That means, CMLL 

eeds to run with 100 ratio pairs ( 10 × 10 ) in total while C2AE run

ith 20 ratio pairs ( 10 + 10 ). Because C2AE essentially conducts 

on-linear embedding by utilizing the DNN structure and learns 

 shared embedded space for both labels and features, while CMLL 

earns two sub-spaces for labels and features respectively. 

To measure the performance, we use four widely adopted met- 

ics in multi-label classification, including Average Precision, micro- 

1, Ranking Loss and One Error . The concrete definition of these 

etrics can be found in Zhang and Zhou [1] . For Mediamill and 

elicious, we supplement two metrics popularly used in extreme 

ulti-label learning: Precision @3 and nDCG @3 . 

.3. Results 

The experimental results of CMLL and k-CMLL compared with 

he comparing methods are shown in Tables 2 and 3 respectively. 

or each metric, “↓ ” indicates the smaller the better while “↑ ” in- 

icates the larger the better. We perform five-fold cross-validation 

n each dataset, and use paired t-test at 10% significance level. The 

ean results with standard deviation are reported and the best 

erformance is highlighted in boldface. •/ ◦ represents whether 

MLL or k-CMLL is significantly better/worse than the comparing 

ethods. We can observe that across all metrics, CMLL ranks 1st 

n the most cases in both linear and non-linear cases. 

As Tables 2 and 3 show, with a suitable compression ratio, 

ost embedding methods can achieve better performance than the 

aseline ORI. This indicates that there are indeed some problems 

uch as sparsity and noise existing in both the original spaces, 

hich leads to performance decline if not tackled properly. With 

 more compact representation for labels ( ν ≤ 100% ) and features 

 μ ≤ 100% ), CMLL performs better than all compared LC methods 

 μ = 100% ) and FE method ( ν = 100% ) in most cases. By applying

he kernel trick to extend methods to their corresponding non- 

inear version, each LC method actually guides the embedding pro- 

ess of labels with the well transformed rather than the original 

eatures implicitly, where k-CMLL still outperforms other methods 

n the whole. 

.4. Parameter sensitivity analysis 

To explore the influence of balance parameter α in CMLL, 

e fix μ = ν = 50% , λ = 0 and run CMLL with α ranging in

 10 −4 , 10 −3 , . . . , 10 3 , 10 4 } . To be convenient, we denote dep =
r[ V 

t HXP P t X 

t H H V ] and rec = tr[ V 

t Y Y t V ] as the dependence term 

nd recovery term in objective (6) . Dropping the recovery term 

n (6) , we can find the solutions of V and P , and then com- 

ute corresponding values of dependence term dep max and recov- 

ry term rec . Similarly, by only considering recover term in (6) , 
min 

http://mulan.sourceforge.net/datasets-mlc.html
http://meka.sourceforge.net/#datasets
http://manikvarma.org/downloads/XC/XMLRepository.html
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Table 2 

Experimental results of CMLL with baselines. 

Average precision ↑ 
Methods ORI PLST CPLST DMLR FaIE CMLL y MDDM POP CMLL 

plant 0.4756 ± 0.0263 • 0.4873 ± 0.0299 • 0.4848 ± 0.0274 • 0.4859 ± 0.0250 • 0.4813 ± 0.0282 • 0.5399 ± 0.0311 0.5587 ± 0.0294 0.5256 ± 0.0707 0.5733 ± 0.0252 

msra 0.7433 ± 0.0129 • 0.7733 ± 0.0107 • 0.7689 ± 0.0117 • 0.7766 ± 0.0129 • 0.7782 ± 0.0113 • 0.7820 ± 0.0112 • 0.7933 ± 0.0090 0.7315 ± 0.0134 • 0.7997 ± 0.0100 

enron 0.5039 ± 0.0111 • 0.5183 ± 0.0162 • 0.5170 ± 0.0160 • 0.5196 ± 0.0110 • 0.5218 ± 0.0123 • 0.6228 ± 0.0119 • 0.6767 ± 0.0205 0.6360 ± 0.0867 0.6965 ± 0.0153 

llog 0.2235 ± 0.0274 • 0.2429 ± 0.0314 • 0.2412 ± 0.0320 • 0.2760 ± 0.0328 • 0.2722 ± 0.0344 • 0.3413 ± 0.0378 • 0.4264 ± 0.0216 0.1532 ± 0.0563 • 0.3717 ± 0.0283 

bibtext 0.5278 ± 0.0091 • 0.5258 ± 0.0077 • 0.5280 ± 0.0079 • 0.5281 ± 0.0086 • 0.5259 ± 0.0078 • 0.5241 ± 0.0039 • 0.5287 ± 0.0091 • 0.5676 ± 0.0069 0.5828 ± 0.0050 

eurlex-sm 0.3972 ± 0.0208 • 0.3998 ± 0.0209 • 0.3998 ± 0.0209 • 0.3979 ± 0.0208 • 0.4289 ± 0.0219 • 0.5706 ± 0.0119 • 0.7299 ± 0.0198 • 0.3419 ± 0.0058 • 0.7565 ± 0.0084 

bookmark 0.3086 ± 0.0059 • 0.3043 ± 0.0065 • 0.3030 ± 0.0059 • 0.3054 ± 0.0064 • 0.3051 ± 0.0061 • 0.3161 ± 0.0064 • 0.3804 ± 0.0060 • 0.4024 ± 0.0088 0.4080 ± 0.0078 

