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Abstract

We introduce and discuss new accelerated algorithms for linear discriminant analysis (LDA) in unimodal multiclass Gaussian
data. These algorithms use a variable step size, optimally computed in each iteration using (i) the steepest descent, (ii) conjugate
direction, and (iii) Newton–Raphson methods in order to accelerate the convergence of the algorithm. Current adaptive methods
based on the gradient descent optimization technique use a fixed or a monotonically decreasing step size in each iteration,
which results in a slow convergence rate. Furthermore, the convergence of these algorithms depends on appropriate choices
of the step sizes. The new algorithms have the advantage of automatic optimal selection of the step size using the current
data samples. Based on the new adaptive algorithms, we present self-organizing neural networks for adaptive computation of
�−1/2 and use them in cascaded form with a PCA network for LDA. Experimental results demonstrate fast convergence and
robustness of the new algorithms and justify their advantages for on-line pattern recognition applications with stationary and
non-stationary multidimensional input data.
� 2004 Pattern Recognition Society. Published by Elsevier Ltd. All rights reserved.
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1. Introduction

PCA and LDA have been widely used in signal and image
processing especially in pattern recognition applications,
such as feature extraction, face and gesture recogni-
tion, and hyperspectral image analysis[1–4]. Adaptive
PCA and LDA algorithms have been used in on-line
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applications articularly for feature space dimensionality re-
duction[5]. Unlike the PCA, which encodes the information
in an orthogonal linear space, the LDA encodes the discrim-
inatory information in a (unnecessarily orthogonal) linear
separable space. For example, the LDA has been widely used
for dimensionality reduction in speech recognition[6]. Miao
and Hua[7] used an objective function and presented gra-
dient descent and recursive least squares (RLS) algorithms
[8] for adaptive principal subspace analysis (PSA). Xu[9]
used a different objective function to derive an algorithm for
adaptive PSA by applying the gradient descent optimization
method. Mao and Jain[10] proposed a two-layer network
for LDA, each of which was a PCA network. Chatterjee
and Roychowdhury[2] presented an adaptive algorithm
and a self-organizing LDA network for feature extraction
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from Gaussian data using the gradient descent optimization
technique. They described algorithms and networks for (i)
feature extraction from unimodal and multicluster Gaussian
data in the multiclass case and (ii) multivariate linear dis-
criminant analysis in the multiclass case. In a later work, they
also developed accelerated algorithms for PCA using the
steepest descent, conjugate direction and Newton–Raphson
methods[11]. Recently, Abrishami Moghaddam and Amiri
Zadeh[12] derived an accelerated convergence adaptive al-
gorithm for LDA, based on the steepest descent optimization
method.

Most adaptive PCA and LDA implementations are based
on minimizing an objective function using the gradient de-
scent technique. It is well known[11,13–15]that such a tech-
nique has a slow convergence rate. Furthermore, both ana-
lytical and experimental studies show that the convergence
of these algorithms depends on an appropriate selection of
the gain sequence. For on-line applications, determining an
appropriate gain value is a difficult task. Hence, for wider
applicability of these algorithms, it is important to speed up
the convergence rate and automatically determine the gain
sequence based on current data samples. In this article, we
present new accelerated adaptive algorithms for the compu-
tation of the square root of the inverse covariance matrix
(�−1/2). For this purpose, we use: (i) the steepest descent,
(ii) conjugate direction, and (iii) Newton–Raphson methods
to determine the step size of the adaptive algorithm in each
iteration. Adaptive computation of the step size has two ma-
jor advantages. Firstly, it accelerates considerably the con-
vergence of�−1/2 computation. Secondly, dynamic values
for the step size can overcome the instability problems en-
countered when using the fixed step size with non-stationary
input data. Based on the new adaptive algorithm, we present
a modified version of a self-organizing neural network for
�−1/2 computation[2]. For LDA we use the new�−1/2

computation network and cascade it with a PCA network
[13] trained by Sanger’s algorithm[16]. Experimental re-
sults with Gaussian data demonstrate high performance of
the presented algorithm particularly for on-line applications
with non-stationary processes.

