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Mutual information aspects of scale space images
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Abstract

In image registration, mutual information is a well-performing measure based on principles of uncertainty. Similarly, in
image analysis the Gaussian scale space, based on minimal assumptions of the image, is used to derive intrinsic properties of an
image. This paper starts an investigation of a combination of both methods. This combination results in a double parameterized
mutual information measure using local information of the image. For single modality matching best response is found for
coinciding parameters. Then critical values are found for which the parameterized mutual information has extrema. First results
on multi-modality matching show that different parameter values instead of coinciding values yield the best response for the
parameterized mutual information.
� 2004 Pattern Recognition Society. Published by Elsevier Ltd. All rights reserved.
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1. Introduction

If two images are derived from a scene, they will mostly
be (slightly) different due to change of, for instance, illumi-
nation, position, and the scene itself. If the images are taken
with different kind of cameras the differences will even
be larger, since then the correspondence in intensity is not
an a priori relevant correspondence. Although a difference
in position is sometimes an advantage and used in stereo
images, in most cases these differences are not desired and
it is a non-trivial task to find the correspondence (registra-
tion) between the two images, sayA andB. As an example,
one can think of medical images of different modality,
like magnetic resonance (MR) images (showing the “soft”
structures), computed tomography (CT) images (showing
the “hard” structures), and positron emission tomography
(PET) images (showing “activity”). The reason for tak-
ing both kinds of images of the same patient is the need
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for determining a specific location of soft tissue (e.g. a brain
tumor) in correspondence to the skull.

This correspondence is obtained in a threefold manner,
containing transformation, comparison and evaluation. Usu-
ally an optimization scheme starting with an initial guess of
the correspondence, is used to obtain the best solution.

Firstly, atransformation, sayT, is applied to imageA, that
is supposed to match imageB as close as possible in some
sense. IfT contains one rotation and translation that hold
for the complete image,T is called a ridged transformation.

Secondly, the transformationT (A) needs to becompared
to B. Since images are discrete by nature, transformations
imply comparison between the pixels and one obviously
needs to use some interpolation scheme. In other words, the
images are assumed to be continuous.

The third step is toevaluatethe correctness of the trans-
formation. This requires an appropriate measure on the set
(T (A), B). Themutual information(MI) measure, using the
entropies of the images and their joint entropy, has proven
to perform well [1–6] in the evaluation of the registra-
tion of two images. Generally, one of the images is trans-
formed to obtain the best result and one needs to use some
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interpolation scheme, thus assuming that the images are con-
tinuous. The use of the entropy implies the use of uncer-
tainty, or “lack of knowledge”.

On the other hand, the acquisition of an image intro-
duces the notion ofscale. One can think of it in some
sense as the resolution of the image: a binary (newspaper)
image at a certain scale, for instance, looks like a grayscale
image. The evaluation of an image under (almost) trivial
assumptions, derived from the statement “we know nothing
of the image”, leads to the notion ofscale space[7–11].
One advantage in this context is that thediscrete image
becomes acontinuous scale space image. The scale space
image contains sufficient information for an uncommitted
hierarchy and segmentation without a priori knowledge
[12,13].

Research has been done on the use of scale space and en-
tropy, but these investigations are based on the scale space
of the histogram of the image[14,15], or the Gaussian pyra-
mid [16]. Pluim et al. [17,18] implemented a multi-scale
approach to mutual information matching, aiming for an
acceleration of the matching process while considering the
accuracy and robustness of the method. They found an ac-
celeration up to a factor of around 3.

Since both methods start of by taking “minimal
assumptions”, it makes sense to investigate the combi-
nation of them. The research will lead to the underly-
ing reasons for the speed up mentioned by Pluim et al.
[17,18]. Furthermore, the use of scale space allows one
to embed local neigbourhood information (image struc-
ture) into the registration measure, since images at in-
creasing scales become more and more blurred. In this
way, there is no need for changing the registration mea-
sure with derivative information, as proposed by Pluim
et al. [19].