corel5k 0.2892 ± 0.0029 • 0.2900 ± 0.0035 • 0.2908 ± 0.0039 • 0.2932 ± 0.0030 • 0.2916 ± 0.0035 • 0.2925 ± 0.0035 • 0.2995 ± 0.0057 0.0900 ± 0.0076 • 0.3028 ± 0.0070 

eurlex-dc 0.3982 ± 0.0315 • 0.4031 ± 0.0304 • 0.4031 ± 0.0304 • 0.4511 ± 0.0240 • 0.5031 ± 0.0305 • 0.6118 ± 0.0254 • 0.6911 ± 0.0215 • 0.4616 ± 0.0089 • 0.7588 ± 0.0144 

espgame 0.2171 ± 0.0081 0.2171 ± 0.0081 0.2173 ± 0.0081 0.2175 ± 0.0082 0.2169 ± 0.0081 0.2169 ± 0.0081 0.2175 ± 0.0083 0.0141 ± 0.0 0 06 • 0.2177 ± 0.0080 

Delicious 0.3338 ± 0.0029 • 0.3443 ± 0.0024 • 0.3450 ± 0.0025 • 0.3337 ± 0.0030 • 0.3337 ± 0.0029 • 0.3485 ± 0.0028 • 0.3514 ± 0.0025 0.2101 ± 0.0039 • 0.3543 ± 0.0030 

Mediamill 0.7193 ± 0.0031 • 0.7217 ± 0.0033 • 0.7200 ± 0.0031 • 0.7218 ± 0.0035 • 0.7195 ± 0.0034 • 0.7171 ± 0.0035 • 0.7193 ± 0.0031 • 0.5389 ± 0.0096 • 0.7302 ± 0.0031 

micro-F1 ↑ 
Methods ORI PLST CPLST DMLR FaIE CMLL y MDDM POP CMLL 

plant 0.2644 ± 0.0312 0.2644 ± 0.0312 0.2646 ± 0.0288 0.2460 ± 0.0256 • 0.2663 ± 0.0319 0.2991 ± 0.0458 0.2652 ± 0.0322 0.2222 ± 0.0247 • 0.2993 ± 0.0190 

msra 0.6471 ± 0.0134 • 0.6644 ± 0.0076 • 0.6606 ± 0.0126 • 0.6605 ± 0.0125 • 0.6641 ± 0.0118 • 0.6677 ± 0.0118 0.6757 ± 0.0081 0.5942 ± 0.0135 • 0.6817 ± 0.0096 

enron 0.4045 ± 0.0057 • 0.4480 ± 0.0105 • 0.4473 ± 0.0138 • 0.4437 ± 0.0121 • 0.4579 ± 0.0109 • 0.4995 ± 0.0119 • 0.5278 ± 0.0057 0.4913 ± 0.0410 0.5335 ± 0.0147 

llog 0.1390 ± 0.0094 • 0.1710 ± 0.0177 • 0.1726 ± 0.0178 • 0.1754 ± 0.0180 • 0.1724 ± 0.0196 • 0.1926 ± 0.0223 • 0.2289 ± 0.0114 0.0942 ± 0.0292 • 0.2483 ± 0.0175 

bibtext 0.3942 ± 0.0107 ◦ 0.3910 ± 0.0101 ◦ 0.3939 ± 0.0117 ◦ 0.3921 ± 0.0106 ◦ 0.3914 ± 0.0099 ◦ 0.3764 ± 0.0072 • 0.3940 ± 0.0102 ◦ 0.3566 ± 0.0039 • 0.3683 ± 0.0104 

eurlex-sm 0.1181 ± 0.0073 • 0.1225 ± 0.0078 • 0.1225 ± 0.0078 • 0.1204 ± 0.0072 • 0.2220 ± 0.0080 • 0.2327 ± 0.0094 • 0.3235 ± 0.0079 0.3393 ± 0.0152 0.3350 ± 0.0125 

bookmark 0.1616 ± 0.0094 • 0.1879 ± 0.0080 • 0.1882 ± 0.0073 • 0.1927 ± 0.0091 • 0.1879 ± 0.0081 • 0.2218 ± 0.0100 • 0.2163 ± 0.0085 • 0.2176 ± 0.0060 • 0.2386 ± 0.0092 

corel5k 0.1032 ± 0.0050 • 0.1002 ± 0.0064 • 0.0998 ± 0.0070 • 0.1017 ± 0.0047 • 0.1523 ± 0.0051 ◦ 0.1258 ± 0.0044 0.1201 ± 0.0046 0.1456 ± 0.0084 ◦ 0.1266 ± 0.0048 

eurlex-dc 0.0527 ± 0.0035 • 0.0545 ± 0.0035 • 0.0545 ± 0.0035 • 0.0889 ± 0.0057 • 0.1745 ± 0.0039 • 0.2486 ± 0.0107 • 0.2588 ± 0.0034 • 0.2251 ± 0.0015 • 0.3735 ± 0.0183 

espgame 0.0863 ± 0.0054 0.0863 ± 0.0055 0.0858 ± 0.0048 0.0859 ± 0.0050 0.0861 ± 0.0052 0.0863 ± 0.0051 0.0833 ± 0.0036 0.0098 ± 0.0003 • 0.0860 ± 0.0055 

