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Highlights

• A deep-learning based authentication system from inertial signals is proposed

• This framework relies on new transform to make inertial signals rotation invariant

• We propose a robust walking-cycle extraction algorithm with template adaptation

• We combine neural networks with SVM into a new multi-step authentication

technique

• An extensive experimental campaign is presented, to validate the proposed sys-

tem
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Abstract

Here, we present IDNet, a user authentication framework from smartphone-acquired

motion signals. Its goal is to recognize a target user from their way of walking, using the

accelerometer and gyroscope (inertial) signals provided by a commercial smartphone

worn in the front pocket of the user’s trousers. IDNet features several innovations

including: i) a robust and smartphone-orientation-independent walking cycle extrac-

tion block, ii) a novel feature extractor based on convolutional neural networks, iii) a

one-class support vector machine to classify walking cycles, and the coherent integra-

tion of these into iv) a multi-stage authentication technique. IDNet is the first system

that exploits a deep learning approach as universal feature extractors for gait recog-

nition, and that combines classification results from subsequent walking cycles into

a multi-stage decision making framework. Experimental results show the superiority

of our approach against state-of-the-art techniques, leading to misclassification rates

(either false negatives or positives) smaller than 0.15% with fewer than five walking

cycles. Design choices are discussed and motivated throughout, assessing their impact

on the user authentication performance.

Keywords: Biometric gait analysis, target recognition, classification methods,

convolutional neural networks, support vector machines, inertial sensors, feature

extraction, signal processing, accelerometer, gyroscope.
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1. Introduction

Wearable technology is advancing at a very fast pace. Many wearable devices, such

as smart watches and wristbands are currently available in the consumer market and

they often possess miniaturized inertial motion sensors (accelerometer and gyroscope)

as well as other sensing hardware capable of gathering biological signs such as pho-5

toplethysmographic signals, skin temperature and so forth. Other wearables, such as

commercial physiological monitors, deliver a number of vitals via their wireless inter-

faces, including electrocardiogram, heart rate, chest motion, etc. The same holds true

for recent smartphones, that allow for the collection of user’s feedback and for the

realtime assessment of their health condition. They also feature sophisticated sensing10

technology, among which we consider inertial sensors. With sensing technology grow-

ing at a fast pace, two major problems are related to the analysis of wearable data and

to the authentication of the mobile users who provide it, so that we can assess with

reasonably high accuracy whether the data sources are genuine. Notably, certifying

the data sources is a necessary step toward the widespread use of this technology in the15

medical field and, in this paper, we develop the user authentication technology that is

required to make this possible. A great deal of work has been carried out on gait recog-

nition in the last decade [1]. In general, biometric gait recognition can be grouped into

three main categories: 1) computer vision based, 2) floor sensor based and 3) wearable

sensor based [2]. Most of the recent work belongs to the first category, where image20

and video analysis are performed to infer the user identity [3, 4, 5, 6, 7]. Nevertheless,

user authentication from wearables is a sensible approach in those scenarios where the

deployment of cameras in not possible.

In this paper, we propose IDNet (IDentification Network), a new system for the au-

thentication of mobile users from smartphone-acquired motion data. As shown in [8, 9],25

modern phones possess highly accurate inertial sensors, which allow for non-obtrusive

gait biometrics. IDNet leverages deep Convolutional Neural Networks (CNN) [10] and

tools from machine learning, such as Support Vector Machines (SVM) [11], combining

them in an innovative fashion. Specifically, we develop algorithms for 1) walking cycle

extraction, 2) feature identification and, finally, 3) user authentication. CNNs are used30

as universal feature extractors to discriminate gait signatures from different subjects.

Single- as well as multi-stage classifiers are finally combined with CNNs to authen-
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ticate the user through the accumulation of scores from subsequent walking cycles.

As shown in Section 4, our solution authenticates the target user with high accuracy

and outperforms state-of-the-art techniques such as [12, 13, 14, 15, 16, 17]. The main35

contributions of this paper are:

• The design and validation of an original preprocessing techniques that includes: a

robust algorithm for the extraction of walking cycles and an original transforma-

tion to move smartphone acquired motion signals into an orientation invariant ref-

erence system. Subsequent processing is carried out within this reference system,40

as this considerably improves authentication results, see Section 3. As opposed to

making motion data orientation independent, previous papers either use data ac-

quired from a sensor in a known and fixed position [15, 16, 18, 12, 13, 19, 20, 21],

or use orientation independent features at the cost of losing information about

the direction of the forces [22].45

• The design of a new CNN-based feature extraction tool, which is trained only

once on a representative set of users and then used at runtime as a universal

feature extractor, see Section 4. Note that with CNNs, statistical features are

automatically extracted as part of the CNN training phase (automatic feature

engineering) as opposed to the selection of predefined and often arbitrary features,50

as commonly done in the literature [14, 15, 18, 13].

• The combination of CNN-extracted features with a one-class SVM classifier [23],

which is solely trained on the target subject, see Section 5. The resulting SVM

scores are then accumulated across multiple walking cycles to get higher accura-

cies, through a new multi-stage identification framework, see Section 6.55

• The coherent integration of these techniques into the IDNet authentication frame-

work, that uses smartphone-acquired accelerometer and gyroscope motion data.

We also show that the integration of gyroscope data provides further performance

improvements, see Section 4.2.

• The experimental validation of IDNet, proving its superiority against solutions60

from the state-of-the-art, see Section 4, and achieving authentication errors below

0.15% using fewer than five walking cycles, see Section 6.

4



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

2. Related Work

Interest in gait analysis began in the 60’s, when walking patterns from healthy

people, termed as normal patterns, were investigated by Murray et al. [24]. These65

measurements were performed through the analysis of photos acquired using inter-

rupted light photography. Murray compared normal gait parameters against those

from pathologic gaits [25] and showed that gait is unique to each individual. Since

then, human identification through gait recognition has been enjoying a growing inter-

est. Most recent works are based on computer vision [26, 2]. Currently, multi-view gait70

recognition problem and condition invariance (e.g., clothing or carried items, walking

speed, view angle, etc.) are of special interest [7]. Many new approaches have been

studied to improve recognition performance, such as 3D body estimation [4], complete

canonical correlation analysis [5], sparse coding and hypergraph learning [6]. However,

mobile devices are becoming increasingly sophisticated and can provide high quality75

inertial measurements. Multiple activities can thus be analyzed using wearable sensors

data, and exploited, e.g., for task identification [27]. A thorough review of the latest

developments in this area can be found in Sprager’s work [1].

