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k-Means algorithm and its variations are known to be fast clustering algorithms. However, they are
sensitive to the choice of starting points and inefficient for solving clustering problems in large data sets.
Recently, a new version of the k-means algorithm, the global k-means algorithm has been developed.
It is an incremental algorithm that dynamically adds one cluster center at a time and uses each data
point as a candidate for the k-th cluster center. Results of numerical experiments show that the global
k-means algorithm considerably outperforms the k-means algorithms. In this paper, a new version of the
global k-means algorithm is proposed. A starting point for the k-th cluster center in this algorithm is
computed by minimizing an auxiliary cluster function. Results of numerical experiments on 14 data sets
demonstrate the superiority of the new algorithm, however, it requires more computational time than
the global k-means algorithm.

© 2008 Elsevier Ltd. All rights reserved.

1. Introduction

The cluster analysis deals with the problems of organization of
a collection of patterns into clusters based on similarity. It is also
known as the unsupervised classification of patterns and has found
many applications in different areas.

In cluster analysis we assume that we have been given a finite
set of points A in the n-dimensional space IRn, that is

A = {a1, . . . , am} where ai ∈ IRn, i = 1, . . . , m.

There are different types of clustering. In this paper, we consider the
hard unconstrained partition clustering problem, that is the distri-
bution of the points of the set A into a given number k of disjoint
subsets Aj, j = 1, . . . , k with respect to predefined criteria such that:

(1) Aj �= ∅, j = 1, . . . , k;
(2) Aj ∩ Al = ∅, j, l = 1, . . . , k, j �= l;
(3) A = ⋃k

j=1Aj;

(4) no constraints are imposed on the clusters Aj, j = 1, . . . , k.

The sets Aj, j = 1, . . . , k are called clusters. We assume that each
cluster Aj can be identified by its center (or centroid) xj ∈
IRn, j = 1, . . . , k. Then the clustering problem can be reduced to the
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following optimization problem (see Refs. [1,2]):

minimize �k(x, w) = 1
m

m∑
i=1

k∑
j=1

wij‖xj − ai‖2 (1)

subject to x = (x1, . . . , xk) ∈ IRn×k , (2)
k∑

j=1

wij = 1, i = 1, . . . , m and (3)

wij = 0 or 1, i = 1, . . . , m, j = 1, . . . , k, (4)

where wij is the association weight of pattern ai with the cluster j,
given by

wij =
{
1 if pattern ai is allocated to the cluster j,

0 otherwise
(5)

and

xj =
∑m

i=1wija
i

∑m
i=1wij

, j = 1, . . . , k. (6)

Here ‖ · ‖ is an Euclidean norm and w is an m × k matrix. Prob-
lem (1)--(6) is also known as minimum sum-of-squares clustering
problem.

Different algorithms have been proposed to solve the cluster-
ing problem. The paper [3] provides survey of most of existing
algorithms. We mention among them heuristics like k-means algo-
rithms and their variations (h-means, j-means, etc.), mathematical
programming techniques including dynamic programming, branch
and bound, cutting plane, interior point methods, the variable
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neighborhood search algorithm and metaheuristics like simulated
annealing, tabu search, genetic algorithms (see Refs. [2,4--15]).

The objective function �k in Eq. (1) has many local minimizers
(local solutions of problem (1)--(6)). Local minimizers are points,
where the function �k achieves its smallest value in some feasible
neighborhood of these points. Global minimizers (or global solutions
of problem (1)--(6)) of �k are points where the function attains its
least value over the feasible set. It is expected that global minimizers
provide better cluster structure of a data set. However, the most of
clustering algorithms can locate only local minimizers of the func-
tion �k and these local minimizers may differ from global ones sig-
nificantly as the number of clusters increases. Global optimization
algorithms, mentioned above, are not applicable to even relatively
large data sets. Another difficulty is that the number of clusters is
not known a priori.