Delicious 0.1614 ± 0.0033 • 0.1639 ± 0.0041 • 0.1620 ± 0.0041 • 0.1615 ± 0.0033 • 0.1608 ± 0.0032 • 0.1635 ± 0.0033 • 0.1607 ± 0.0030 • 0.2120 ± 0.0031 ◦ 0.2002 ± 0.0032 

Mediamill 0.5315 ± 0.0021 • 0.5351 ± 0.0022 • 0.5353 ± 0.0021 • 0.5354 ± 0.0022 • 0.5356 ± 0.0022 • 0.5367 ± 0.0023 • 0.5315 ± 0.0020 • 0.4682 ± 0.0043 • 0.5427 ± 0.0019 

Ranking Loss ↓ 
Methods ORI PLST CPLST DMLR FaIE CMLL y MDDM POP CMLL 

plant 0.3292 ± 0.0166 • 0.3109 ± 0.0193 • 0.3261 ± 0.0174 • 0.3276 ± 0.0239 • 0.3250 ± 0.0189 • 0.2594 ± 0.0221 • 0.2123 ± 0.0240 0.2441 ± 0.0567 0.2099 ± 0.0156 

msra 0.1938 ± 0.0103 • 0.1677 ± 0.0105 • 0.1742 ± 0.0118 • 0.1663 ± 0.0116 • 0.1642 ± 0.0109 • 0.1611 ± 0.0105 • 0.1531 ± 0.0061 0.2208 ± 0.0117 • 0.1463 ± 0.0081 

enron 0.2672 ± 0.0108 • 0.2596 ± 0.0102 • 0.2592 ± 0.0110 • 0.2615 ± 0.0119 • 0.2642 ± 0.0071 • 0.1475 ± 0.0104 • 0.1382 ± 0.0064 • 0.1255 ± 0.0145 0.1209 ± 0.0093 

llog 0.2567 ± 0.0306 • 0.2610 ± 0.0276 • 0.2637 ± 0.0306 • 0.2585 ± 0.0271 • 0.2625 ± 0.0295 • 0.1538 ± 0.0283 • 0.1661 ± 0.0151 • 0.1345 ± 0.0385 0.1163 ± 0.0158 

bibtext 0.1325 ± 0.0082 • 0.1319 ± 0.0080 • 0.1319 ± 0.0073 • 0.1318 ± 0.0079 • 0.1319 ± 0.0080 • 0.0873 ± 0.0069 0.1020 ± 0.0081 • 0.0421 ± 0.0071 ◦ 0.0834 ± 0.0062 

eurlex-sm 0.2396 ± 0.0107 • 0.2386 ± 0.0088 • 0.2386 ± 0.0087 • 0.2397 ± 0.0103 • 0.1504 ± 0.0102 • 0.0887 ± 0.0083 • 0.0524 ± 0.0119 0.0979 ± 0.0125 • 0.0481 ± 0.0022 

bookmark 0.2563 ± 0.0072 • 0.2577 ± 0.0066 • 0.2581 ± 0.0060 • 0.2571 ± 0.0057 • 0.2602 ± 0.0071 • 0.1710 ± 0.0068 0.2044 ± 0.0071 • 0.1493 ± 0.0042 0.1642 ± 0.0032 

corel5k 0.2096 ± 0.0044 • 0.1937 ± 0.0047 0.1957 ± 0.0053 0.1943 ± 0.0040 0.1988 ± 0.0035 • 0.1944 ± 0.0045 0.1964 ± 0.0070 0.4630 ± 0.0079 • 0.1880 ± 0.0059 

eurlex-dc 0.1841 ± 0.0110 • 0.1838 ± 0.0095 • 0.1839 ± 0.0096 • 0.1943 ± 0.0126 • 0.0941 ± 0.0111 • 0.0442 ± 0.0112 0.0477 ± 0.0089 0.1486 ± 0.0053 • 0.0390 ± 0.0026 

espgame 0.2439 ± 0.0024 • 0.2436 ± 0.0026 • 0.2386 ± 0.0035 • 0.2422 ± 0.0025 • 0.2450 ± 0.0030 • 0.2445 ± 0.0027 • 0.1926 ± 0.0032 0.2858 ± 0.0035 • 0.1932 ± 0.0025 

Delicious 0.1755 ± 0.0026 0.1710 ± 0.0010 • 0.1654 ± 0.0 0 08 0.1656 ± 0.0026 0.1634 ± 0.0024 0.1681 ± 0.0023 0.1652 ± 0.0025 0.3608 ± 0.0043 • 0.1651 ± 0.0024 

Mediamill 0.0587 ± 0.0 0 08 0.0589 ± 0.0 0 07 • 0.0599 ± 0.0 0 06 • 0.0590 ± 0.0 0 08 • 0.0598 ± 0.0010 • 0.0585 ± 0.0 0 09 0.0587 ± 0.0 0 08 0.2272 ± 0.0120 • 0.0576 ± 0.0 0 09 