In this paper, we start this study and see how the MI
measure applied to single images as well as multimodal-
ity images, is affected by using a scale space. We will
focus on this aspect, since the behaviour of the MI mea-
sure at a particular scale on the optimization procedure
has already been studied by Pluim et al.[17,18]. So this
study complements theirs by investigating the method
itself. The MI measure and scale space are briefly sum-
marized in Section 2. Their combination is described in
Section 3. In Section 4 the results of this approach are
presented on MR, CT, and PET images, as well as their
combinations. In Section 5 results are summarized and
discussed.

2. Theory

Next I will briefly describe the ideas and theory be-
hind the concepts of mutual entropy in Section 2.1 and
scale space in Section 2.2. The combination and the ap-
plication of MI to scale space images will be described in
Section 3.

2.1. Mutual information

The MI measure[1,4,3] is based on the shared informa-
tion of the overlapping part of two images. This informa-
tion is obtained using the Shannon entropy[20], known as
a measure of uncertainty. Alternative paradigms, based on
the difference of conditional entropy of one image gives a
second one, and the latter, as well as based on the so-called
Kullback–Leibner distance, can be given and yield the same
definition [3].

LetA be a random variable andpA(a) its marginal prob-
ability distribution, then the entropyH(A) is given by

H(A) = −
∑
a∈A

pA(a) log pA(a).

LetB, pB(b), andH(B) be similarly defined andpAB(a, b)

be the joint marginal probability distribution, then the joint
entropyH(A, B) is given by

H(A, B) = −
∑

a∈A,b∈B

pAB(a, b) log pAB(a, b)

and MI(A, B)—in terms of the Kullback–Leibner
distance—is defined by

MI (A, B) =
∑

a∈A,b∈B

pAB(a, b) log
pAB(a, b)

pA(a)pB(b)
.

Expanding the division and multiplication in the logarithm
and the sum over these terms yields

MI (A, B)=
∑

a∈A,b∈B

pAB(a, b) logpAB(a, b)

−
∑

a∈A,b∈B

pAB(a, b) log pA(a)

−
∑

a∈A,b∈B

pAB(a, b) log pB(b).

Since
∑

a∈A,b∈B pAB(a, b)=∑
b∈B pB(b)=∑

a∈A pA(a)=
1, the latter reduces to

MI (A, B)=
∑

a∈A,b∈B

pAB(a, b) log pAB(a, b)

−
∑
a∈A

pA(a) log pA(a)

−
∑
b∈B

pB(b) log pB(b)

and thus—in terms of the joint entropy

MI (A, B) = −H(A, B) + H(A) + H(B). (1)

Since the conditional entropy ofB given A is given by
H(B|A) = H(A, B) − H(A), one can as well write
MI (A, B) = −H(B|A) + H(B), being the conditional
paradigm.
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If A and B are completely uncorrelated,H(A, B) =
H(A) + H(B) and therefore MI(A, B) = 0. In the op-
posite case, ifA and B are fully correlated, i.e.A = B,
H(A, B) = H(A) = H(B) and MI(A, A) = H(A).

Since this is a priori unknown value, in many tasks the
normalized mutual information (NMI) is used. It is defined
by

NMI (A, B) = H(A) + H(B)

H(A, B)
= MI (A, B)

H(A, B)
+ 1 (2)

and is bounded by 1 (uncorrelated) and 2 (correlated).
This can easily be applied to the analysis of image regis-

tration. LetA andB denote the images that need to be reg-
istered, after the alignment has taken place. The marginal
probability functions are derived from therelative histogram
of the intensities in each image: this is the histogram of all
the pixel (or voxel) values of the image where the height
of each bin (entry) of the histogram is divided by the total
number of considered values. The joint marginal probability
is represented by a 2D relative histogram in which each bin
(a, b) the relative number of corresponding image points
(pixels, voxels, etc.) are stored: the fraction of pixels with
intensitya in imageA and intensityb in imageB. These im-
age points obviously need to have the same spatial location
(after translation, rotation, and, if necessary, interpolation).
As a consequence, ifA=B and both histograms have equal
binwidth, the 2D histogram has only non-zero entries on the
diagonal.