The next section describes the fundamentals of LDA. In
Section 3, the adaptive computation of the square root of
the inverse covariance matrix�−1/2 based on the gradient
descent method is presented and its convergence is proved
using the stochastic approximation theory[17]. Section 4 is
devoted to our new accelerated adaptive�−1/2 algorithms
based on (i) the steepest descent, (ii) conjugate direction,
and (iii) Newton–Raphson methods. A new recursive equa-
tion for on-line estimation of the covariance matrix is also
presented in this section. Self-organizing networks for LDA
using our accelerated�−1/2 algorithms are introduced in
Section 5. Finally, simulation and experimental results in
the last section demonstrate the superior performance of the
proposed methods.

Notations used in this paper are fairly standard. Boldface
symbols are used for vectors (in lower case letters) and

matrices (in upper case letters). We also have the following
notations:

(·)T transpose;
E(·) expectation;
tr(·) trace;
| · | determinant;
A vectorized form of the matrixA;
A · B inner product of matricesA andB in vector form;
A ⊗ B Kronecker product of matricesA andB.

2. Linear discriminant analysis

Different objective functions have been used as LDA cri-
teria mainly based on a family of functions of scatter ma-
trices. For example, the maximization of the following ob-
jective functions have been previously proposed[18]:

J1 = tr(�−1
w �b), (1)

J2 = ln |�−1
w �b| = ln |�b| − ln |�w|, (2)

J3 = tr(�b) − �[tr(�w) − c], (3)

J4 = tr(�b)

tr(�w)
, (4)

where �w, �b are within-class and between-class scatter
matrices, respectively. The following remarks pertain to
these criteria:

1. The optimization ofJ1 is equivalent to the optimization
of tr(AT�bA) with respect toA under the constraint
AT�wA= I , whereA is ann×m transformation matrix.
The same is true forJ2.

2. The optimization ofJ1 andJ2 results in the same linear
features.

3. Many references use|�−1
w �b| instead of the logarithm

of the determinant forJ2. By using the logarithm,J2
in an n dimensional space can be computed by adding
the J2 values of individual features, if the features are
independent. This property is called the additive property
of independent features.

4. When J3 is used,tr(�b) is optimized, subject to the
constrainttr(�w)=c. That is,� is a Lagrange multiplier
andc is a constant.

5. J1 and J2 are invariant under any nonsingular linear
transformation, whileJ3 and J4 are dependent on the
coordinate system.

In LDA, the optimum linear transform is composed of
p(�n) eigenvectors of�−1

w �b corresponding to itsp
largest eigenvalues. Alternatively,�−1

w �m can be used
for LDA, where �m represents the mixture scatter matrix
(�m =�b +�w). A simple analysis shows that both�−1

w �b

and �−1
w �m have the same eigenvector matrix� [18]. In

general,�b is not full rank and therefore not a covariance
matrix, hence we shall use�m in place of�b.
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The computation of the eigenvector matrix� from
�−1

w �m is equivalent to the solution of the generalized
eigenvalue problem�m�=�w��, where� is the general-
ized eigenvalue matrix. Under the assumption of a positive

definite matrix�w, there is a symmetric matrix�−1/2
w such

that the problem can be reduced to a symmetric eigenvalue
problem:

�−1/2
w �m�−1/2

w � = ��, (5)

where�=�1/2
w � is real and�−1/2

w �m�−1/2
w is symmetric

and real. If� is orthonormal, then�T� = �T�w� = I ,
therefore� is real and orthonormal with respect to�w. Fur-
thermore,�T�m�=� which is diagonal, real and positive
definite[18].

There are two major training algorithms used in the
class-separability feature extraction networks. There are:
(i) the algorithms for the computation of�−1/2, where
� is the positive definite covariance matrix of a random
multidimensional sequence{xk ∈ Rn} and (ii) an algo-
rithm for the computation of the eigenvectors of�. Note
that there is no unique solution for�−1/2. Let � and
� = diag(�1, . . . , �n) be the eigenvector and eigenvalue
matrices, respectively, of�. Then a solution for�−1/2 is

�D, whereD = diag(±�−1/2
1 , . . . , ±�−1/2

n ). However, in
general this is not a symmetric solution. It can be shown
that �−1/2 is symmetric if and only if it is of the form
�D�T, and there are 2n symmetric solutions for�−1/2.
When D is positive definite, we obtain the unique sym-
metric positive definite solution for�−1/2 as��−1/2�T,

where�−1/2 = diag(�−1/2
1 , . . . , �−1/2

n ).
Chatterjee and Roychowdhury[2] introduced two differ-

ent networks to solve the generalized symmetric eigenvalue
problem (Eq. (5)). In the first network, they developed an
adaptive algorithm for the computation of�−1/2 matrix and

used it to produce�−1/2
w . In the second network, they used

a PCA network and a learning algorithm such as Sanger’s

rule [16] to generate� = �1/2
w �. When two networks op-

erate simultaneously, the eigenvector matrix� is extracted

by multiplying two weight matrices as�−1/2
w �1/2

w � = �.
Abrishami Moghaddam and Amiri Zadeh presented an ac-
celerated adaptive algorithm for�−1/2 computation based
on the steepest descent method[19]. They also introduced
modified networks for fast LDA and class separability fea-
ture extraction[12].