One Error ↓ 
Methods ORI PLST CPLST DMLR FaIE CMLL y MDDM POP CMLL 

plant 0.7099 ± 0.0337 • 0.7089 ± 0.0350 • 0.7058 ± 0.0374 • 0.6986 ± 0.0335 • 0.7058 ± 0.0365 • 0.6547 ± 0.0393 0.6362 ± 0.0389 0.6649 ± 0.0820 0.6270 ± 0.0252 

msra 0.1304 ± 0.0166 • 0.1015 ± 0.0205 • 0.0972 ± 0.0097 • 0.0791 ± 0.0166 • 0.0844 ± 0.0167 • 0.0796 ± 0.0174 0.0646 ± 0.0160 0.0507 ± 0.0129 0.0576 ± 0.0142 

enron 0.4454 ± 0.0234 • 0.4471 ± 0.0209 • 0.4483 ± 0.0223 • 0.4318 ± 0.0187 • 0.4295 ± 0.0221 • 0.2930 ± 0.0236 • 0.2524 ± 0.0308 0.3535 ± 0.2583 0.2462 ± 0.0215 

llog 0.8526 ± 0.0302 • 0.8451 ± 0.0334 • 0.8476 ± 0.0353 • 0.8418 ± 0.0428 • 0.8460 ± 0.0388 • 0.7371 ± 0.0423 0.7294 ± 0.0282 0.9900 ± 0.0096 • 0.6898 ± 0.0352 

bibtext 0.3950 ± 0.0134 • 0.3996 ± 0.0088 • 0.3952 ± 0.0087 • 0.3978 ± 0.0102 • 0.3998 ± 0.0084 • 0.3728 ± 0.0082 0.3542 ± 0.0128 0.3522 ± 0.0094 0.3656 ± 0.0085 

eurlex-sm 0.6600 ± 0.0253 • 0.6576 ± 0.0239 • 0.6576 ± 0.0239 • 0.6592 ± 0.0253 • 0.6586 ± 0.0259 • 0.4059 ± 0.0267 • 0.2626 ± 0.0234 • 0.6326 ± 0.0186 • 0.2306 ± 0.0105 

bookmark 0.7156 ± 0.0051 • 0.7188 ± 0.0098 • 0.7234 ± 0.0062 • 0.7200 ± 0.0072 • 0.7186 ± 0.0061 • 0.6650 ± 0.0095 • 0.6642 ± 0.0066 • 0.5800 ± 0.0142 0.6198 ± 0.0151 

corel5k 0.6464 ± 0.0084 0.6532 ± 0.0093 0.6534 ± 0.0086 0.6448 ± 0.0100 0.6468 ± 0.0107 0.6454 ± 0.0098 0.6442 ± 0.0114 0.8620 ± 0.0110 • 0.6370 ± 0.0158 

eurlex-dc 0.6944 ± 0.0329 • 0.6914 ± 0.0339 • 0.6914 ± 0.0339 • 0.6140 ± 0.0266 • 0.5916 ± 0.0332 • 0.4458 ± 0.0131 • 0.3450 ± 0.0246 • 0.7312 ± 0.0062 • 0.3028 ± 0.0189 

espgame 0.5622 ± 0.0166 0.5622 ± 0.0166 0.5624 ± 0.0173 0.5618 ± 0.0168 0.5622 ± 0.0166 0.5626 ± 0.0162 0.5624 ± 0.0161 0.9911 ± 0.0031 • 0.5604 ± 0.0152 

Delicious 0.3687 ± 0.0127 • 0.3691 ± 0.0093 • 0.3688 ± 0.0086 • 0.3692 ± 0.0125 • 0.3510 ± 0.0123 0.3542 ± 0.0122 0.3583 ± 0.0131 0.4069 ± 0.0162 • 0.3386 ± 0.0135 

Mediamill 0.1337 ± 0.0032 0.1322 ± 0.0040 0.1320 ± 0.0036 0.1317 ± 0.0045 0.1319 ± 0.0044 0.1315 ± 0.0037 0.1337 ± 0.0032 0.1374 ± 0.0035 • 0.1307 ± 0.0035 

Precision @3 ↑ 
Methods ORI PLST CPLST DMLR FaIE CMLL y MDDM POP CMLL 

Delicious 0.5676 ± 0.0055 • 0.5613 ± 0.0042 • 0.5617 ± 0.0046 • 0.5672 ± 0.0052 • 0.5666 ± 0.0050 • 0.5737 ± 0.0051 0.5774 ± 0.0051 0.4350 ± 0.0100 • 0.5873 ± 0.0053 

Mediamill 0.6682 ± 0.0036 0.6700 ± 0.0033 0.6697 ± 0.0031 0.6699 ± 0.0033 0.6697 ± 0.0034 0.6692 ± 0.0039 0.6682 ± 0.0035 0.7633 ± 0.0053 ◦ 0.6722 ± 0.0032 

nDCG @3 ↑ 
Methods ORI PLST CPLST DMLR FaIE CMLL y MDDM POP CMLL 

Delicious 0.5805 ± 0.0069 • 0.5833 ± 0.0047 0.5836 ± 0.0050 0.5801 ± 0.0066 • 0.5791 ± 0.0063 • 0.5764 ± 0.0065 • 0.5805 ± 0.0067 • 0.4471 ± 0.0113 • 0.5904 ± 0.0067 

Mediamill 0.7508 ± 0.0036 0.7527 ± 0.0037 0.7525 ± 0.0034 0.7527 ± 0.0038 0.7525 ± 0.0039 0.7521 ± 0.0041 0.7508 ± 0.0036 0.8234 ± 0.0051 ◦ 0.7536 ± 0.0034 

6
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Table 3 

Experimental results of k-CMLL with baselines. 