Over the last several years different incremental algorithms have
been proposed to address these difficulties. Incremental cluster-
ing algorithms attempt to optimally add one new cluster center at
each stage. In order to compute k-partition of the set A these al-
gorithms start from an initial state with the k − 1 centers for the
(k − 1)-clustering problem and the remaining k-th center is placed
in an appropriate position. Results of numerical experiments show
that these algorithms are able to locate either a global minimizer
or a local minimizer close to global one. The paper [16] develops
an incremental algorithm based on nonsmooth optimization ap-
proach to clustering. The incremental approach is also discussed in
Ref. [17].

The global k-means (GKM) algorithm, introduced in Ref. [18], is
a significant improvement of the k-means algorithm. It is an incre-
mental algorithm. In this algorithm each data point is used as a
starting point for the k-th cluster center. Such an approach leads at
least to a near global minimizer. However, this approach is not effi-
cient since it is very time consuming, as m applications of k-means
algorithm are made. Instead the authors suggest two procedures to
reduce computational load.

The first algorithm is called the fast GKM algorithm. Given the
solution x1, . . . , xk−1 of the (k − 1)-clustering problem and the cor-
responding value �∗

k−1 = �k−1(x1, . . . , xk−1) of the function �k in
Eq. (1) this algorithm does not execute the k-means algorithm for
each data point. Instead it computes an upper bound �∗

k
��∗

k−1 − bj

on the �∗
k
, where

bj =
m∑

i=1

max{0, di
k−1 − ‖aj − ai‖2}, j = 1, . . . , m. (7)

Here di
k−1 is the squared distance between ai and the closest center

among k − 1 cluster centers x1, . . . , xk−1:

di
k−1 = min{‖x1 − ai‖2, . . . , ‖xk−1 − ai‖2}. (8)

A data point aj ∈ A with the maximum value of bj is chosen as a
starting point for the k-th cluster center.

In the second procedure a k − d tree is used to partition A into
m′>m subsets; their centroids are used as starting points in the GKM
scheme. The second procedure can be applied to low dimensional
data sets.

In this paper, we propose a new version of the GKM algorithm.
The difference between the new version and the fast GKM algorithm
lies in the way a starting point for the k-th cluster center is obtained.
Given the solution x1, . . . , xk−1 of the (k−1)-clustering problem, we
formulate the so-called auxiliary cluster function:

f̄k(y) = 1
m

m∑
i=1

min{di
k−1, ‖y − ai‖2}. (9)

We apply the k-means algorithm to minimize this function. A local
minimizer found is selected as a starting point for the k-th cluster
center. We present the results of numerical experiments on 14 data
sets. These results demonstrate that the superiority of the proposed
algorithm over the GKM algorithm, however, it is less computation-
ally efficient.

The rest part of the paper is organized as follows: Section 2 gives
a brief description of k-means and the GKM algorithms. The nons-
mooth optimization approach to clustering and an algorithm for the
computation of a starting point is described in Section 3. Section 4
presents an algorithm for solving clustering problems. The results of
numerical experiments are given in Section 5. Section 6 concludes
the paper.

2. k-Means and the GKM algorithms

In this section we give a brief description of the k-means and the
GKM algorithms.

The k-means algorithm proceeds as follows.

Algorithm 1. The k-means algorithm.
Step 1: Choose a seed solution consisting of k centers (not neces-

sarily belonging to A).
Step 2: Allocate data points a ∈ A to its closest center and obtain

k-partition of A.
Step 3: Recompute centers for this new partition and go to

Step 2 until no more data points change their clusters.

This algorithm is very sensitive to the choice of a starting point.
It converges to a local solution which can significantly differ from
the global solution in many large data sets.

The GKM algorithm proposed in Ref. [18] is an incremental clus-
tering algorithm. To compute k�m clusters this algorithm proceeds
as follows.