3. Adaptive �−1/2 computation algorithm

The following algorithm has been proposed for the adap-
tive computation of�−1/2 [2]:

Wk+1 =Wk + �kGk, (6)

Gk = I −Wkxkx
T
kWk, (7)

whereW0 ∈ Rn×n is symmetric and non-negative definite,
and{�k} is a scalar gain sequence. According to the general
form of adaptive algorithms[17] we have:

Wk+1 =Wk + �kG(Wk, xk), (8)

where the update functionG(Wk, xk) is the gradient of an
objective functionJ (Wk). Using the stochastic approxi-
mation theory and convergence analysis by Ljung[20], we
may write:

G(W) = �J (W)

�W
= E[G(Wk, xk)] = I −W�W. (9)

The gain sequence{�k} has an important role in
the convergence of the algorithm and can be a con-
stant or a decreasing sequence, satisfying the following
conditions:

(a)
∑∞

k=0�k = ∞,
(b)

∑∞
k=0�r

k
< ∞ (r > 1),

(c) limk→∞�k → 0.

For example, we can generate�k as follows[11]:

�k = �/k� � > 0, 1/2< ��1, (10)

where �, � are selected, such that�k satisfies the above
stated conditions. The convergence of the algorithm has been
proved[2] using the stochastic approximation theory[20].
That means:

lim
k→∞ Wk = �−1/2 with probability one, (11)

where� is the correlation or covariance matrix of the ran-
dom sequence{xk}.

4. New adaptive�−1/2 algorithms

The adaptive computation of�−1/2 using Eq. (6), suf-
fers from a very slow convergence rate. Increasing�k can
accelerate the convergence of the algorithm, but large gain
sequences may cause it to diverge or converge to a false
solution. Choosing�k as a monotonically decreasing func-
tion of the iteration numberk may improve the conver-
gence rate. However, this cannot be considered as an opti-
mal solution to the convergence problem. Noting that Eq.
(6) is based on the gradient descent method, we devel-
oped three new algorithms based on different optimiza-
tion techniques including (i) the steepest descent[12] (ii)
conjugate direction and (iii) Newton–Raphson methods, in
order to optimally determine the gain sequence in each
iteration.
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4.1. Steepest descent�−1/2 algorithm

The steepest descent method uses the following updating
equations:

Wk+1 =Wk + �kGk, (12)

Gk = I −Wk�kWk, (13)

wherexkxT
k

in Eq. (7) has been replaced by�k which will
be introduced later in this section. In the steepest descent
method, instead of using a fixed gain sequence,�k is calcu-
lated by the derivative of the cost functionJ with respect
to �k [12]:

�J (Wk+1)

��k

= 0, (14)

using the chain rule:

�J (Wk+1)

��k

= �J (Wk+1)

�Wk+1
· �Wk+1

��k

, (15)

�J (Wk+1)

�Wk+1
= I −Wk+1�kWk+1, (16)

�Wk+1

��k

= I −Wk�kWk, (17)

therefore,

(I −Wk+1�kWk+1) · (I −Wk�kWk) = 0. (18)

ReplacingWk+1 with Eq. (12) and doing some mathemat-
ical operations we obtain the following quadratic equation
(Appendix A):

ak�
2
k + bk�k + ck = 0, (19)

where

ak = (Gk�kGk) ·Gk,

bk = (Gk�kWk +Wk�kGk) ·Gk,

ck = −Gk ·Gk

and�k is obtained as:

�k =
−bk +

√
b2
k

− 4akck

2ak
. (20)