Average precision ↑ 
Methods k-ORI k-CPLST k-DMLR k-FaIE k-CMLL y k-MDDM C2AE k-CMLL 

plant 0.5894 ± 0.0385 0.5907 ± 0.0375 0.5985 ± 0.0383 0.5917 ± 0.0388 0.5928 ± 0.0387 0.6185 ± 0.0250 0.6277 ± 0.0280 0.6460 ± 0.0396 

msra 0.8087 ± 0.0107 0.8090 ± 0.0105 0.8282 ± 0.0073 0.8231 ± 0.0090 0.8174 ± 0.0068 0.8197 ± 0.0111 0.8135 ± 0.0100 0.8209 ± 0.0103 

enron 0.7001 ± 0.0180 0.7005 ± 0.0177 0.7001 ± 0.0180 0.6722 ± 0.0166 0.6930 ± 0.0155 0.7091 ± 0.0151 0.6856 ± 0.0535 0.7125 ± 0.0116 

llog 0.4269 ± 0.0253 • 0.4269 ± 0.0253 • 0.4269 ± 0.0273 • 0.4276 ± 0.0251 • 0.4290 ± 0.0254 • 0.4675 ± 0.0280 0.3770 ± 0.0130 • 0.4755 ± 0.0207 

bibtext 0.5957 ± 0.0051 • 0.6220 ± 0.0069 ◦ 0.5948 ± 0.0064 • 0.5969 ± 0.0058 • 0.5970 ± 0.0059 • 0.6030 ± 0.0060 0.6204 ± 0.0072 ◦ 0.6060 ± 0.0042 

eurlex-sm 0.8011 ± 0.0157 • 0.8006 ± 0.0170 • 0.8011 ± 0.0157 • 0.8112 ± 0.0158 • 0.8010 ± 0.0157 • 0.8060 ± 0.0161 0.7773 ± 0.0359 • 0.8265 ± 0.0150 

bookmark 0.4067 ± 0.0088 • 0.4067 ± 0.0088 • 0.4129 ± 0.0105 • 0.4070 ± 0.0089 • 0.4072 ± 0.0088 • 0.4288 ± 0.0052 • 0.3999 ± 0.0106 • 0.4582 ± 0.0074 

corel5k 0.3035 ± 0.0050 • 0.3036 ± 0.0050 • 0.3083 ± 0.0055 • 0.3038 ± 0.0046 • 0.3034 ± 0.0049 • 0.3307 ± 0.0060 0.3169 ± 0.0019 • 0.3321 ± 0.0084 

eurlex-dc 0.7578 ± 0.0079 • 0.7547 ± 0.0076 • 0.7576 ± 0.0079 • 0.7585 ± 0.0077 • 0.7580 ± 0.0077 • 0.7521 ± 0.0102 • 0.7411 ± 0.0180 • 0.7799 ± 0.0130 

espgame 0.2298 ± 0.0065 0.2298 ± 0.0064 0.2298 ± 0.0065 0.2293 ± 0.0065 0.2293 ± 0.0063 0.2336 ± 0.0069 0.2286 ± 0.0022 0.2346 ± 0.0072 

Delicious 0.3576 ± 0.0198 • 0.3567 ± 0.0099 • 0.3702 ± 0.0174 • 0.3527 ± 0.0202 • 0.3587 ± 0.0184 • 0.3742 ± 0.0236 0.3596 ± 0.0025 • 0.3863 ± 0.0041 

Mediamill 0.7226 ± 0.1789 0.7213 ± 0.0282 • 0.7696 ± 0.1142 0.7063 ± 0.0399 • 0.7811 ± 0.1248 0.7857 ± 0.0864 0.6861 ± 0.0073 • 0.7802 ± 0.0711 

micro-F1 ↑ 
Methods k-ORI k-CPLST k-DMLR k-FaIE k-CMLL y k-MDDM C2AE k-CMLL 

plant 0.3237 ± 0.0447 0.3268 ± 0.0432 0.3284 ± 0.0479 0.3261 ± 0.0468 0.3280 ± 0.0432 0.3430 ± 0.0454 0.3680 ± 0.034 0.3526 ± 0.0294 

msra 0.6711 ± 0.0083 • 0.6712 ± 0.0084 • 0.6837 ± 0.0081 • 0.6840 ± 0.0088 • 0.6831 ± 0.0074 • 0.6889 ± 0.0114 0.6708 ± 0.0084 • 0.7004 ± 0.0114 

enron 0.5849 ± 0.0062 • 0.5852 ± 0.0064 • 0.5849 ± 0.0062 • 0.5857 ± 0.0060 • 0.5851 ± 0.0060 • 0.6037 ± 0.0119 • 0.6512 ± 0.0310 0.6582 ± 0.0115 

llog 0.1512 ± 0.0183 0.1512 ± 0.0183 0.1512 ± 0.0182 0.1513 ± 0.0185 0.1612 ± 0.0184 0.1566 ± 0.0247 0.2829 ± 0.0199 ◦ 0.1733 ± 0.0150 