Our interest in this paper is in human gait identification through smartphone in-

ertial sensors. Ailisto et al. [28] were the first to look at this problem and they did it80

through accelerometer data. In their paper, they used a triaxial accelerometer worn

on a belt with fixed orientation: the x-axis pointed forward, the y-axis to the left

and the z-axis was aligned with the direction of gravity. Only data points from the

x and z axes were used for identification purposes. Gait cycle extraction was per-

formed through a simple peak detection method, and a template was built for each85

subject. User identification employed a template matching technique, for which differ-

ent methods were explored: temporal correlation, frequency domain analysis and data

distribution statistics.

In [29], Derawi et al. proposed more robust preprocessing, cycle detection and

template comparison algorithms. Data were acquired using a mobile phone worn on90

the hip, and only the vertical z-axis was considered for motion analysis. Dynamic Time

Warping (DTW) [30] was used as the distance measure, to ensure robustness against

non-linear temporal shifts. This scheme was also tested in [20], where majority voting

and cyclic rotation were compared as inference rules. In a further paper [21], Hidden
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Markov Models (HMM) were explored. Accelerometer data were split into windows of95

fixed length, which were then utilized to train the HMMs. Good identification results

were obtained, but at the cost of long authentication phases (30 seconds).

Classification algorithms based on machine learning were also investigated. Either

gait cycles extraction [31] or fixed windows lengths [13] are possible signal segmentation

methods. After that, a feature extraction technique is applied to each segment and100

statistical measures such as mean, standard deviation, root mean square, zero-crossing

rate or histogram bin counts, are commonly used. However, more advanced features

are required for better results, like cepstral coefficients, which are widely used for

speech recognition [13], or features extracted through frequency analysis, i.e., using

Fourier [12] or wavelet transforms [31]. Supervised algorithms are typically used for105

classification, including k-Nearest Neighbours (k-NN) [15, 13, 18, 17], Support Vector

Machines (SVM) [31, 18, 14], Multi Layer Perceptrons (MLP) [18, 14] and Classification

Trees (CT) [18, 14].

Accelerometer based gait analysis has also interest in the medical field. Using time-

frequency analysis, Huang et al. showed that signals acquired by a waist-worn device110

on a patient with cervical disc herniation differed before and after the surgery [19].

In [18], classification algorithms were used to discriminate a group of subjects with

non-specific chronic low back pain from healthy subjects. Complex parameters, e.g.,

dynamic symmetry and cyclic stability of gait, were extracted by Jiang et al. [32].

However, their evaluation requires to place sensors on the legs, and fine gait details are115

difficult to extract from signals acquired by a single waist-worn sensor.

We stress that in most of the related work the acquisition system was placed ac-

cording to a controlled and well known orientation on the subject body. In real sce-

narios, this is however unlikely to be the case. It is thus important to implement

an algorithm whose performance is invariant to the smartphone orientation, which is120

somewhat unconstrained (and unknown). This makes the phone reference system with

good probability misaligned with respect to the direction of motion and the definition

of subject specific and time invariant templates impossible. To deal with this, two

different approaches can be used. The first consists in the extraction of features that

are rotation invariant (e.g., correlation matrices of Fourier transforms [22] or gait dy-125

namic images [33]). The second relies on the transformation of inertial signals [14],

projecting them into a new orientation invariant three-dimensional reference system,
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Figure 1: Signal processing workflow.

which is extracted directly from the data. Here, we adopt the latter approach. Another

distintive feature of our work is that we use an original processing pipeline exploiting

automatic feature extraction through convolutional neural networks and a scoring al-130

gorithm combining one-class support vector machines and multi-step decision analysis.

3. Signal Processing Framework

The aim of IDNet is to correctly recognize a subject from his/her way of walking,

through the acquisition of inertial signals from a standard smartphone. The proposed

processing workflow is shown in Fig. 1. Walking data is first acquired, then we perform135

some preprocessing entailing:

1. pre-filtering to remove motion artifacts (Section 3.1),

2. the extraction of walking cycles (Section 3.2),

3. a transformation to move the raw walking data into a new orientation independent

reference system (Section 3.3),140

4. a normalization to represent each walking cycle (accelerometer and gyroscope

data) through fixed length, zero mean and unit variance vectors (Section 3.4).

After this, the walking cycles are ready to be processed to identify the user. The

standard approach, called “Classical Machine Learning” entails the computation of

a number of pre-established statistical features, the most informative of which are145

selected and used to train a classifier. Various machine learning techniques are usually

exploited to this purpose, and are trained through a supervised approach. Hence,

the classification performance is assessed and the whole process is usually iterated

for a further feature selection phase. In this way, the features that are used for the

classification task are progressively refined until a final feature set is attained. Note150
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that statistical features are often assessed by the designer through educated guesses

and a trial and error approach.

As opposed to this, with IDNet we advocate the use of convolutional neural net-

works (see Sections 4 and 5). These have been successfully used by the video processing

community [34] but to the best of our knowledge have never been exploited for the155

analysis of inertial data from wearable devices. One of the main advantages of this

approach is that statistical features are automatically assessed by the CNN as a result

of a supervised training phase. In Section 4, the CNN is trained to act as a universal

feature extractor, whereas in Section 5 a one-class SVM is trained as the final classifier.

Once the CNN is trained, our system operates assuming that the smartphone only has160

access to the walking patterns of the target user (i.e., the legitimate user) and the

SVM is solely trained using his/her walking data. Our system is based on the premise

that, at runtime, the CNN should be capable of producing discriminant features for

unseen users and the one-class SVM, once trained on the target, should reliably detect

impostors, although their walks were not used for training.165

The processing blocks are described in higher details in the following subsections.