In Eq. (20), we use the positive sign in order to minimize
the objective functionJ (Wk+1) (see Appendix A). As will
be shown in experimental results, the computation of�k

according to Eq. (20) accelerates the convergence of the
adaptive algorithm. Furthermore, in the adaptive computa-
tion of �−1/2 a fixed gain sequence may cause divergence
problems in the case of non-stationary input data. Dynamic
determination of�k can overcome the problem while the
convergence is guaranteed under different conditions. The

on-line estimation of the covariance matrix�k is obtained
using the following recursive equation[12]:

�k+1 = (1 − �k/k + 1)xk+1x
T
k+1 + �(k/k + 1)�k, (21)

where� ∈]0, 1] is a forgetting scalar factor. If{xk} comes
from a stationary process,� = 1 is used. On the other hand,
if {xk} comes from a non-stationary process, 0< � < 1 is
selected. This equation is applied to obtain an effective win-
dow of size 1/(1 − �). This effective window ensures that
the past data samples are down-weighted with an exponen-
tially fading window. The exact value of� depends on the
specific application. In general for slow time varying{xk},
� is chosen close to one to obtain a large effective window,
whereas for fast time varying{xk}, � is chosen near zero for
small effective window[17].

4.2. Conjugate direction�−1/2 algorithm

The adaptive conjugate direction algorithm for LDA can
be obtained as follows:

Wk+1 =Wk + �kDk, (22)

Dk+1 =Gk + �kDk, (23)

whereGk is obtained using Eq. (13). The step size�k is
chosen as� that minimizesJ (Wk+1 + �Dk+1). Similar
to the steepest descent case, we obtain the same quadratic
equation as in Eq. (19) where:

ak = (Dk�kDk) · Dk,

bk = (Dk�kWk +Wk�kDk) · Dk,

ck = −Gk · Dk

and�k is obtained using the same equation as Eq. (20). For
the choice of�k , we can use a number of methods[21] as
described below:
Hestenes–Stiefel:

�k =Gk+1 · (Gk+1 − Gk)/Dk · (Gk+1 −Gk). (24)

Polak–Ribiere:

�k =Gk+1 · (Gk+1 − Gk)/Gk ·Gk. (25)

Fletcher–Reeves:

�k =Gk+1 ·Gk+1/Gk ·Gk. (26)

Powell:

�k = max[0,Gk+1 · (Gk+1 −Gk)/Gk ·Gk]. (27)

For the simulation results presented in this paper, we used
the Polak–Ribiere method.
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4.3. Newton–Raphson�−1/2 algorithm

The adaptive NR algorithm for LDA is

Wk+1 =Wk + �kDk, (28)

Dk = (Hk)
−1Gk, (29)

whereHk is the online Hessian matrix defined as (Appendix
B)

Hk = �Gk

�Wk
= −2(I ⊗ �kWk). (30)

The step size parameter�k can be selected by minimizing
J (Wk + �kDk) with respect to�k . This will result in the
same quadratic equation as Eq. (19), where:

ak = (Dk�kDk) · Dk,

bk = (Dk�kWk +Wk�kDk) · Dk,

ck = −Gk · Dk.

In the above relations,Gk andDk are calculated using Eqs.
(13) and (29), respectively.

5. Neural network implementation

Based on the�k computation algorithm, we introduce a
self-organizing neural network for the fast adaptive compu-
tation of�−1/2 as depicted inFig. 1. The major difference
between this new scheme and the network presented by[2]
is in the �k computation block. Here, instead of using a
fixed step size, we use Eq. (19) in order to optimally deter-
mine the step size according to one of the steepest descent,
conjugate direction and Newton–Raphson methods.

For LDA, we need to produce the eigenvector matrix
� of �−1

w �b. Here, two networks for the computation of
the eigenvector matrix� using our new�−1/2 algorithm
are presented. The first network is trained by samples with

known classes and computes�−1/2
w . The second network

uses a PCA algorithm to generate the eigenvector matrix

of �−1/2
w �m�−1/2

w [7]. It is trained by samples irrespective
of class assignments. When the two trained networks work
together in a cascade form, the eigenvector matrix� is
obtained (Fig. 2). In LDA network, on-line estimation of the

Random 
vector

kW

G(xk,Wk)

−1Z

k
η

k+1W

Fig. 1. �−1/2 computation algorithm.

Random
vector

ik mx −

mx −k

2/1−
wΣ

2/1−
wΣ networkPCA

Fig. 2. Network for the fast LDA.

class meanmi for the class�i is obtained by the following
adaptive equation:

gk+1 = gk + �k(xk+1 − gk), (31)

wheregk converges tomi . In the above equation�k is se-
lected as a constant. The same equation may be used for
on-line estimation of the mixture meanm.