More details on the MI and NMI measures can be found
in aforementioned references,[1–6,17–19,21], of which[21]
gives a nice extended introduction of both measures and their
impact on medical image alignment, and[3] an extensive
survey of the use of MI in medical imaging.

2.2. Scale space

Generally, there is no a priori reason to treat the image
on pixel scale, since it is only a result of the acquisition of
the image by an aperture with a certain scale or sampling
range. This becomes clearly an important factor when two
different images are compared. Even when the same image is
considered, but with different resolutions, the need of “equal
resolution” is evident: the best match is obtained when they
have equal resolution.

Moreover, the assumption that the image can be regarded
as a continuous function of its spatial variables is only math-
ematically justified, if this discrete image is convolved with
a so-called test function. This highly mathematical result
is obtained within the “Theory of Distributions”, started by
Schwartz in the 1950s[22].

One of the simplest and mostly used test functions is the
Gaussian filter with zero mean and variable variance[7].
The latter is very important: since there is no a priori reason
to fix the variance,all possible variances (i.e. scales) are to
be taken. Therefore then-dimensional imageL(x) : Rn →

R+
0 is extended to an(n+1)-dimensional scale space image

L(x; t) : Rn × R+ → R+
0 by

L(x; t) =
∫

Rn

1√
4�t

n e−|x−y|2
4t L(y) dy. (3)

As a result, the scale space image satisfies the well-known
heat equation,�tL(x; t) = �L(x; t), where�t denotes the
partial derivative with respect tot, and � the Lapacean,
defined by�x1x1 + �x2x2 + · · · + �xnxn .

Commonly, instead oft, the variance�, with � =√
2t ,

is considered. From Eq. (3) it is clear that when regarding
“scale�”, scale and spatial location have the same dimen-
sions. It thus makes sense to speak of ‘a scale of three pix-
els’. This corresponds to regarding the image blurred with
� = 3 and thust = 4.5. Therefore, besides the advantage
of transferring thediscretedata into acontinuoussetting,
one is also able to embedlocal informationinto the image
observation, and therefore into the registration measure.

For more details on (Gaussian) scale space and its prop-
erties, the reader is referred to the ample literature on this
subject, e.g. in Refs.[7–13,23].

3. Mutual information in scale space

The basic idea of MI in scale space is that applying a
Gaussian filter to an image followed by binning, introduces
spatial information into the histograms. The intensity of an
image point that is put into a certain bin is partially deter-
mined by the intensity of that point in the original image,
and partially by the (intensity-) environment around that im-
age point. The larger the scale of the filter, the larger the
local environment of a pixel that is taken into account. Since
convolution with a Gaussian is a way of low-pass filtering,
noise is suppressed and the image is smoothened. The result
on the histogram is twofold. It also blurs, albeit not neces-
sarily Gaussian, due to smoothening of edges. On the other
hand, the suppression of noise yields ideally elimination of
irrelevant (noise induced) intensities, i.e. sharpening, or at
least more pronouncing, of relevant (non-noisy) clusters.

Note that changing the bin size is a completely different
approach. In that case the neighbouring values in thehis-
togramare taken together, regardless where they are neigh-
bouring pixels in theimage. So in this case non-local spatial
information is taken into account.

In the literature, applying a scale space on intensities
themselves is also proposed. In this case the intensity is
partly put in its bin and partly in its neighbouring bins,
depending on the width of the Gaussian filter used. This may
be called fuzzy binning: the measured values are stored in
bins determined by theblurring of the valuesthemselves, cf.
[24–26]. Although this may give interesting results for single
images, the transfer of this idea to the joint histogram—and
thus the mutual information measure—is complicated.
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In these both case the values in the one dimensional signal
calledhistogramare blurred, while in the presented approach
the values in theimageare blurred. It is therefore essentially
different.