Notation: With x ∈ Rn we mean a column vector x = (x1, x2, . . . , xn)T with el-

ements xi ∈ R, where (·)T is the transpose operator. |x| = n returns the number

of elements in vector x. x = (
∑n
i=1 xi)/n, whereas ‖x‖ = (

∑n
i=1 x

2
i )

1/2 is the L2-170

norm operator. If x,y ∈ Rn, we define their inner product as x · y = xTy and

their entrywise product as x ◦ y = (x1y1, x2y2, . . . , xnyn)T . Vector 1n = (1, 1, . . . , 1)T

with |1n| = n. Matrices are denoted by uppercase and bold letters. For example,

if x,y, z ∈ Rn, we define a 3 × n matrix as M = [x,y, z]T , whose rows contain

the three vectors. In addition, element (i, j) of matrix X is denoted by Xi,j ∈ R.175

With ~r we mean a 3D vector ~r = (r1, r2, r3)T and r̂ is the corresponding 3D ver-

sor r̂ = ~r/‖~r‖. For any two 3D vectors ~r and ~s we indicate their cross-product as

~r × ~s = (r2s3 − r3s2, r3s1 − r1s3, r1s2 − r2s1)T . The gravity vector is referred to as

~ρ. With u(i) we mean a time series, where i = 1, 2, . . . is the discrete time index. For

acceleration data, the boldface letter a is reserved for vectors, a(i) for time series and180

A for matrices. The same notation is adopted for the gyroscope data, using g, g(i) and

G, respectively for vectors, time series and matrices. Finally, for any time series a(i)

and Ns ≥ 1, we define a(i,Ns) = vrect(a, i,Ns)
∆
= (a(i), . . . , a(i + Ns − 1))T , where

8
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a(i,Ns) is a column vector containing samples a(i), . . . , a(i+Ns − 1).

185

3.1. Data Acquisition and Filtering

A proper dataset is key to the successful design and testing of identity recognition

algorithms. Some datasets are publicly available. The largest one was acquired by the

Institute of Scientific and Industrial Research (ISIR) at Osaka University (OU) [35].

It contains motion data collected from 744 subjects using four motion sensors: three190

inertial sensors were placed on a belt, with triaxial accelerometer and gyroscope, and a

smartphone was worn in the center back waist, and only measured triaxial accelerome-

ter data. Despite the high number of participants, the main problem with this dataset

is that motion data was acquired in a controlled environment, and for each subject

only two short data sequences are available, which are not enough for deep network195

training. Furthermore, smartphone’s gyroscope data is not provided. Other datasets

are available, but featuring a much smaller number of participants. Casale et al. col-

lected accelerometer data from a smartphone positioned in the chest pocket from 22

users walking over a predefined path [36]. In [37], a motion capture suit was used to

acquire data from 40 subjects walking in a small area at different speeds and with200

direction changes. However, due to the acquisition environment and conditions, these

data are more suitable for human gait modeling rather than for user identification.

Frank et al. collected data from a mobile phone in the pocket of 20 individuals at

McGill University, performing two separate 15 minute walks on two different days [38].

Also in this case gyroscope data is not provided. All these databases do not meet205

our requirements. In fact, for proper training we need long data collection phases,

preferably from different days and with devices freely worn in the user’s front pockets.

Hence, we decided to acquire our own motion traces, which are publicly available at

http://signet.dei.unipd.it/human-sensing/.

Specifically, we acquired motion data from 50 subjects, during a period of six210

months using Android smartphones worn in the right front pocket of the users’ trousers.

The following devices were used: Asus Zenfone 2, Samsung S3 Neo, Samsung S4, LG

G2, LG G4 and a Google Nexus 5. Several acquisition sessions of about five minutes

were performed for each subject, in variable conditions, e.g., with different shoes and

clothes. We asked each subject to walk as she/he felt comfortable with, to mimic real215
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world scenarios. For the data acquisition, we developed an Android inertial data log-

ger application, which saves accelerometer, gyroscope and magnetometer signals into

non-volatile memory and then automatically transfers them to an Internet server for

further processing. The magnetometer signal is not used for identification purposes.

In general, IDNet can be used carrying the device in other positions but we remark220

that each requires a dedicated training.

In Fig. 2, we plot the power of accelerometer and gyroscope signals at different

frequencies through the Welch’s method [39], considering a full walking trace and

setting the Hanning window length to 1 s, with half window overlap. Most of the

signal power is located at low frequencies, mostly below 40 Hz (where the power is225

at least 30 dB smaller than the maximum). The raw inertial signals were acquired

using an average sample frequency ranging between 100 and 200 Hz (depending on the

smartphone model), which is more than appropriate to capture most of the walking

signal’s energy.

At the first block of IDNet processing chain, due to the non-uniform sampling230

performed by the smartphone operating system, we apply a cubic Spline interpolation

to represent the input data through evenly spaced points (200 points/second). Hence,

a low pass Finite Impulse Response (FIR) filter with a cutoff frequency of fc1 = 40 Hz

is used for denoising and to reduce the motion artifacts that may appear at higher

frequencies. In fact, given the power profile of Fig. 2, the selected cutoff frequency235

only removes noise and preserves the relevant (discriminative) information about the

user’s motion.

In the following, with ax(i) and gx(i) we respectively mean the filtered and inter-

polated acceleration and gyroscope time series along axis x, where i = 1, 2, . . . is the

sample number. The same notation holds for axes y and z.240

3.2. Extraction of Walking Cycles

For the extraction of walking cycles we use a template-based and iterative method

that solely considers the accelerometer’s magnitude signal. This signal is in fact inher-

ently invariant to the rotation of the smartphone and, as such, allows for the precise

assessment of walking cycles regardless of how the user carries the device in her/his

front pocket. For each sample i = 1, 2, . . . the acceleration magnitude is computed as:

10
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Figure 2: Power spectral density of accelerometer (continuous lines, one for each axis) and gyroscope

(dashed lines) data.

amag(i) = (ax(i)2 + ay(i)2 + az(i)
2)1/2 . (1)

To identify the template, a reference point in amag(i) has to be located. To do so,

inspired by [16] we first pass amag(i) through a low-pass filter with cutoff frequency

fc2 = 3 Hz. Thus, we detect the first minimum of this filtered signal, which corresponds

to the heel strike [40], and the corresponding index is called ĩ. This minimum is245

then refined by looking at the original signal amag(i) within an interval centered on ĩ

spanning one second of data, and picking the minimum value of amag(i) in this interval.

This identifies a new index i? for which amag(i?) is a local minimum. As an example, in

Fig. 3, we show this minimum through a red vertical (dashed-dotted) line. As a second

step, we pick a window of one second centered in i?, which in Fig. 3 is represented250

through two vertical blue (dashed) lines. Now, the samples of amag(i) falling between

the two blue lines define the first gait template, which we call T , with |T | = Ns samples,

where Ns corresponds to the number of samples measured in one second.

The extracted template is then iteratively refined and, at the same time, used to

identify subsequent walking cycles. To this end, we first define the following correlation

distance, for any two real vectors u and v of the same size n we have:

corr dist(u,v) = 1− (u− u1n) · (v − v1n)

‖(u− u1n)‖ ‖(v − v1n)‖ . (2)

The template T is then processed with the acceleration magnitude through the

following Eq. (3), leading to a further metric ϕ(i), where i = 1, 2, . . . is the sample255
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Figure 3: Template extraction using the accelerometer magnitude amag(i). The first template is the

signal between the blue dashed vertical lines. The red dashed line in the center corresponds to i∗.