6. Results and discussion

In this section, we use the networks and the learning rules
presented in the last two sections for linear discriminant
analysis in pattern recognition applications, and compare the
results with ones obtained by the gradient descent method. In
the following experiments, we use samples generated from
unimodal Gaussian distributions, since they are common in
many pattern recognition problems[18].

6.1. �−1/2 algorithms

Two sets of experiments were carried out to test the per-
formance of the new adaptive�−1/2 algorithms. The first
set of experiments was made on stationary Gaussian data
whose main purpose was to demonstrate the convergence
speed of the new algorithm. The second experiment was
made on non-stationary Gaussian data in order to show the
tracking ability of the new adaptive algorithms to follow
changes in statistical characteristics of the input data.

6.1.1. Experiment with stationary data
Choosing the incoming sequence inR10 and the covari-

ance matrix for the training network shown inTable 1, we
generated 500 samples of a zero-mean Gaussian data and
calculated�−1/2 matrix. The actual value of�−1/2 was ob-
tained from the sample correlation matrix using a standard
eigenvector computation method. TheL2-norm of the error
ek between the estimated and the actual�−1/2 matrices was
computed by

ek = ‖Wk − �−1/2
actual

‖2. (32)

The convergence of the new�−1/2 algorithms is illus-
trated inFig. 3. For the gradient descent algorithm, we used
�k = 1/(400+ k) which demonstrated a better convergence
speed compared to a fixed�k . We also used� = 1.0 in
Eq. (21), because of the stationarity of the input data. A
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Table 1
The covariance matrix of the training input data

0.182 0.076 −0.106 −0.010 0.020 −0.272 0.310 0.060 0.004 0.064
0.076 0.746 0.036 −0.056 −0.022 −0.734 0.308 −0.114 −0.062 −0.130

−0.106 0.036 2.860 0.034 0.110 −0.900 −0.076 −0.596 −0.082 −0.060
−0.010 −0.056 0.034 0.168 −0.010 0.032 0.084 −0.044 0.002 0.010

0.020 −0.022 0.110 −0.010 0.142 0.176 0.116 −0.138 −0.016 0.006
−0.272 −0.734 −0.900 0.032 0.176 11.44 −1.088 −0.496 0.010 0.190

0.310 0.308 −0.076 0.084 0.116 −1.088 5.500 −0.686 −0.022 −0.240
0.060 −0.114 −0.596 −0.044 −0.138 −0.496 −0.686 2.900 0.156 0.056
0.004 −0.062 −0.082 0.002 −0.016 0.010 −0.022 0.156 0.134 0.030
0.064 −0.130 −0.060 0.010 0.006 0.190 −0.240 0.056 0.030 0.682

Fig. 3. Convergence behavior of the new�−1/2 algorithms compared to the gradient descent method using stationary input data, (a) steepest
descent, (b) conjugate direction, (c) Newton–Raphson, (d) superposition of four curves.

comparison of the gradient descent�−1/2 computation dia-
gram with the new adaptive steepest descent (Fig. 3a), con-
jugate direction (Fig. 3b) and Newton–Raphson (Fig. 3c)
methods shows a significant increase in the convergence

rate. Moreover, the new algorithm does not require�k to
be specified explicitly as was made for the gradient descent
method. Instead, the gain sequence is automatically com-
puted from the input data sequence.
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6.1.2. Experiment with non-stationary data
In order to demonstrate the tracking ability of the

algorithms with non-stationary data, we generated 250 sam-
ples of zero-mean Gaussian data inR10 with the covariance
matrix stated as before. We then drastically changed the
data sequence by generating 250 samples of zero-mean
ten-dimensional Gaussian data with the covariance matrix
shown inTable 2 [22].

We generated{�k} from {xk} by using Eq. (17) with� =
0.99. The tracking ability of the new algorithms compared
to the gradient descent method is illustrated inFig. 4(a–c).
We initiated all algorithms withW0 = 0.1 ∗ ONE, where
ONE is a n × n matrix whose all elements are one. Once
again, it is clear fromFig. 4 that the steepest descent (Fig.
4a), conjugate direction (Fig. 4b) and Newton–Raphson
(Fig. 4c) algorithms, converge faster and tracks the
changes in data much better than the gradient descent
algorithm.