Algorithm 2. The GKM algorithm.
Step 1: (Initialization) Compute the centroid x1 of the set A:

x1 = 1
m

m∑
i=1

ai, ai ∈ A, i = 1, . . . , m (10)

and set q = 1.
Step 2: (Stopping criterion) Set q = q + 1. If q > k, then stop.
Step 3: Take the centers x1, x2, . . . , xq−1 from the previous it-

eration and consider each point a of A as a starting point for the
q-th cluster center, thus obtaining m initial solutions with q points
(x1, . . . , xq−1, a); apply the k-means algorithm to each of them; keep
the best q-partition obtained and its centers y1, y2, . . . , yq.

Step 4: Set xi = yi, i = 1, . . . , q and go to Step 2.

This version of the algorithm is not applicable for clustering on
middle sized and large data sets. Two procedures were introduced
to reduce its complexity (see Ref. [18]). We mention here only one
of them, because the second procedure is applicable only to low
dimensional data sets. Let di

k−1 be a squared distance between ai ∈
A, i = 1, . . . , m and the closest cluster center among the k − 1 cluster
centers obtained so far. In order to find the starting point for the
k-th cluster center, for each aj ∈ A, j = 1, . . . , m we compute bj using
Eq. (7).

bj, j = 1, . . . , m shows how much one can decrease the value of

the function �k from Eq. (1) if the data point aj is chosen as the
k-th cluster center. Obviously, if aj ∈ A, j =1, . . . , m is not among the
cluster centers x1, . . . , xk−1, then bj >0. This means that by selecting
any such data point as a starting point for the k-th cluster center one
can decrease the value of the function �k at least by bj . It is clear
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that a data point aj ∈ A with the largest value of the bj is the best
candidate to be a starting point for the k-th cluster center. Therefore,
first we compute

b̄ = max
j=1,...,m

bj (11)

and find the data point aj ∈ A such that bj = b̄. This data point
is selected as a starting point for the k-th cluster center. In our
numerical experiments we use this procedure.

3. Computation of starting points

The clustering problem (1) can be reformulated in terms of non-
smooth, nonconvex optimization as follows (see Refs. [1,19,20]):

minimize fk(x) subject to x = (x1, . . . , xk) ∈ IRn×k , (12)

where

fk(x1, . . . , xk) = 1
m

m∑
i=1

minj=1,...,k‖xj − ai‖2. (13)

We call fk a cluster function. Comparing two different formulations
(1) and (12) of the hard clustering problem one can note that:

1. The objective function �k depends on variables wij, i=1, . . . , m, j=
1, . . . , k (coefficients, which are integers) and x1, x2, . . . , xk, xj ∈
IRn, j = 1, . . . , k (cluster centers, which are continuous variables).
However, the function fk depends only on continuous variables
x1, . . . , xk .

2. The number of variables in problem (1) is (m + n) × k whereas
in problem (12) this number is only n × k and the number
of variables does not depend on the number of instances. It
should be noted that in many real-world data sets the num-
ber of instances m is substantially greater than the number of
features n.

3. The function �k is continuously differentiable with respect to
both variables w and x. Since the function fk is represented as a
sum of minima functions it is nonsmooth for k >1, that is it is
not differentiable everywhere.

4. Both functions �k and fk are nonconvex.
5. Problem (1) is mixed integer nonlinear programming problem

and Eq. (12) is nonsmooth global optimization problem. How-
ever, they are equivalent in the sense that their global minimizers
coincide (see Ref. [1]).

Circumstances mentioned in Items 1 and 2 can be considered as
advantages of the nonsmooth optimization formulation (12) of the
clustering problem.

Assume that k >1 and the cluster centers x1, . . . , xk−1 for (k−1)-
partition problem are known. Considering k-partition problem we
introduce the following function:

f̄k(y) = 1
m

m∑
i=1

min{di
k−1, ‖y − ai‖2}, (14)

where y ∈ IRn stands for k-th cluster center and di
k−1 is defined in Eq.