Figure 4: Correlation distance ϕ(i) between amag(i) and the template T of Fig. 3. Local minima

identify the beginning of walking cycles.

index:

amag(i,Ns) = vrect(amag, i, Ns) ,

ϕ(i) = corr dist(T ,amag(i,Ns)) , i = 1, . . . . (3)

As can be seen from Fig. 4, the function ϕ(i) exhibits some local minima, which are

promptly located by comparing ϕ(i) with a suitable threshold ϕth and performing a

fast search inside the regions where ϕ(i) < ϕth. The indices corresponding to these

minima determine the optimal alignments between the template T and amag(i). In260

particular, the second of these identifies the beginning of the second gait cycle. From

these facts we have that:
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1. the samples between the second and the third minima correspond to the second

gait cycle. It is thus possible to locate accelerometer and gyroscope vectors for

this walking cycle, which are respectively defined as: ax, ay, az and gx, gy, gz,265

still expressed in the (x, y, z) coordinate system of the smartphone. We remark

that the number of samples does not necessarily match the template length and

usually differs from cycle to cycle, as it depends on the length and duration of

walking steps.

2. A second template T ′ is obtained by reading Ns samples starting from the second270

minimum.

At this point, a new template is obtained through a weighted average of the old tem-

plate T and the new one T ′:

T = αT + (1− α)T ′ , (4)

where for the results in this paper we used α = 0.9. The new template T is then

considered for the extraction of the next walking cycle and the procedure is iterated.

Note that this technique makes it possible to obtain an increasingly robust template

at each new cycle.275

A template matching approach exploiting a similar rationale was used in [16], where

the authors employed the Pearson product-moment correlation coefficient between tem-

plate and amag(i). The main differences between [16] and our approach are: we obtain

the template T in a neighborhood of i?, using a fixed number of samples Ns, whereas

they take the samples between two adjacent minima of ϕ(i) (which may then differ280

in size for different cycles). In Eq. (4), a discrete-time filter is utilized to refine the

template T at each walking cycle, making it more robust against speed changes. In

previous work [16], the template is instead kept unchanged up to a point when minima

cannot be longer detected, and a new template is to be obtained.

Finally, a normalization phase is required to represent all the cycles through the285

same number of points N , as this is required by the following feature extraction and

classification algorithms. Before doing this, however, a transformation of accelerom-

eter and gyroscope signals is performed to express these inertial signals in a rotation

invariant reference system, as described next.

13
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Figure 5: Raw accelerometer data from two different walks, acquired from a smartphone worn in

the right front pocket with different orientations. Accelerometer data in the smartphone reference

system (x, y, z) (left), and after the transformation (ξ, ψ, ζ) (right). IDNet implements a PCA-based

transformation that makes walking data rotation invariant, i.e., subject-specific gait patterns emerge

in the new coordinate system (see the red colored patterns in the right plots).

3.3. Orientation Independent Transformation290

To evaluate the new orientation invariant coordinate system, three orthogonal ver-

sors ξ̂, ζ̂, ψ̂ are to be found, whose orientation is independent of that of the smartphone

and aligned with gravity and the direction of motion. Specifically, our aim is to express

accelerometer and gyroscope signals in a coordinate system that remains fixed during

the walk, with versor ζ̂ pointing up (and parallel to the user’s torso), versor ξ̂ pointing295

forward (aligned with the direction of motion) and ψ̂ tracking the lateral movement

and being orthogonal to the other two. This entails inferring the orientation of the

mobile device carried in the front pocket from the acceleration signal acquired during

the walk. To this end, we adopt a technique similar to those of [41, 42].

Gravity is the main low frequency component in the accelerometer data, and will

be our starting point for the transform. Moreover, although it is a constant vector,

it continuously changes when represented in the (x, y, z) coordinate system of the

smartphone, due to the user’s mobility and the subsequent change of orientation of

the device. So, even the gravity vector ~ρ is not constant when expressed through the

smartphone coordinates. As the first axis of the new reference system, we consider the

mean direction of gravity within the current walking cycle. Let nk be the number of

samples in the current cycle k, with k = 1, 2, . . . . We recall that, with ax, ay and az

we mean the acceleration samples in the current cycle k along the three axes x, y and

14
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z, with |ax| = |ay| = |az| = nk, whereas with gx, gy and gz we indicate the gyroscope

samples in the same cycle k, with |gx| = |gy| = |gz| = nk. The gravity vector ~ρk

within cycle k is estimated as:

~ρk = (ax, ay, az)
T . (5)

The first versor of the new system ζ̂ is obtained as:

ζ̂ =
~ρk
‖~ρk‖

. (6)

Now, we define the acceleration matrix A = [ax,ay,az]
T of size 3 × nk, whose rows

corresponds to ax, ay and az. Likewise, the gyroscope matrix is G = [gx, gy, gz]
T ,

whose rows corresponds to gx, gy and gz. The projected acceleration and gyroscope

vectors along axis ζ̂ are:

aζ = A · ζ̂ , gζ = G · ζ̂ , (7)

where the new vectors have the same size nk. By removing this component from the

original accelerometer signal, we project the latter on a plane that is orthogonal to

ζ̂. This is the horizontal plane (parallel to the floor). We represent this flattened

acceleration data through a new matrix Af = [afx,a
f
y ,a

f
z ]T of size 3 × nk, where afx,

afy and afz are vectors of size nk that describe the acceleration on the new plane:

Af = A− ζ̂aTζ . (8)

Analyzing this flattened acceleration, we see that during a walking cycle it is unevenly300

distributed on the horizontal plane. Also, the acceleration points on this plane are

dispersed around a preferential direction, which has the highest excursion (variance).

Here, we assume that the direction with the largest variance in our measurement space

contain the dynamics of interest, i.e., it is parallel to the direction of motion, as it was

also observed and verified in previous research [41]. Given this, we pick this direction305

as the second axis (versor ξ̂) of the new reference system. This is done by applying

the Principal Component Analysis (PCA) [43] on the projected points, which finds

the direction along which the variance of the measurements is maximized. The PCA

procedure is as follows:

1. Find the empirical mean along each direction x, y and z (rows 1, 2 and 3 of

the flattened acceleration matrix Af ). Store the mean in a new vector u of size
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3× 1., i.e.:

ui =
1

nk

nk∑

j=1

Afi,j , i = 1, 2, 3 . (9)

2. Subtract the empirical mean vector u from each column of matrix Af , obtaining

the new matrix Af
norm:

Af
norm = Af − u(1nk

)T . (10)

3. Compute the sample 3× 3 autocovariance matrix Σ:

Σ =
Af

norm(Af
norm)T

nk − 1
. (11)

4. The eigenvalues and the corresponding eigenvectors of Σ are evaluated. The310

eigenvector ~v associated with the maximum eigenvalue identifies the direction of

maximum variance in the dataset (i.e., the first principal component of the PCA

transform).