bibtext 0.3512 ± 0.0075 • 0.3680 ± 0.0104 • 0.3489 ± 0.0064 • 0.3520 ± 0.0055 • 0.3521 ± 0.0055 • 0.3985 ± 0.0069 0.3996 ± 0.0081 0.4069 ± 0.0075 

eurlex-sm 0.5580 ± 0.0205 • 0.5578 ± 0.0205 • 0.5580 ± 0.0205 • 0.5586 ± 0.0204 • 0.5581 ± 0.0205 • 0.6564 ± 0.0159 0.6061 ± 0.0106 • 0.6555 ± 0.0164 

bookmark 0.2019 ± 0.0057 • 0.2019 ± 0.0057 • 0.2268 ± 0.0075 • 0.2020 ± 0.0056 • 0.2027 ± 0.0057 • 0.2106 ± 0.0063 • 0.2657 ± 0.0103 0.2378 ± 0.0053 

corel5k 0.1146 ± 0.0056 • 0.1146 ± 0.0056 • 0.1166 ± 0.0050 • 0.1149 ± 0.0054 • 0.1147 ± 0.0057 • 0.1431 ± 0.0012 • 0.1685 ± 0.0057 0.1702 ± 0.0064 

eurlex-dc 0.4648 ± 0.0160 • 0.4647 ± 0.0160 • 0.4663 ± 0.0161 • 0.4659 ± 0.0161 • 0.4651 ± 0.0161 • 0.5489 ± 0.0199 0.4847 ± 0.0015 • 0.5554 ± 0.0181 

espgame 0.1039 ± 0.0049 0.1040 ± 0.0047 0.1039 ± 0.0049 0.1040 ± 0.0048 0.1039 ± 0.0049 0.1062 ± 0.0064 0.1178 ± 0.0131 ◦ 0.1063 ± 0.0078 

Delicious 0.1795 ± 0.0133 • 0.1780 ± 0.0073 • 0.1876 ± 0.0162 • 0.1851 ± 0.0199 • 0.2050 ± 0.0220 • 0.1900 ± 0.0034 • 0.3416 ± 0.0019 ◦ 0.2361 ± 0.0029 •
Mediamill 0.5405 ± 0.0983 • 0.5415 ± 0.0382 • 0.5611 ± 0.0675 0.5331 ± 0.0263 • 0.5429 ± 0.1306 0.5913 ± 0.0247 0.5556 ± 0.0049 • 0.5927 ± 0.0199 

Ranking Loss ↓ 
Methods k-ORI k-CPLST k-DMLR k-FaIE k-CMLL y k-MDDM C2AE k-CMLL 

plant 0.1771 ± 0.0312 0.1756 ± 0.0300 0.1701 ± 0.0257 0.1761 ± 0.0314 0.1756 ± 0.0312 0.1666 ± 0.0232 0.1578 ± 0.0194 0.1495 ± 0.0294 

msra 0.1435 ± 0.0075 • 0.1433 ± 0.0073 • 0.1176 ± 0.0058 ◦ 0.1234 ± 0.0066 0.1182 ± 0.0058 0.1275 ± 0.0087 0.1113 ± 0.0073 ◦ 0.1289 ± 0.0088 

enron 0.0973 ± 0.0138 • 0.0969 ± 0.0138 • 0.0973 ± 0.0138 • 0.1012 ± 0.0129 • 0.10 0 0 ± 0.0128 • 0.1011 ± 0.0120 • 0.0833 ± 0.0139 0.0816 ± 0.0037 

llog 0.1758 ± 0.0293 • 0.1757 ± 0.0292 • 0.1787 ± 0.0301 • 0.1764 ± 0.0297 • 0.1762 ± 0.0279 • 0.1467 ± 0.0170 0.1249 ± 0.0141 0.1362 ± 0.0149 

bibtext 0.0939 ± 0.0109 0.0980 ± 0.0090 • 0.0933 ± 0.0105 0.0936 ± 0.0108 0.0934 ± 0.0107 0.0819 ± 0.0083 0.0565 ± 0.0721 ◦ 0.0798 ± 0.0091 

eurlex-sm 0.0221 ± 0.0084 0.0266 ± 0.0078 0.0219 ± 0.0085 0.0219 ± 0.0084 0.0221 ± 0.0086 0.0210 ± 0.0049 0.0240 ± 0.1171 0.0202 ± 0.0061 

bookmark 0.1604 ± 0.0071 • 0.1604 ± 0.0071 • 0.1662 ± 0.0088 • 0.1603 ± 0.0072 • 0.1509 ± 0.0075 0.1584 ± 0.0060 • 0.1527 ± 0.0279 0.1447 ± 0.0050 

corel5k 0.1941 ± 0.0068 • 0.1440 ± 0.0068 0.1566 ± 0.0078 0.1741 ± 0.0070 • 0.1640 ± 0.0068 0.1937 ± 0.0052 • 0.1321 ± 0.0240 0.1523 ± 0.0119 

eurlex-dc 0.0416 ± 0.0042 0.0374 ± 0.0053 0.0409 ± 0.0041 0.0417 ± 0.0039 0.0417 ± 0.0042 0.0361 ± 0.0084 0.0451 ± 0.0418 0.0357 ± 0.0046 

espgame 0.0253 ± 0.0065 0.0251 ± 0.0065 0.0256 ± 0.0067 0.0255 ± 0.0065 0.0256 ± 0.0066 0.0249 ± 0.0070 0.0206 ± 0.0123 0.0232 ± 0.0071 