(8). The function f̄k is called an auxiliary cluster function. It depends
on n variables only. It is clear that

f̄k(y) = fk(x1, . . . , xk−1, y) (15)

for all y ∈ IRn. This means that the auxiliary cluster function f̄k co-
incides with the cluster function fk with fixed k − 1 cluster centers
x1, . . . , xk−1. For each data point ai ∈ A consider also the following
function:

�ik(y) = min{di
k−1, ‖y − ai‖2}. (16)

This function is represented as a minimum of constant and very
simple quadratic function. If the data point ai is a cluster center then
di
k−1 = 0 and �ik(y) ≡ 0. Otherwise

�ik(y) =
{‖y − ai‖2 if ‖y − ai‖2 < di

k−1,

di
k−1 if ‖y − ai‖2�di

k−1.
(17)

Since it is natural to assume that k < m, it is obvious that �ik(y) >0
for some ai ∈ A and y ∈ IRn and f̄k(y) >0 for all y ∈ IRn. As a minimum
function, �ik is nonsmooth and nonconvex. It is nondifferentiable
at points y ∈ IRn, where ‖y − ai‖2 = di

k−1. Therefore, the function

f̄k is also nonsmooth and nonconvex. The set where this function
is nondifferentiable can be represented as a union of sets, where
functions �ik are nondifferentiable.

Minimum value f ∗
k−1 of the function fk−1 is

f ∗
k−1 = 1

m

m∑
i=1

di
k−1. (18)

If the data point aj ∈ A is not a cluster center, then

fk(x1, . . . , xk−1, aj) = 1
m

m∑
i=1

min{di
k−1, ‖aj − ai‖2}. (19)

Given aj ∈ A consider the following two index sets:

I1 = {i ∈ {1, . . . , m} : ‖ai − aj‖2�di
k−1}, (20)

I2 = {i ∈ {1, . . . , m} : ‖ai − aj‖2 < di
k−1}. (21)

Using this notation one can rewrite a formulae for bj from Eq. (7) as
follows:

bj =
∑
i∈I2

(di
k−1 − ‖aj − ai‖2). (22)

Then

f̄k(aj) = fk(x1, . . . , xk−1, aj)

= 1
m

⎛
⎝∑

i∈I1

di
k−1 +

∑
i∈I2

‖aj − ai‖2
⎞
⎠ (23)

and therefore,

fk−1(x1, . . . , xk−1) − fk(x1, . . . , xk−1, aj)

=
∑
i∈I2

(di
k−1 − ‖aj − ai‖2)

= bj . (24)

This means that if one selects aj as a starting point for the k-th
cluster center then the optimal value of the function fk−1 can be
decreased by bj �0. Therefore it is natural to select a data point with
the largest value of bj as a starting point for the k-th cluster center,
which is done in one of the versions of the GKM algorithm. In this
paper, we suggest to minimize the auxiliary cluster function f̄k to
find a starting point for the k-th cluster center. Since the auxiliary
cluster function coincides with the cluster function fk when previ-
ous k − 1 cluster centers x1, . . . , xk−1 are fixed, the minimization of
the auxiliary cluster function is equivalent to the minimization of
the cluster function fk with fixed k − 1 cluster centers x1, . . . , xk−1.
The k-means algorithm is applied to find a local minimizer
of f̄k .

Now consider the set

D = {y ∈ IRn : ‖y − ai‖2�di
k−1 ∀i ∈ {1, . . . , m}}. (25)
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D̄ is the set where the distance between any its point y and any data
point ai ∈ A is no less than the distance between this data point and
its cluster center. We also consider the following set:

D0 = IRn\D
≡ {y ∈ IRn : ∃I ⊂ {1, . . . , m}, I �= ∅ : ‖y − ai‖2

< di
k−1∀i ∈ I}. (26)

The function f̄k is a constant on the set D and its value is

f̄k(y) = d0 ≡ 1
m

m∑
i=1

di
k−1 ∀y ∈ D. (27)

It is clear that xj ∈ D for all j = 1, . . . , k − 1 and ai ∈ D0 for all ai ∈
A, ai �= xj, j = 1, . . . , k − 1. It is also clear that f̄k(y) < d0 for all y ∈ D0.