Hence, versor ξ̂ is evaluated as:

ξ̂ =
~v

‖~v‖ . (12)

Accelerometer and gyroscope data are then projected along ξ̂ through the following

equations: aξ = A · ξ̂ and gξ = G · ξ̂. Being ξ̂ placed on a plane that is orthogonal

to ζ̂, these two versors are also orthogonal. The third axis is then obtained through a

cross product:

ψ̂ = ζ̂ × ξ̂ , (13)

and the new accelerometer and gyroscope data along this axis are respectively obtained

as: aψ = A · ψ̂ and gψ = G · ψ̂. The transformed vectors (aξ,aψ,aζ) and (gξ, gψ, gζ),315

along with the magnitude vectors amag and gmag are the output of the Orientation

Independent Transformation block of Fig. 1.

An example of this transform is shown in Fig. 5, where accelerometer and gyroscope

data from two different walks from the same subject are plotted. These signals were

acquired carrying the phone in the right front pocket of the subject’s trousers using two320

different orientations. As highlighted in the figure, our transform makes walking data

rotation invariant. In fact, subject-specific gait patterns emerge in the new coordinate

system (see the red colored patterns in the right plots).
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Figure 6: IDNet authentication framework. CL1 and CL2 are convolutional layers, FL1 and FL2 are

fully connected layers. X@(Y×Z) indicates the number of kernels, X, and the size of the kernel matrix,

Y×Z.

3.4. Normalization

Each gait cycle has a different duration, which depends on the walking speed and325

stride length. So, considering the accelerometer and gyroscope data collected during

a full walking cycle, we remain with variable-size acceleration and gyroscope vectors,

which are now expressed in the new orientation invariant coordinate system discussed in

Section 3.3. However, since feature extraction and classification algorithms require N -

sized vectors for each cycle, where N has to be fixed, a further adjustment is necessary.330

We cope with this cycle length variability through a further Spline interpolation to

represent all walking cycles through vectors of N = 200 samples each. This specific

value of N was selected to avoid aliasing. In fact, assuming a maximum cycle duration

of τ = 2 seconds, which corresponds to a very slow walk, and a signal bandwidth

of B = 40 Hz, a number of samples N > 2Bτ = 160 samples/cycle is required.335

Amplitude normalization was also implemented, to obtain vectors with zero mean and

unit variance, as this leads to better training and classification performance. This

results in a total of eight N -sized vectors for each walking cycle, which are inputted

into the feature extraction and classification algorithms of the following sections.
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4. Convolutional Neural Network340

In this section, we present the chosen Convolutional Neural Network (CNN) archi-

tecture for IDNet (Section 4.1), its optimization, training and quantitative comparison

against the most common classifiers from the literature (Section 4.2).

4.1. CNN Architecture

CNNs are feed-forward deep neural networks differing from fully connected multi-345

layer networks for the presence of one or more convolutional layers. At each convolu-

tional layer, a number of kernels is defined. Each of them has a number of weights,

which are convolved with the input in a way that the same set of weights, i.e., the

same kernel, is applied to all the input data, moving the convolution operation across

the input span. Note that, as the same weights are reused (shared weights), and each350

kernel operates on a small portion of the input signal, it follows that the network

connectivity structure is sparse. This leads to advantages such as a considerably re-

duced computational complexity with respect to fully connected feed forward neural

networks. For more details the reader is referred to [44]. CNNs have been proven to

be excellent feature extractors for images [45] and here we prove their effectiveness355

for motion data. The CNN architecture that we designed to this purpose is shown in

Fig. 6. It is composed of a cascade of two convolutional layers, followed by a pooling

and a fully-connected layer. The convolutional layers perform a dimensionality reduc-

tion (or feature extraction) task, whereas the fully-connected one acts as a classifier.

Accelerometer and gyroscope data from each walking cycle are processed according360

to the algorithms of Section 3. We refer to the input matrix for a generic walking

cycle to as X = (aξ,aψ,aζ ,amag, gξ, gψ, gζ , gmag)T , where all the vectors are normal-

ized to N samples (see Section 3.4). In detail, we have (CL = Convolutional Layer,

FL = Fully-connected Layer):

• CL1 The first convolutional layer implements one dimensional kernels (1x10 sam-365

ples) performing a first filtering of the input and processing each input vector (rows

of X) separately. This means that at this stage we do not capture any correla-

tion among different accelerometer and gyroscope axes. The activation functions are

linear and the number of convolutional kernels is referred to as Nk1.
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• CL2 With the second convolutional layer we seek discriminant and class-invariant370

features. Here, the cross-correlation among input vectors is considered (kernels of

size 4x10 samples) and the output activation functions are non-linear hyperbolic

tangents. Max pooling is applied to the output of CL2 to further reduce its dimen-

sionality and increase the spatial invariance of features [46]. With Nk2 we mean the

number of convolutional kernels used for CL2.375

• FL1 This is a fully connected layer, i.e., each output neuron of CL2 is connected

to all input neurons of this layer (weights are not shared). Hyperbolic tangent

activation functions are used at the output neurons. FL1 output vector is termed

f = (f1, . . . , fF )T , and contains the F features extracted by the CNN.

• FL2 Each output neuron in this layer corresponds to a specific class (one class per380

user), for a total of K neurons, where K is the number of subjects considered for

the training phase. The K dimensional output vector y = (y1, . . . , yK)T is obtained

by a softmax activation function, which implies that yj ∈ (0, 1), j = 1, . . . ,K and
∑K
j=1 yj = 1 (stochastic vector). Also, yj can be thought of as the probability that

the current data matrix X belongs to class (user) j.385

The network is trained in a supervised manner for a total of K subjects solving a

multi-class classification problem, where each of the input matrices X in the dataset

is assigned to one of K mutually exclusive classes. The target output vector t =

(t1, . . . , tK)T has binary entries and is encoded using a 1-of-K coding scheme, i.e.,

they are all zero except for that corresponding to the subject that generated the input390

data.