In the scale space image, the MI becomes a parameter-
ized measure. LetA andB become the scale space images
A� and B�, then the entropies and joint entropy become
H(A�), H(B�), andH(A�, B�). Consequently, Eqs. (1) and
(2) become

MI (A�, B�) = −H(A�, B�) + H(A�) + H(B�) (4)

and

NMI (A�, B�) = H(A�) + H(B�)

H(A�, B�)
. (5)

Now two different routes to investigate the behaviour of
these parameterized measures seem to be possible. The first
one is to construct the scale space images, derive the his-
tograms at all scales and compare the histograms and joined
histogram at all these scales. An alternative way is to con-
struct the scale space images and derive histograms at all
scales simultaneously. In this case the scales are regarded
as an extra variable adding an extra dimension to the image,
instead of a parameter.

Although both methods appear different, the latter is a
special case of the first. This is due to the fact that the his-
togram of the scale space image (the second route) equals
the sum of the histograms at all the calculated scales (ob-
tained in the first route) divided by the number of scales. It
therefore suffices to take into account only the first case.

Several aspects of this parameterized measure are inves-
tigated. Firstly, the caseA=B is taken. This gives insight in
the behaviour of the (normalized) mutual information under
the influence of scale. Then Eqs. (4) and (5) become

MI (A�, A�) = −H(A�, A�) + H(A�) + H(A�) (6)

and

NMI (A�, A�) = H(A�) + H(A�)

H(A�, A�)
. (7)

The special case� = �, yielding the one parameter measure
MI (A�, A�)=H(A�) for Eq. (6), since thenH(A�, A�)=
H(A�), is also dealt with. It describes the behaviour of the
entropy of the histogram under blurring. Note that in this
case the NMI of Eq. (7) reduces to 2 for all�. Secondly,
the general caseA 
= B, is investigated.

4. Results

In this Section 1 consider the 2D test images as shown
in Fig. 1. They are, from left to right, a MR image, a CT
image, and a PET image and are representative for the dif-
ferent modalities. These images have dimensions 248×
253, are already pair-wise aligned, and have integer val-
ues ranging from 0 to 255. Consequently, histograms are

taken with bandwidth 1. Scaless and t are taken in pixels.
In subsequent sections firstly the single modality behaviour
MR–MR, CT–CT, and PET–PET is investigated. Secondly,
the bimodal results for the MR–CT, MR–PET, and CT–PET
registrations are calculated. Here the images are perfectly
registered, but both MI and NMI are calculated as a function
of both varying scales (the set(A�, B�)).

4.1. Entropy of the scaled images

In each case the behaviour of the MI as function of in-
creasing scale are presented. Here the images are perfectly
registered (the set(A�, A�)). Then the MI reduces to the
entropy of the image (H(A�)) and the NMI to 2 (and is thus
disregarded), as was shown in Section 2.1. These results are
followed by the behaviour of the MI and NMI as function
of both linear translation of one of the images and increas-
ing scale (the set{T (A�), A�}), i.e. the effect of scale on a
misregistration. The results can be explained by the effects
of increasing scale to each image and its histogram, which
are also presented and discussed. The last unimodal regis-
tration comparison is by perfectly registered images, but as
a function of both varying scales (the set(A�, A�)).

4.1.1. MR image
Of the MR image shown inFig. 1a a scale space is calcu-

lated. The first and second row ofFig. 2 show the image at
several scales. The corresponding histograms with binwidth
1 are shown in the third and fourth row of this figure.

4.1.1.1. Small scale behaviour.Firstly, a scale space con-
taining small scales is analyzed. This scale space has 29
scales, ranging linearly from 1 to 8 pixels. At each scale
the MI of the image with itself is calculated and shown
in Fig. 3a.