Any y ∈ D0 can be selected as a starting point for the k-th clus-
ter center. The function f̄k is nonconvex function with many local
minima and the global minimizer of this function can be the best
candidate to be starting point for the k-th cluster center. However,
it is not always possible to find the global minimizer of f̄k in a rea-
sonable time. Therefore, we propose an algorithm for finding a local
minimizer of the function f̄k .

For any y ∈ D0 consider the following sets:

S1(y) = {ai ∈ A : ‖y − ai‖2 = di
k−1}, (28)

S2(y) = {ai ∈ A : ‖y − ai‖2 < di
k−1}, (29)

S3(y) = {ai ∈ A : ‖y − ai‖2 > di
k−1}. (30)

The set S2(y) �= ∅ for any y ∈ D0.
The following algorithm is proposed to find a starting point for

the k-th cluster center.

Algorithm 3. An algorithm for finding a starting point.
Step 1: For each ai ∈ D0 ∩ A compute the set S2(ai), its center ci

and the value f̄
k,ai = f̄k(ci) of the function f̄k at the point ci.

Step 2: Compute

f̄k,min = min
ai∈D0∩A

f̄
k,ai , (31)

aj = arg min
ai∈D0∩A

f̄
k,ai , (32)

the corresponding center cj and the set S2(cj).
Step 3: Recompute the set S2(cj) and its center until no more data

points escape or return to this set.

Let x̄ be a cluster center generated by Algorithm 3. Since we
consider the hard clustering problem, that is each data point belongs
to only one cluster, one can assume that S1(x̄) = ∅.

Proposition 1. The point x̄ is a local minimizer of the function f̄k .

The proof can be found in Appendix.

4. An incremental clustering algorithm

In this section we describe an incremental algorithm for solving
cluster analysis problems.

Algorithm 4. An incremental algorithm for clustering problems.
Step 1: (Initialization) Select a tolerance � >0. Compute the center

x1 ∈ IRn of the set A. Let f 1 be the corresponding value of the objective
function (13). Set k = 1.

Step 2: (Computation of the next cluster center) Set k = k + 1.
Let x1, . . . , xk−1 be the cluster centers for (k − 1)-partition problem.
Apply Algorithm 3 to find a starting point ȳ ∈ IRn for the k-th cluster
center.

Step 3: (Refinement of all cluster centers) Select (x1, . . . , xk−1, ȳ)

as a new starting point, apply k-means algorithm to solve k-partition
problem. Let y1, . . . , yk be a solution to this problem and f k be the
corresponding value of the objective function (13).

Step 4: (Stopping criterion) If

f k−1 − f k

f 1
< � (33)

then stop, otherwise set xi = yi, i = 1, . . . , k and go to Step 2.

It is clear that f k �0 for all k�1 and the sequence {f k} is decreas-
ing, that is,

f k+1� f k for all k�1.

This means that the stopping criterion in Step 4 will be satisfied after
finite many iterations. Thus Algorithm 4 computes as many clusters
as the data set A contains with respect to the tolerance � >0.

The choice of the tolerance � >0 is crucial for Algorithm 4. Large
values of � can result in the appearance of large clusters whereas
small values can produce artificial clusters. The recommended values
for � are � ∈ [0.01,0.1].