Delicious 0.1746 ± 0.0468 0.1630 ± 0.0135 0.1701 ± 0.0371 0.2053 ± 0.0531 0.1684 ± 0.0560 0.1689 ± 0.0373 0.1232 ± 0.0012 0.1599 ± 0.0318 

Mediamill 0.0671 ± 0.0027 • 0.0644 ± 0.0051 0.0634 ± 0.0014 • 0.0663 ± 0.0054 0.0624 ± 0.0056 0.0666 ± 0.0024 • 0.0659 ± 0.0034 • 0.0599 ± 0.0021 

One Error ↓ 
Methods k-ORI k-CPLST k-DMLR k-FaIE k-CMLL y k-MDDM C2AE k-CMLL 

plant 0.5857 ± 0.0457 0.5836 ± 0.0435 0.5826 ± 0.0518 0.5867 ± 0.0463 0.5847 ± 0.0457 0.5458 ± 0.0290 0.5581 ± 0.0473 0.5407 ± 0.0510 

msra 0.0653 ± 0.0198 0.0642 ± 0.0180 0.0525 ± 0.0136 0.0553 ± 0.0057 0.0583 ± 0.0130 0.0637 ± 0.0166 0.0617 ± 0.0267 0.0507 ± 0.0099 

enron 0.2290 ± 0.0165 0.2278 ± 0.0140 0.2290 ± 0.0165 0.2454 ± 0.0205 • 0.2331 ± 0.0187 0.2213 ± 0.0196 0.2562 ± 0.0571 0.2091 ± 0.0169 

llog 0.7145 ± 0.0272 • 0.7145 ± 0.0272 • 0.7153 ± 0.0310 • 0.7145 ± 0.0272 • 0.7154 ± 0.0316 • 0.6756 ± 0.0328 0.7642 ± 0.0149 • 0.6625 ± 0.0374 

bibtext 0.3506 ± 0.0043 • 0.3496 ± 0.0166 0.3442 ± 0.0064 0.3492 ± 0.0044 • 0.3392 ± 0.0044 0.3416 ± 0.0050 0.3164 ± 0.0092 0.3368 ± 0.0090 

eurlex-sm 0.1754 ± 0.0198 • 0.1788 ± 0.0204 • 0.1754 ± 0.0198 • 0.1756 ± 0.0200 • 0.1756 ± 0.0200 • 0.1514 ± 0.0282 0.1293 ± 0.0116 0.1261 ± 0.0192 

bookmark 0.6008 ± 0.0077 • 0.6008 ± 0.0077 • 0.5928 ± 0.0141 • 0.6006 ± 0.0078 • 0.60 0 0 ± 0.0080 • 0.5724 ± 0.0084 0.5430 ± 0.0097 0.5616 ± 0.0090 

corel5k 0.6274 ± 0.0111 • 0.6268 ± 0.0112 • 0.6286 ± 0.0087 • 0.6282 ± 0.0110 • 0.6278 ± 0.0112 • 0.6138 ± 0.0138 • 0.5876 ± 0.0142 0.5880 ± 0.0169 

eurlex-dc 0.3098 ± 0.0112 • 0.3140 ± 0.0095 • 0.3096 ± 0.0115 • 0.3088 ± 0.0110 • 0.3096 ± 0.0113 • 0.2838 ± 0.0137 0.3012 ± 0.0208 • 0.2800 ± 0.0163 

espgame 0.5458 ± 0.0153 0.5462 ± 0.0157 0.5460 ± 0.0134 0.5464 ± 0.0140 0.5456 ± 0.0148 0.5363 ± 0.0123 0.5325 ± 0.0425 0.5306 ± 0.0091 

Delicious 0.3446 ± 0.0640 0.3320 ± 0.0321 0.3236 ± 0.0515 0.3257 ± 0.0464 0.3336 ± 0.0258 0.3345 ± 0.1174 0.3497 ± 0.0058 0.3260 ± 0.0617 

Mediamill 0.1567 ± 0.0045 • 0.1386 ± 0.0029 0.1439 ± 0.0099 • 0.1510 ± 0.0039 • 0.1457 ± 0.0020 • 0.1412 ± 0.0072 0.1507 ± 0.0131 0.1384 ± 0.0040 

Precision @3 ↑ 
Methods k-ORI k-CPLST k-DMLR k-FaIE k-CMLL y k-MDDM C2AE k-CMLL 

Delicious 0.5739 ± 0.0045 • 0.5814 ± 0.0029 • 0.5882 ± 0.0049 • 0.5859 ± 0.0081 • 0.5887 ± 0.0026 • 0.5800 ± 0.0033 • 0.5935 ± 0.0059 • 0.6090 ± 0.0022 

Mediamill 0.6480 ± 0.0062 • 0.6576 ± 0.0080 0.6599 ± 0.0092 0.6400 ± 0.0032 • 0.6582 ± 0.0080 0.6605 ± 0.0095 0.6492 ± 0.0038 • 0.6622 ± 0.0072 

nDCG @3 ↑ 
k-ORI k-CPLST k-DMLR k-FaIE k-CMLL y k-MDDM C2AE k-CMLL 

Delicious 0.5911 ± 0.0087 0.5901 ± 0.0034 • 0.5970 ± 0.0042 0.5944 ± 0.0097 0.5950 ± 0.0022 • 0.5952 ± 0.0058 0.6073 ± 0.0060 0.6098 ± 0.0075 