4.2. CNN Optimization and Results

In this section, we propose some approaches for the optimization of the CNN,

quantify its classification performance and compare it against classification techniques

from the literature. As said above, the output of layer FL2 is the stochastic vector

y, whose j-th entry yj , j = 1, . . . ,K, can be seen as the probability that the input

pattern belongs to user j, i.e., yj = yj(w,X) = Prob(tj = 1|w,X), where w is the

vector containing all the CNN weights, X is the current input matrix (walking cycle)

and tj = 1 if X belongs to class j and tj = 0 otherwise. If X is the set of all training

examples, we define the batch set as B ⊂ X . Let X ∈ B and denote the corresponding
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output vector by y(w,X) and its j-th entry by yj(w,X). The corresponding target

vector is t(X) = (t1(X), . . . , tK(X))T . The CNN is then trained through a stochastic

gradient descend algorithm which minimizes a categorical cross-entropy loss function

L(w), defined as [11, Eq. (5.24) of Section 5.2]:

L(w) = −
∑

X∈B

K∑

j=1

tj(X) log(yj(w,X)) . (14)

During training, Eq. (14) is iteratively minimized, by rotating the walking cycles (train-

ing examples) in the batch set B so as to span the entire input set X . Training continues

until a stopping criterion is met (see below).395

Walking patterns from K subjects are used to train the CNN, and the same number

of cycles Nc is considered for each of them, for a total of KNc training cycles. Nt

randomly chosen walking cycles from each subjects are used to obtain a test set P. The

remaining cycles are split into training T and validation V sets, with |P| = KNt, |T | =
KNc, X = P ∪ T ∪ V, where all the sets have null pairwise intersection and are built400

picking input patterns from X evenly at random. Set V is used to terminate the training

phase, and termination occurs when the loss function L(w) evaluated on V does not

decrease for twenty consecutive training epochs. After that, the network weights which

led to the minimum validation loss are used to assess the CNN performance on set

P. This is done through an accuracy measure, defined as the number of walking405

cycles correctly classified by the CNN divided by the total number of cycles in P.

In the following graphs, we show the mean accuracy obtained averaging the test set

performance over ten different networks, all of them trained through the just explained

approach by considering K = 35 subjects from our dataset and Nt = 100 cycles per

subject.410

As a first set of results, we look at the impact of F (neurons in layer FL1) and

of the number of convolutional kernels in CL1 and CL2. Since the last layer FL2

acts as a classifier, F can be seen as the number of features extracted by the CNN.

In general, a too small F can lead to poor classification results; too many features,

instead, would make the state space too big to be effectively dealt with (curse of415

dimensionality) [47]. Besides F , we also investigate the right number of kernels to use

within each convolutional layer. Three networks are considered by picking different

(Nk1, Nk2) pairs. For network 1 we use (Nk1 = 10, Nk2 = 20), network 2 has (Nk1 =

20



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

20, Nk2 = 40) and network 3 has (Nk1 = 30, Nk2 = 50). In Fig. 7, we show the

accuracy performance of these networks as a function of F . From this plot, it can be420

seen that at least F = 20 neurons have to be used at the output of FL1 and that the

accuracy performance stabilizes around F = 40, leading to negligible improvements

as N grows beyond this value. As for the number of kernels, we conclude that small

networks (network 1) perform worse than bigger ones (networks 2 and 3), but increasing

the number of kernels beyond that used for network 2 does not lead to appreciable425

improvements. Hence, for the results of this paper we used F = 40 with (Nk1 =

20, Nk2 = 40).

A key performance comparison is shown in Fig. 8, where the accuracy is plotted

against Nc for a CNN classifier and four selected classification algorithms from the lit-

erature, i.e., Classification Trees (CT) [48], Naive Bayes (NB) classifiers [49], k-Nearest430

Neighbors (k-NN) [50] and Support Vector Machines (SVM) [51].1 These approaches

were used in a large number of papers including [15, 13, 31, 18, 14]. For their training,

112 features were extracted from the signal samples in X, including their variance,

mean trend, windowed mean difference, variance trend, windowed variance difference,

maxima and minima, spectral entropy, zero crossing rate and bin counts. These fea-435

tures, were then utilized to train the selected classifiers in a supervised manner. Note

that, while the CNN automatically extracts its features (vector f), with previous tech-

niques these are manually selected based on experience.

From Fig. 8, we see that the CNN-based classification approach surpasses all the

previous classifiers from the literature, delivering better accuracies across the entire440

range of Nc. Also, the accuracy increases with an increasing Nc until it saturates and

no noticeable improvements are observed. While a higher Nc is always beneficial, a

higher number of cycles also entails a longer acquisition time, which we would rather

avoid. For this reason, for the following results we have used Nc = 40 as it provided a

good tradeoff between accuracy and complexity across all our experiments.445

To illustrate the superiority of CNN features with respect to manually extracted

ones, in the following we conduct an instructive experiment. We consider CNN as a

1For SVM, we considered a linear kernel, as it outperformed polynomial and radial basis function

ones (results are omitted in the interest of space). A one-versus-all strategy was used solve the

considered multiclass problem for the binary classifers.
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Figure 7: CNN test accuracy vs number of features F in layer FL1. Three curves are shown for three

different network configurations (number of kernels in layers CL1 and CL2).

Figure 8: CNN test accuracy vs number of walking cycles Nc used for training. Results for CT, NB,

k-NN and SVM classifiers from the literature are also shown.

feature extraction block, by removing the output vector y and using the inner feature

vector f to train the above classifiers from the literature (CT, NB, k-NN and SVM).

The corresponding accuracy results are provided in Fig. 9. All the classifiers perform450

better when trained using CNN features, with typical improvements in the test ac-

curacy of more than 10%. For instance, for a k-NN classifier trained with Nc = 30

cycles per subject, the accuracy increases from 71% (manually extracted features) to

94% (CNN features). The best performance is provided by the combined use of CNN

features and SVM.455

A last consideration is in order. Most of the previous papers only used accelerometer

data, but our results show that using both gyroscope and accelerometer provides further
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Figure 9: Test accuracy of CT, NB, k-NN and SVM classifiers. “CNN” indicates training with CNN-

extracted features, whereas “Manual” means standard feature extraction.

Figure 10: Impact of gyroscope data. Lines represent the mean accuracy (averaged over ten networks),

whereas markers indicate the results of the ten network instances.

improvements, see Fig. 10.