5. Results of numerical experiments

To verify the efficiency of the proposed algorithm numerical ex-
periments with a number of real-world data sets have been carried
out on a PC Pentium-4 with CPU 2.4GHz and RAM 512MB. Fourteen
data sets have been used in numerical experiments. The brief de-
scription of the data sets is given in Table 1. The detailed description
of German towns, Bavaria postal data sets can be found in Ref. [2],
Fisher's Iris Plant data set in Ref. [21], the traveling salesman prob-
lems TSPLIB1060 and TSPLIB3038 in Ref. [22] and all other data sets
in Ref. [23].

We computed up to 10 clusters in data sets with nomore than 150
instances, up to 50 clusters in data sets with the number of instances
between 150 and 1000 and up to 100 clusters in data sets with more
than 1000 instances. The multi-start k-means (MS k-means) and
the GKM algorithms have been used in numerical experiments for
comparison purpose. To find k clusters, 100 times k starting points
were randomly chosen in the MS k-means algorithm for all data sets

Table 1
The brief description of data sets

Data sets Number of instances Number of attributes

German towns 59 2
Bavaria postal 1 89 3
Bavaria postal 2 89 4
Fisher's Iris Plant 150 4
Heart Disease 297 13
Liver Disorders 345 6
Ionosphere 351 34
Congressional Voting Records 435 16
Breast Cancer 683 9
Pima Indians Diabetes 768 8
TSPLIB1060 1060 2
Image Segmentation 2310 19
TSPLIB3038 3038 2
Page Blocks 5473 10



3196 A.M. Bagirov / Pattern Recognition 41 (2008) 3192 -- 3199

Table 2
Results for German towns and Bavaria postal 1 data sets

k fopt MS k-means GKM MGKM

E � t E � t E � t

German towns
2 0.12143 × 106 0.00 6.80 0.00 0.00 0.230 0.00 0.00 0.590 0.00
3 0.77009 × 105 0.00 13.6 0.00 1.45 0.289 0.00 1.45 0.991 0.00
4 0.49601 × 105 0.00 23.6 0.00 0.72 0.366 0.00 0.72 1.430 0.00
5 0.38716 × 105 0.00 31.2 0.00 0.00 0.490 0.00 0.00 1.910 0.00
6 0.30536 × 105 0.00 38.3 0.00 0.00 0.602 0.00 0.27 2.350 0.00
7 0.24433 × 105 5.35 44.9 0.00 0.09 0.732 0.00 0.00 2.800 0.00
8 0.21748 × 105 0.33 46.1 0.00 0.10 0.832 0.00 0.00 3.260 0.00
9 0.18946 × 105 4.14 57.8 0.00 0.00 0.997 0.00 2.28 3.730 0.00

10 0.16555 × 105 13.98 61.4 0.02 0.28 1.120 0.00 0.00 4.270 0.00

Bavaria postal 1
2 0.60255 × 1012 0.00 11.7 0.00 7.75 0.445 0.00 0.00 1.26 0.00
3 0.29451 × 1012 0.00 30.5 0.00 0.00 0.507 0.00 0.00 2.13 0.00
4 0.10447 × 1012 0.00 43.0 0.00 0.00 0.730 0.00 0.00 3.16 0.00
5 0.59762 × 1011 0.00 67.6 0.00 0.00 1.050 0.00 0.00 4.29 0.00
6 0.35909 × 1011 27.65 76.0 0.00 0.00 1.170 0.00 0.00 5.22 0.00
7 0.21983 × 1011 0.61 107 0.02 1.50 1.550 0.00 1.50 6.41 0.02
8 0.13385 × 1011 0.00 124 0.03 0.00 1.980 0.00 0.00 7.65 0.02
9 0.84237 × 1010 35.81 135 0.03 0.00 2.150 0.00 0.00 8.71 0.02

10 0.64465 × 1010 30.67 160 0.03 0.00 2.870 0.00 0.00 10.2 0.02

and starting points were data points. In the GKM and the modified
global k-means (MGKM) algorithms a distance matrix D = (dij)

m
i,j=1

of a data set was computed before the start of the algorithms. Here
dij = ‖ai − aj‖2. This matrix was used by both algorithms to find
starting points.