Mediamill 0.7360 ± 0.0098 0.7361 ± 0.0039 0.7349 ± 0.0066 0.7342 ± 0.0043 • 0.7489 ± 0.0021 0.7479 ± 0.0077 0.7285 ± 0.0034 • 0.7496 ± 0.0034 
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e can find the solution of V and calculate corresponding dep min 

nd rec max . To obtain a comprehensive understanding, we normal- 

ze the value of two terms by: 

 ec ′ = 

r ec − r ec min 

r ec max − r ec min 

, d ep ′ = 

d ep − d ep min 

d ep max − d ep min 

. 

The experimental results on msra with average precision are 

howed in Fig. 1 as an example. The curve in Fig. 1 (a) indicates

hat setting α too big or too small will both result in bad per- 

ormance. And it seems that an unreasonable big α suffers more, 

hich indicates that an encoder with good recovery ability is very 
7 
mportant for CMLL. Fig. 1 (b) provides the explanation for the 

urve trend in Fig. 1 (a). For example, the curve of average precision 

rops sharply when log 10 (α) changes from 1 to 2. And the reason 

s that dep ′ is already very close to the upper bound when α = 10 .

s α further rises to 100, the increment of dep ′ is very limited 

hile rec ′ decreases obviously. This suggests that α do not need to 

e increased when dep ′ is close to its maximization, otherwise the 

ecrement of rec ′ will result in a decline of the performance. Thus 

e can utilize such plot to guide the tuning process of α. To sum 

p, aiming to get better performance, we should consider an ap- 

ropriate trade-off between dependence term and recovery term. 
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Fig. 1. Average precision changes as parameter α varies on msra. 

Fig. 2. The average precision curve of moving the compression ratio on enron. 
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Fig. 3. The spatial graphs of CMLL over various μ and ν . 
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.5. Analysis on the compression ratio 

We investigate how the compression ratio influences the per- 

ormance by fixing one space changeless and gradually moving the 

ompression ration of the other space from 100% to 10%, and due 

o page limitation, we only display the curve of average precision 

n enron in Fig. 2 . We can observe that no matter how the com-

ression ratio changes, CMLL usually achieves a better or compa- 

able performance. 

The reason for the superiority of CMLL is that it follows the 

pirit of CL. CMLL links the embedding process of the label space 

nd the feature space to each other and guides each process by 

nother well-disposed space. Instead, most other embedding meth- 

ds either focus on the embedding of just one space, or guides the 

mbedding process by original problematic space. Therefore, CMLL 

erforms well especially in noisy, redundant and sparse datasets. 

owever, the embedding may bring the loss of information when 

e compress the dense or non-redundant datasets into a very low 

imension. 

In reality, traversing every possible pair (μ, ν) to lock the best 

ne is unaffordable. Here we give an empirical method for that. We 

raw the spatial graphs of CMLL for collected datasets over various 

and ν . And the spatial graphs of some datasets on average pre- 

ision are displayed in Fig. 3 as examples. 

It can be seen that, for different ν on each dataset, the gen- 

ral trends of CMLL over various μ are almost the same. Providing 

his empirical observation gives us a heuristic way to select (μ, ν) : 

e first conduct CMLL with a random fixed ν over various μ, and 

ock the best μ∗ in such situation. Then we search the best μ∗

ith fixing ν . Finally a near optimal ratio pair (μ∗, ν∗) is achieved. 

ne can also try some different starting ν to make the search- 

ng process more precise. In practice, we find that the ratio pair 

earched by this empirical method can achieve comparable perfor- 

ance to the real best one in most cases. Especially, we find that 

may have little influence on the performance in some datasets. 

n other words, a very small compression ratio can perform well 

n CMLL, which proves the existence of redundancy and shows 

he superiority of CMLL to reduce the computational and space 

omplexities. 

. Conclusion 

In this paper, we provided a different insight into efficiently 

apturing the inherent high-order correlation between features and 

abels, named compact learning. We analyzed its rationality and 

ecessity in the situation, where the feature space suffers from 

edundancy or noise, and meanwhile, the label space is deterio- 

ated by noise or sparsity - frequent occurrences in MLC. Follow- 

ng the spirit of compact learning, a simple yet effective method 

ermed CMLL that is compatible with flexible multi-label classi- 

ers was proposed. By conducting the embedding process of the 

eatures and the labels seamlessly, CMLL achieved a more com- 

act representation for both the spaces. We demonstrated through 

xperiments that CMLL can result in significant improvements for 

LC. 

As an initial effort towards compact learning, there are several 

otential ways that the current CMLL can be further improved: (a) 

xcept the linear embedding or its kernel version, other encoding 

nd decoding strategies, such as autoencoders and its extension, 

re worthwhile to be investigated; (b) Inspired by the manifold 

earning that the local topological structure can be shared between 

he feature manifold and the label manifold [34] , the structure in- 

ormation could be utilized for CMLL; (c) CMLL provides another 

ossible solution to some weakly supervised learning problem, e.g., 

he missing label [35] or noisy label [36] . 
10 
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