5. One-Class Support Vector Machine Training

In this section, we further extend the IDNet CNN-based authentication chain460

through the design of an SVM classifier which is trained solely using the motion data

of the target subject. This is referred to as One-Class Classification (OCC) and is im-

portant for practical applications where motion signals of the target user are available,

but those belonging to other subjects are not. More importantly, with this approach

the classification framework can be extended to users that were not considered in the465

CNN training.
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5.1. Revised Classification Architecture

Due to the generalization properties of convolutional deep networks, once trained,

the CNN can be used as a universal feature extractor, providing meaningful features

even for subjects that were not included in the training. To take advantage of this, we470

discard the output neurons of FL2 and utilize the CNN as a dimensionality reduction

tool that, given an input matrix X, returns a user dependent feature vector f . The

CNN is then trained only once considering the optimizations of Section 4.2. All its

weights and biases are then precomputed and will not be modified at classification time.

Considering the diagram of Fig. 6, at the output of the CNN we obtain the feature475

vector f . We then apply a feature selection block to reduce the number of features

from F to S ≤ F (dimensionality reduction). PCA is used to accomplish this task and

the new feature vector is called s. Hence, we have s = Υ(f), where Υ(·) : RF → RS is

the PCA transform.

A One-class Support Vector Machine (OSVM) is then used as the classification480

algorithm (Section 5.2). It defines a boundary around the feature (training) vectors

belonging to the target subject. At runtime, as a new walking cycle is processed, the

OSVM takes the feature vector s and outputs a score, which is a distance measure

between the current feature vector and the SVM boundary [11, Chapter 7]. As we

discuss shortly, this score relates to the likelihood that the current walking cycle belongs485

to the target user.

5.2. One-Class SVM Design

Next, we design the OSVM block of Fig. 6. It differs from a standard binary SVM

classifier as the SVM boundary is built solely using patterns from the positive class

(target user). The strategy proposed by Schölkopf is to map the data into the feature

space of a kernel, and to separate them from the origin with maximum margin [52].

The corresponding minimization problem is similar to that of the original SVM formu-

lation [51]. The trick is to use a hyperplane (in the space transformed by a suitable

kernel function) to discriminate the target vectors. OSVM takes as input the reduced

feature vector s = (s1, . . . , sS)T and we use the following Radial Basis Function (RBF)

kernel, that for any s, s′ ∈ RS is defined as:

Ψ(s, s′) = (Φ(s) · Φ(s′)) = exp
(
−γ ‖s− s′‖2

)
, (15)
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where Φ(s) is a feature map and γ is the RBF kernel parameter, which intuitively

relates to the radius of influence that each training vector has for the space trans-

formation. With ` we mean the number of training points (feature vectors), ω and490

b are the hyperplane parameters in the transformed domain (through Eq. (15)) and

ε = (ε1, . . . , ε`)
T is the vector of slack variables, which are introduced to deal with

outliers. Given this, the following quadratic program is defined to separate the feature

vectors in the training set, s1, . . . , s`, from the origin:

min
ω,ε,b

1

2
‖ω‖2 +

1

ν`

∑̀

j=1

εj − b (16)

subject to (ω · Φ(sj)) ≥ b− εj , εj ≥ 0 , j = 1, . . . , `

ν ∈ (0, 1) is one of the most important parameters and sets an upper bound on the495

fraction of outliers and a lower bound on the fraction of Support Vectors (SV) [52].

The decision function for a generic feature vector s is defined as d(s) ∈ {−1,+1},
is obtained solving Eq. (16), and only depends on the training vectors through the

following relations:

d(s) = sgn (h(s)) ,

h(s) =
∑̀

j=1

αjΨ(sj , s)− b . (17)

Now, αj ≥ 0,∀ j, and only some of the training vectors have αj > 0. These are the500

support vectors associated with the classification problem and are the only ones who

count in the definition of the SVM boundary. h(s) is the score associated with vector

s. It weighs the distance from the SVM boundary, i.e., is greater than zero if s resides

inside the boundary, zero if it lies on it and negative otherwise.

Hence, the SVM is trained using a set of ` feature vectors from the target user,505

obtaining the SVM boundary (and the related decision function) through Eq. (17).

After training, we test the performance of the obtained SVM classifier considering

feature vectors from the positive class C1 (target user) and the negative one C0 (any

other user). Note that the vectors used for this test were not considered during the

SVM training.510

As it is customary for binary classification approaches, the two most important

metrics to assess the goodness of a classifier are the precision and the recall. The
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Figure 11: OSVM: F-measure as a function of γ and ν.

precision is the fraction of true positives, i.e., the fraction of patterns identified of the

target class that in fact belong to the target user, while the recall corresponds to the

fraction of target patterns that are correctly classified out of the entire positive class of515

samples [53]. Often, these two metrics are combined into their harmonic mean, which

is called F-measure and is used as the single quality parameter.

In Fig. 11, the F-measure is plotted as a function of the two SVM parameters γ

and ν. As seen from this plot, the area where the classifier’s performance is maximum

is quite ample. This is good as it means that even selecting γ and ν once for all at520

design stage, the performance of the SVM classifier is not expected to change much if

the signal statistics changes or a new target user is considered. In other words, this

relatively weak dependence on the parameters entails an intrinsic robustness for the

classifier. For the results that follow we have used γ = 0.3 and ν = 0.02.

Two last considerations are in order. The first relates to the PCA transformation525

Υ(·) and in particular to how many and which principal components have to be retained

for the output feature vectors. In fact, as pointed out in [54], two options are possible

to go from the CNN-extracted feature vector f to s. The first is to retain the S ≤ F

entries of the transformed vector (expressed in the PCA basis) that correspond to

the principal components with highest variance, whereas a second option is to retain530

those with the smallest. Fig. 12 shows the F-measure of the OSVM classifier as a

function of S for F = 40 (number of CNN-extracted features). From this plot we

see that picking S < F in general provides better results and also that considering
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Figure 12: OSVM: F-measure as a function of the number of retained PCA features S. The number

of CNN-extracted features is F = 40.

the principal components with lowest variance provides better results for this class of

problems. This is in accordance with [54].535

The last consideration regards the amount of feature vectors belonging to the target

user that should be used for the OSVM training. Note that this number is related to

the walking time required for a new subject to train his/her personal authentication

system. To perform this analysis, a fixed number of cycles were randomly extracted

from the whole target dataset and were used to train the OSVM. The remaining walking540

cycles were used as the positive test set. In Fig. 13 we show the F-measure as a function

of this number of cycles. From these results, it follows that increasing the number of

cycles beyond 1, 000 leads to little improvement. This number corresponds to about 15

minutes of walking activity, distributed among different acquisition sessions. Multiple

sessions are recommended to account for some statistical variation due to wearing545

different clothes.