Further consideration should be given to the compu-
tational complexity of the algorithms. The gradient de-
scent method is of ordern2 complexity (per sample),
the steepest descent and conjugate gradient methods are
of order n3 complexity and finally the Newton–Raphson
method has computational complexity of O(n4). If we
use an effective window of sizep(�n) for the computa-
tion of �k , the computational complexity of the steepest
descent and conjugate gradient methods will be reduced
to O(pn2). However, it should be noted that the conver-
gence of the gradient descent is slower than the steepest
descent, conjugate gradient and Newton–Raphson meth-
ods as shown inFigs. 3 and 4. Comparison between the
three new algorithms shows small differences between
them in convergence speed. Among the three faster con-
verging algorithms, since the steepest descent algorithm
(Eqs. (12) and (13)) requires the smallest amount compu-
tation per iteration, it is most suitable for optimum speed
and computation. Furthermore, the Hessian matrix inver-
sion in the Newton–Raphson method may cause some
instability problems. A solution to this problem may be
obtained using an algorithm for adaptive estimation of
the approximate inverse of the Hessian matrix[11]. The
adaptive estimation of the inverse of the Hessian ma-
trix is also computationally more efficient than the direct
method.

6.2. LDA algorithm

Finally, we tested the LDA network. For this purpose, we
(i) generated 1000 samples of 2-D Gaussian data, each from
two classes with the different mean vectors and the same
covariance matrices; (ii) used the LDA network to extract
the relevant features for classification, and show the classi-
fication results for two algorithms; (iii) compared these fea-
tures with their actual values computed from sample scatter
matrices. The covariance matrices and mean vectors for the

2 classes were:

m1 =
[−2

2

]
, �1 =

[
3 2
2 3

]
,

m2 =
[

2
−2

]
, �2 =

[
3 2
2 3

]
.

Here,�w =
[

3
2

2
3

]
, �b =

[
4

−4
−4
4

]
, and the eigenvector

matrix � of �−1
w �b is

[
0.7071

−0.7071
0.3162
0.3162

]
, corresponding to

eigenvalues 8 and 0. Note that the above results are the exact
values. After training the LDA network, the first eigenvec-
tor of �−1

w �b was estimated aŝ	1 = [0.7018 − 0.6936]T.
Defining the normalized errorE	 asE	 = ‖	 − 	̂‖/‖	‖,
where	 is computed from the sample scatter matrices and
	̂ is estimated from the LDA network, the final result is
shown inFig. 5. As can be seen, the estimation error van-
ishes much more rapidly using the steepest descent (Fig. 5a),
conjugatedirection (Fig. 5b) and Newton–Raphson (Fig. 5c)
LDA algorithms, compared to the gradient descent method.

Summary

New adaptive algorithms and self-organizing neural net-
works for linear discriminant analysis have been presented.
These algorithms use (i) the steepest descent, (ii) conjugate
direction and (iii) Newton–Raphson adaptive techniques for
optimal computation of the step size in each iteration. Cur-
rent adaptive methods based on the gradient descent opti-
mization use a fixed or a monotonically decreasing step size.
The main advantage of the new algorithms is their fast con-
vergence rate, which distinguishes them from the existing
on-line methods. It is experimentally shown that an optimal
variable step size significantly improves the convergence
rate of the algorithm. Furthermore, if the fixed step size ex-
ceeds an upper bound, the adaptive algorithms may diverge
or converge to a false solution. Dynamic determination of
the step size based on the current data samples can prevent
the divergence and improve the robustness of the adaptive
algorithm against hazardous inputs. The convergence speed
and robustness of the new adaptive algorithms, make them
appropriate for on-line applications where we deal with non-
stationary input data.

It has been shown that the first step for adaptive linear
discriminant analysis is the computation of the square root
of the inverse covariance matrix�−1/2. Three new algo-
rithms have been introduced for fast adaptive computation
of �−1/2. This matrix is then used for linear discriminant
analysis of multiclass multidimensional Gaussian input data.
We also introduce modified self-organizing neural networks,
in order to efficiently implement the developed algorithms
and accelerate their convergence. A new recursive method
for on-line estimation of� has also been used in these net-
works. The new recursive estimation algorithm has shown
a good performance in both stationary and non-stationary
input sequences.
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Table 2
The second covariance matrix for non-stationary experimental input data