Results of numerical experiments are presented in Tables 2--8. In
these tables we use the following notation:

• k is the number of clusters;
• fopt is the best known value of the cluster function (13) (multi-

plied by m) for the corresponding number of clusters. For German
towns, Bavaria postal 1 and 2, Iris Plant data sets fopt is the value
of the cluster function at the known global minimizer (see Ref.
[17]);

• E is the error in %;
• N is the number of Euclidean norm evaluations for the computa-

tion of the corresponding number of clusters. To avoid big num-
bers in tables we use its expression in the form N = � × 10l and
present the values of � in tables. l = 4 for German towns, Bavaria
postal 1 and 2, Iris Plant data sets, l=5 for Heart Disease, Liver Dis-
orders, Ionosphere, Congressional Voting Records data sets, l = 6
for Breast Cancer, Pima Indians Diabetes, TSPLIB1060, Image Seg-
mentation data sets and l = 7 for TSPLIB3038, Page Blocks data
sets.

• t is the CPU time (in seconds).

The values of fopt for German towns, Bavaria postal, Iris Plant,
Image Segmentation (k�50), TSPLIB1060 (k�50) and TSPLIB3038
(k�50) data sets are available, for example, in Refs. [16,17]. In
all other cases we take as fopt the best value obtained by the MS
k-means, GKM and MGKM algorithms.

The error E is computed as

E = (f̄ − fopt)

fopt
× 100, (34)

where f̄ is the best value (multiplied by m) of the objective function
(13) obtained by an algorithm. E = 0 implies that an algorithm finds
the best known solution. We say that an algorithm finds a near global
(or best known) solution if 0< E <1.

The results presented in Table 2 show that the MS k-means al-
gorithm can locate global solutions when the number of clusters

Table 3
Results for Bavaria postal 2 and Iris Plant data sets

k fopt MS k-means GKM MGKM

E � t E � t E � t

Bavaria postal 2
2 0.19908 × 1011 144.28 13.3 0.00 162.17 0.445 0.00 162.17 1.25 0.00
3 0.17399 × 1011 0.00 23.9 0.00 0.00 0.507 0.00 0.00 2.13 0.00
4 0.75591 × 1010 0.00 40.9 0.00 0.00 0.659 0.00 0.00 3.12 0.00
5 0.53429 × 1010 0.00 53.5 0.00 1.86 0.801 0.00 1.86 4.08 0.00
6 0.32263 × 1010 37.37 69.4 0.00 0.00 0.917 0.00 0.00 5.00 0.02
7 0.22271 × 1010 10.75 91.6 0.00 0.00 1.49 0.00 0.00 6.32 0.02
8 0.17170 × 1010 12.31 106 0.03 0.00 1.71 0.00 0.00 7.35 0.02
9 0.14030 × 1010 9.50 126 0.03 0.00 2.12 0.00 0.00 8.41 0.02

10 0.11928 × 1010 18.88 132 0.05 0.00 2.31 0.00 0.00 9.41 0.02

Iris Plant
2 152.348 0.00 17.8 0.00 0.00 1.26 0.00 0.00 3.55 0.00
3 78.851 0.00 41.9 0.00 0.01 1.78 0.00 0.01 6.34 0.00
4 57.228 0.00 81.4 0.03 0.05 2.21 0.00 0.05 9.11 0.00
5 46.446 0.00 105 0.05 0.54 2.53 0.02 0.54 11.7 0.02
6 39.040 0.00 121 0.05 1.44 2.81 0.02 1.44 14.4 0.02
7 34.298 4.20 157 0.05 3.17 3.14 0.02 3.17 17.0 0.02
8 29.989 10.69 171 0.05 1.71 3.88 0.02 1.71 19.9 0.02
9 27.786 2.31 184 0.06 2.85 4.16 0.02 2.85 22.4 0.02