Once all the model’s parameters are defined, the OSVM score can be analyzed. Let

pθ(h(s)) = p(h(s) | s ∈ Cθ) be the estimated probability density function (pdf) of the

OSVM score h(s) ∈ R, provided that the walking cycle belongs to a user of class Cθ

with θ ∈ {0, 1}. Empirical pdfs pθ(h(s)) from our dataset are provided in Fig. 14.550

6. Multi-Stage Authentication

The so far discussed processing pipeline returns a score for each walking cycle.

However, as seen in Fig. 14, when a score falls near the point where the two pdfs
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Figure 13: F-measure as a function of the number of walking cycles used to train the OVSM classifier.

Figure 14: Empirical pdf of the OSVM scores for class C1 (p1(h(s))) and C0 (p0(h(s))).

intersect, there is a high uncertainty about the identity of the user who generated

it. In IDNet, we resolve this indetermination by jointly considering the scores from555

successive walking cycles. Let O = (o1, o2, . . . ) be a sequence of subsequent OSVM

scores from the same subject, where oi = h(si) ∈ R and i = 1, 2, . . . is the walking

cycle index. From our previous analysis, oi can be thought of as a random process

having probability density function pθ(h(si)) = pθ(oi), θ ∈ {0, 1}, and our objective is

to reliably estimate θ from the scores in O. Toward this, we assume that subsequent560

scores belong to the same user and that they are independent and identically distributed

(i.i.d), i.e., they are independently drawn from pθ(·), with θ unknown.

For the estimation of θ we use Wald’s probability ratio test (SPRT) [55, 56]. We

define the two hypotheses {H1 : θ = 1}, meaning that the sequence O belongs to the
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Figure 15: Results of the multi-stage authentication framework. False positive and negative rates are

shown in the top graphs, the number of walking cycles required to make a final decision on the user’s

identity is shown in the bottom ones. Upper shaded areas extend for a full standard deviation from

the mean and include about 80% of the events.

target user (class C1), and {H0 : θ = 0}, meaning that another user generated it (class

C0). Hence, we assess which one of these is true through SPRT sequential binary test-

ing. That is, we keep measuring new scores and use them to decrease our uncertainty

about θ. Considering n samples (o1, o2, . . . , on), the final decision takes on two values

Dn = 0 or Dn = 1, where Dn = j, j ∈ {0, 1} means that hypothesis Hj is accepted

and therefore the alternative hypothesis is rejected. Owing to our assumptions (i.i.d.

scores, generated by the same subject), for n scores On = (o1, o2, . . . , on) the joint pdf

is:

p̃θ(On) =
n∏

j=1

pθ(oj), θ ∈ {0, 1} . (18)

Defining λj = p1(oj)/p0(oj), the likelihood ratio of the sequence O truncated at index

n, On, is

p̃1(On)

p̃0(On)
=

n∏

j=1

p1(oj)

p0(oj)
=

n∏

j=1

λj , (19)

and applying the logarithm, we get:

Λn = log

(
p̃1(On)

p̃0(On)

)
=

n∑

j=1

log (λj) . (20)

If we wait a further step n + 1 before making a decision, from Eq. (20) the new log-

likelihood Λn+1 is conveniently obtained as Λn+1 = Λn + log(λn+1). The SPRT test
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starts from time 1, obtaining one-class OSVM scores o1, o2, . . . for each successive565

walking cycle. After n cycles, the cumulative log-likelihood ratio is Λn = Λn−1 +

log(λn), with Λ0 = 0. Two suitable thresholds A and B are defined and the test

continues to the next cycle n+1 if A < Λn < B, H1 is accepted if Λn ≥ B, whereas H0

is accepted if Λn ≤ A. Moreover, defining α as the probability of accepting H1 when

H0 is true and β that of accepting H0 when H1 is true, A and B can be approximated570

as: A = log(β/(1− α)) and B = log((1− β)/α), see [55].

6.1. Experimental Results

The motion data fromK = 35 subjects was used to train the CNN feature extractor,

with Nc = 40, F = 40 and S = 20. One user out of the remaining 15 was considered

as the target user and 14 as the negatives for the final tests. The following results are575

obtained through a leave-one-out cross-validation approach for the sessions of the target

user, i.e., out of twelve sessions, eleven are used for training and one for the final tests.

The session that is left out is rotated and the final results are averaged across all trials.

The authentication results of the multi-stage framework are shown in Fig. 15. False

positive rates (i.e., a user is mistakenly authenticated as the target) and false negative580

ones (i.e., the target is not recognized) are smaller than 0.15% for an appropriate

choice of the SPRT thresholds (α and β). Also, a reliable authentication requires

fewer than five walking cycles in 80% of the cases. This means that the framework

is very accurate and at the same time fast. We remark that the best authentication

results that were obtained in previous papers lead to error rates ranging from 5 to585

15% [12, 13, 14, 15, 16, 17]. A comparison with these approaches is very difficult to carry

out due to the different datasets (e.g., number of subjects and walking time), acquisition

settings (e.g., smartphone or sensors location). The reader can nevertheless refer to

Section 4.2 for a fair comparison between our single-step classification framework and

classical feature extraction techniques on our dataset.590

As for our assumptions, in light of the small number of cycles required, it is rea-

sonable to presume that the same subject generates the scores in O. For the i.i.d. as-

sumption, we extended the decision framework to the first-order autoregressive model

of [56, Chapter 3, p. 158], which allows tracking the correlation across successive cy-

cles. However, this did not lead to any appreciable performance improvement and only595

implied a higher complexity. The reason is that scores are lightly correlated in time.
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7. Conclusions

In this paper we have proposed IDNet, a user authentication framework for inertial

signals acquired from smartphones. Various schemes performing manual feature extrac-

tion and using the selected features for user classification have appeared in the recent600

literature. In sharp contrast with these, IDNet exploits convolutional neural networks,

as they allow for an automatic feature engineering and have excellent generalization ca-

pabilities. These deep neural networks are then used as universal feature extractors to

feed classification techniques, combining them with one-class support vector machines

and a novel multi-stage decision algorithm. With our framework, the neural network605

is trained once for all and subsequently utilized for new users. The one-class classifier

is solely trained using motion data from the target subject; it returns a score weighing

the dissimilarity of newly acquired data with respect to that of the target. Subsequent

scores are then accumulated through a multi-stage decision approach. Experimental

results show the superiority of IDNet against prior work, leading to misclassification610

rates smaller than 0.15% in fewer than five walking cycles. Design choices and the

optimization of the various processing blocks were discussed and compared against

existing algorithms.
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