One may note that initially the MI decreases until a scale
of 3 pixels, remains constant for, say, two pixels, and then
increases again. The histograms of the image at scales 1,
3, and 5 pixels was shown in the third row ofFig. 2. The
decrease can be explained by noting that the binsb1, b2,
andb3 with fractions 0.14, 0.31, and 0.19 are reorganized to
the more pronounced bin sequence 0.53, 0.12, and 0.1. This
deletion of noise in the background influences the change in
MI more than the decreasing number of filled bins, from 227
to 178. With increasing scale this number decreases more
to 143 bins, causing an increasing value of the MI.

4.1.1.2. Large scale behaviour.To investigate the large
scale behaviour, scales varying from 1 to 100 pixels are
taken. The MI of the image with itself is shown inFig. 3b.
Clearly, the increase of MI changes to a decrease at a scale
of 33 pixels.

An explanation of this fact can be found inFig. 2. The
second row shows the image at scales 20, 33, and 60. Where
there is still some structure visible at scale 20, at the other
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(a) (b) (c)

Fig. 1. Used test images: (a) MR, (b) CT, (c) PET.
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Fig. 2. MR image at scales 1, 3, 5 (row 1), 20, 33, and 60 (row 2). Histograms of the MR image at scales 1, 3, 5 (row 3), 20, 33, and 60
(row 4).

two images only a white blob occurs. The histograms of
these images, shown in the bottom row ofFig. 2 clearly
visualize this. The first histogram shows a (small) peak at
the bins 50–70 (the latter is the last filled bin). The other
histograms just present blob information in the binrange

4–59 and 10–36, respectively. Blurring this blob obviously
converges to a uniformly grey image (to be expected at a
scale of approx. 140, i.e. half of the image size) with only
one bin filled and a MI of 0. Note that the NMI is not defined
for a single filled bin.
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Fig. 3. MI of the MR image. (a) Small scale behaviour: scales 1, 1.25, . . . , 8. (b) Large scale behaviour: scales 1, 2, . . . , 100.
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Fig. 4. Registration of the MI (left) and NMI (right) of the MR image and itself translated withn pixels, n = −13, −12, . . . , 13 at scales
1, 1.25, . . . , 16.
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Fig. 5. Registration results of the MR image at scaless, t = 1, 1.25, . . . , 16 for the MI(As, At ) (left) and NMI(As, At ) (right).

4.1.1.3. Translation artifact and scale.Next a translation
of n pixels, withn ∈ [−13, 13] an integer, is taken. The MI
of the set{Tn(As), As} for s = 1, 1.25, . . . , 16 is shown in
Fig. 4a. Obviously, the ridge at the translationn = 0 corre-
sponds to the MI shown inFig. 3. As the scale increases the
ridge becomes less pronounced. This is due to the fact that
details are blurred away and the number of bins decreases.
Two events take place while increasing scale. Firstly the
peak occurring at a scale level due to the translation artifact
is damped, for small scales even strongly to the local mini-

mum visible inFig. 3. Secondly the entropy at such a level
moves up vertically for all translation artifacts, see e.g. the
slope on the boundary ofFig. 4a.

In the NMI, shown inFig. 4b, the ridge value is a con-
stant, viz. 2, since it corresponds to the image perfectly
aligned with itself. The entropy due to misregistration
increases. This is explained by the fact that due to blur-
ring both the number of bin decreases and the details
of the image (i.e. small peaks) vanish, and the images
become more alike since, for example, a mismatch of
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Fig. 6. MI of the CT image. Left: Small scale behaviour: scales 1, 1.25, . . . , 8. Right: Large scale behaviour: scales 1, 2, . . . , 100.
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Fig. 7. CT image at scales 1, 3, 5 (row 1), 20, 35, and 60 (row 2). Histograms of the CT image at scales 1, 3, 5 (row 3), 20, 35, and 60 (row 4).

one pixel is relatively small to blurring with, say, 10
pixels.

4.1.1.4. Registration at different scales.For a comparison
of the case{As, At }, seeFig. 5. It shows the MI (left) and
NMI (right) of the image perfectly aligned but compared
at different scales. Obviously, the best result is obtained at
equal scales,s = t , the diagonal of both images. The values
on the diagonal equal that ofFig. 3 for the MI image, and
2 for the NMI image.