0.360 0.004 −0.032 −0.764 −0.028 0.164 −0.120 −0.232 0.088 0.128
0.004 0.368 −0.044 0.032 −0.056 −0.008 0.048 −0.040 −0.084 −0.008

−0.032 −0.044 0.328 0.328 0.056 −0.080 −0.232 0.420 0.016 0.092
−0.764 0.032 0.328 22.72 −0.384 −0.060 2.584 0.876 −0.952 0.872
−0.028 −0.056 0.056 −0.384 0.304 −0.140 −0.160 −0.092 0.108 −0.056

0.164 −0.008 −0.080 −0.060 −0.140 1.832 0.552 −1.004 0.0480 0.156
−0.120 0.048 −0.232 2.584 −0.160 0.552 7.280 −0.732 −0.008 0.468
−0.230 −0.040 0.420 0.876 −0.092 −1.004 −0.732 16.28 −1.856 0.588

0.088 −0.084 0.016 −0.952 0.108 0.048 −0.008 −1.856 1.052 0.216
0.128 −0.008 0.092 0.872 −0.056 0.156 0.468 0.588 0.216 1.548

Fig. 4. Tracking ability of the new�−1/2 algorithms compared to the gradient descent method using non-stationary input data, (a) steepest
descent, (b) conjugate direction, (c) Newton–Raphson, (d) superposition of four curves.

The developed networks have been tested under differ-
ent conditions using multidimensional input data. First, the
new �−1/2 computation algorithms have been tested with
stationary and non-stationary processes. Experimental re-

sults show significant improvement in convergence speed
and tracking ability of the new (i) steepest descent, (ii) con-
jugate direction and (iii) Newton–Raphson adaptive meth-
ods. Finally, for linear discriminant analysis, we combined
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Fig. 5. Convergence of the new LDA networks compared to the gradient descent based LDA with stationary input data, (a) steepest descent,
(b) conjugate direction, (c) Newton–Raphson, (d) superposition of four curves.

the adaptive�−1/2 computation algorithm with a PCA net-
work. Experimental results with multidimensional input data
demonstrate better performance of the new algorithms for
on-line linear discriminant analysis.

Appendix A. Computation of �k for steepest descent

We compute�k that minimizesJ (Wk+1), where

Wk+1 =Wk + �kGk, (A.1)

Gk = I −Wk�kWk. (A.2)

By differentiatingJ (Wk+1) with respect to�k and using
the chain rule, we will have:

dJ (Wk+1)

d�k

= dJ (Wk+1)

dWk+1
· dWk+1

d�k

, (A.3)

dJ (Wk+1)

dWk+1
= I −Wk+1�kWk+1, (A.4)

dWk+1

d�k

= I − Wk�kWk. (A.5)

Therefore

(I − Wk+1�kWk+1) · (I − Wk�kWk) = 0. (A.6)

ReplacingWk+1 with Wk + �kGk , we obtain

[I − (Wk + �kGk)�k(Wk + �kGk)]
· (I −Wk�kWk) = 0. (A.7)

Simplifying Eq. (A.7), we obtain the following quadratic
equation:

ak�
2
k + bk�k + ck = 0, (A.8)
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where

ak = (Gk�kGk) ·Gk,

bk = (Gk�kWk +Wk
kGk) ·Gk,

ck = −Gk ·Gk.

The roots of the above equation can be computed as

�k =
−bk ±

√
b2
k

− 4akck

2ak
. (A.9)

To select�k , we note that�k should be selected such that
the second derivative of the objective function be positive.
That means

d2J (Wk+1)

d�2
k

= 2ak�k + bk �0. (A.10)

Hence we choose�k as

�k =
−bk +

√
b2
k

− 4akck

2ak
. (A.11)

Appendix B. Computation of the Hessian matrix

The Hessian matrix is the second derivative of the ob-
jective function with respect toWk . It can be computed as
the first derivative ofGk as follows

Hk = dGk

dWk
. (B.1)

Since

Gk = I −Wk�kWk, (B.2)

we may write[23]:

Hk = d(I −Wk�kWk)

dWk

= − d(Wk�kWk)

dWk

= − dWk�kWk + �kWkdWk

dWk

= − [(�kWk)
T ⊗ I ]dWk + [IT ⊗ (�kWk)]dWk

dWk
.

(B.3)

Therefore, the Hessian matrix may be computed using the
following equation:

Hk = −2[I ⊗ (�kWk)]. (B.4)
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