4.1.2. CT image
The MI of the CT image, seeFig. 1b, doesnot contain

a local minimum for small scales, but starts monotonically
increasing, seeFig. 6b, until a scale of 35 pixels. For large
scales there is only blurring of a white blob and consequently
a decrease of MI. One may consider the CT image to be
slightly blurred already, compared to the MR image.

This becomes clear fromFig. 7, where the image at var-
ious scales and corresponding histograms are shown. The
structure is similar to the MR image, albeit that here only
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Fig. 9. MI(As, At ) (left) and NMI(As, At ) (right) of the CT image at scaless, t = 1, 1.25, . . . , 16.

one large peak taking a fraction of 0.62 is visible for small
intensities. The temporal decrease of MI is thus not to be
expected.

4.1.2.1. Translation artifact and scale.As a consequence,
the image of the MI of the CT–CT registration with pixel
wise translation of one image under the influence of small
scales,Fig. 8, shows a ridge with all values increasing. The
NMI, if not equal to 2, increases too.

4.1.2.2. Registration at different scales.The MI and the
NMI of the CT image at different scales,Fig. 9, one finds
the strongest responses at identical scales.

4.1.3. PET image
For the PET image,Fig. 1c, similar results as for the MR

image are obtained.Fig. 10shows the behaviour of the MI
under blurring. Here also a local minimum occurs due to the
deletion of noise—the stripes—in the background, albeit at
a relatively large scale, viz. 14 pixels. The MI increases until
the local maximum at scale 35 and then decreases again
until it converges to 0.

The image and its histograms at several scales are shown
in Fig. 11. At scale 1 there is one big peak (fractions of
approx. 0.05) spread over roughly 50 bins, with a very
large tail containing one small wide peak around 175.
During blurring to scale 14, the spread of this big peak
is narrowed to 25 bins that contain more data (fractions
of 0.04–0.14), while the tail is shortened (the stripes in
the PET image disappear). After this local extremum of
the MI the large peak firstly remains stable, while the tail
keeps moving to the left, due to the disappearance of all
structure in the image. After the second local extremum
only the white blob is blurred and the histogram con-
verges to a uniformly distributed one containing finally one
bin.

4.1.3.1. Translation artifact and scale.The registra-
tion of the PET image with itself, translatedn pixels,
n=−13, −12, . . . , 13, as shown inFig. 12shows the same
behaviour as the MR image, albeit that the ridge for the MI
is less pronounced.

4.1.3.2. Registration at different scales.Comparing the
MI and the NMI of the PET image at different scales,
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Fig. 11. PET image at scales 1, 7, 14 (row 1), 25, 40, and 60 (row 2). Histograms of the PET image at scales 1, 7, 14 (row 3), 25, 40, and
60 (row 4).

Fig. 13, one finds the strongest responses at identical
scales.

4.2. Different modality, different scale registration

In this section, the bimodal results(N)MI (As, Bt ) for the
pairs MR–CT, MR–PET, and CT–PET, respectively, are pre-
sented. The images are pair-wise aligned at the initial scales
and the behaviour of the (normalized) mutual information
measures is investigated as a function of the two (different)

scale parameterssandt. Since the behaviour of the entropy
of each modality has its specific characteristics, it is to be
expected that the bimodal outcome is also non-trivial. So,
for example, a ‘diagonal-like’ optimal response suggesting
s = t as the best combination, is not likely.

4.2.1. MR–CT registration
In the MR–CT registration the registration at identical

scales (thes=t case) indeed does not give the best response,
as shown inFig. 14. The highest response is not on the
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Fig. 13. MI(As, At ) (left) and NMI(As, At ) (right) of the PET
image at scaless, t = 1, 2, . . . , 30.

diagonal (i.e. similar scales), but on a line with slope that is
somewhat higher than 1: a ridge is present along the scale
combinations(s, t)=(2.5, 1) to (s, t)=(9, 10), where the CT
image is scaled bys and the MR image byt. Basically, this
image is a build-up by the combination of two functions with
extrema that move with different velocities under blurring.
However, since they are out of phase, the maximum of the
combination—the top of the ridge—starts “out of phase”
and moves while increasing scales.
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Fig. 14. MR(t)–CT(s) at scaless, t = 1, 1.25, . . . , 10. Left: MI. Right: NMI.

4.2.2. MR–PET registration
The MR–PET registration, where the PET image is scaled

by sand the MR image byt, is shown inFig. 15. The scales
are taken from 1 to 30 with stepsize 1 pixel. Two ridges are
present, approximately along the scale combinations(s, t)=
(1, 4) to (s, t)=(30, 30) (slightly curved), and(s, t)=(5, 15)
to (s, t) = (30, 30). They meet and merge at the highest
scales. Given the behaviour of the entropies of both images
this is to be expected. In contrast to the previous section,
however, now the absolute maximum is found to be the
combination of the highest scales.

4.2.3. CT–PET registration
The CT–PET registration, where the PET image is scaled

by s and the CT image byt, is shown inFig. 16. The scales
are taken from 1 to 30 with stepsize 1 pixel. Again, two
ridges are present, albeit not as clear as in the previous case.
They are located along the scale combinations(s, t)=(10, 5)

to (s, t)= (30, 30) (slightly curved), and(s, t)= (10, 15) to
(s, t) = (30, 30). They meet and merge at the combination
of the highest scales.

A comparison of the output of the two measures
shows that the NMI and the MI generate the same
structures.
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5. Summary

In this paper, the investigation of the MI measure applied
to scale space images is considered. In this way local im-
age structure can be embedded in the measure, can the reg-
istration be speed-up, and is the discrete image transferred
into a continuous setting. The focus of the research is on
the properties of this combination, since convergence of the
algorithm performing the registration and practical implica-
tions in this multiscale context have been reported elsewhere
[17–19]. In this paper, the combination of the methods itself
is under review.

Applying mutual information to an image in scale space
(multiresolution) context is not as straightforward as it
would seem to be. The entropy of an image under the in-
fluence of blurring changes non-monotonically. This can
be understood by examining the change of the histogram.
The MR image shows extra complicated behaviour due
to the temporally merging of bins for low values. This

is caused by the smoothing of the background A resam-
pling of the histogram, e.g. by adjusting the binwidth with
scale, does not remove this behaviour. The registration of
an image with itself under various scales, however, yields
completely the desired result. The strongest response is
obtained by the correct alignment and correspondence of
scale.

If images of different modality are registered at various
scales, complicated behaviour occurs. This is due to the non-
monotonic behaviour of the separate entropies. As a conse-
quence, a maximal response of the MI and NMI is generally
obtained by different scales for the images. With the images
used in mind, one can argue indeed that a highly detailed
MR image may be smoothed a little bit when comparing it
to a smoother CT image. For the PET image similar argu-
ments hold. Here the strips influence the registration, so re-
moving them by taking the image at some larger scale may
improve the registration. Obviously, the maximal response
of the (N)MI measure is not the selection criterion: Then
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extreme high scales should be selected, which blur every-
thing away. On the other hand, given a certain scale for one
image, a scale with an optimal response for the other image
can be selected.

It needs to be investigated whether this property can be
used for better or faster registration of two images. Since
blurred images can be registered faster[17], one has a good
starting point for aligning the images at the initial scales and
only need to refine the result.

As stated in Section 3, the influence of linear scale space,
i.e. linear Gaussian blurring, is twofold. Removing the noise
is an advantage and gives a more pronounced histogram, but
the blurring of edges blurs the histogram. The latter can be
avoided by using a nonlinear scale space[11]. A disadvan-
tage is that in these scale spaces the relation between scale
and spatial location is less obvious.
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