10 25.834 8.27 212 0.08 3.55 4.48 0.02 3.55 25.0 0.02

k�6 for German towns and k�5 for Bavaria postal 1 data sets.
However, the results also show that this algorithm is not effective
at computing more than five clusters even for small data sets. For
German towns data set the GKM algorithm does as same as the
MGKM algorithm four times, it does two times better and three
times worse than the MGKM algorithm. For Bavaria postal 1 data
set the GKM algorithm does as same as the MGKM algorithm eight
times and it does once worse than the MGKM algorithm. The MS
k-means algorithm is better than two other algorithms when the
number of clusters k�5. The GKM algorithm requires less compu-
tational efforts than other two algorithms.

In these data sets both the GKM and MGKM algorithms in most of
cases could locate either global or near global solutions. For German
towns data set the MS k-means algorithm could find global or near
global solutions six times, the GKM algorithm eight times and the
MGKM algorithm seven times. On Bavaria postal 1 data set the MS
k-means algorithm finds global or near global solutions six times,
the GKM algorithm seven times and the MGKM algorithm eight
times.

As one can see from Table 3, the GKM and MGKM algorithms
find the same solutions for both Bavaria postal 2 and Iris Plant data
sets. However, the GKM algorithm requires less computational ef-
forts than the MGKM algorithm.

All algorithms failed to find the global solution for k=2 in Bavaria
postal 2 data set. The MS k-means algorithm fails to find the global
solution when the number of clusters k >5 for Bavaria postal 2 data
set and k >6 for Iris Plant data set. For Bavaria postal 2 data set the
MS k-means algorithm finds global or near global solutions three
times, the GKM and MGKM algorithms seven times. For Iris Plant
data set the MS k-means algorithm finds such solutions five times,
the GKM and MGKM algorithms four times.

The results from Table 4 demonstrate that the MS k-means al-
gorithm cannot locate the global solution for Heart Disease data set
when k >5 and for Liver Disorders data set when k >10. For Heart
Disease data set the GKM algorithm does as same as the MGKM al-
gorithm two times, it does four times better and three times worse
than the MGKM algorithm. For Liver Disorder data set the GKM al-
gorithm does as same as the MGKM algorithm two times and it does
once better and six times worse than the MGKM algorithm. Again
the GKM algorithm requires less computational efforts than other
two algorithms.
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Table 4
Results for Heart Disease and Liver Disorders data sets

k fopt MS k-means GKM MGKM

E � t E � t E � t

Heart Disease
2 0.59890 × 106 0.00 7.86 0.16 0.00 0.505 0.02 0.00 1.40 0.02
5 0.32797 × 106 0.00 29.7 0.47 0.52 0.722 0.02 0.52 4.25 0.05

10 0.20222 × 106 2.76 80.1 0.84 0.00 1.57 0.03 1.93 9.31 0.09
15 0.14771 × 106 8.79 113 1.14 0.00 2.68 0.06 0.68 14.6 0.17
20 0.11778 × 106 7.46 130 1.19 0.00 3.98 0.09 1.34 20.4 0.23
25 0.10213 × 106 5.16 151 1.31 0.48 5.46 0.11 0.00 25.9 0.33
30 0.88795 × 105 18.66 180 1.64 0.00 6.80 0.14 0.31 31.5 0.44
40 0.68645 × 105 28.65 213 1.67 1.71 9.71 0.20 0.00 43.5 0.69
50 0.55894 × 105 33.68 250 1.88 2.06 13.2 0.27 0.00 55.4 1.03

Liver Disorders
2 0.42398 × 106 0.00 6.91 0.09 93.96 0.600 0.00 93.96 0.600 0.00
5 0.21826 × 106 0.00 41.7 0.42 0.08 0.990 0.03 0.08 5.75 0.03

10 0.12768 × 106 0.09 87.5 0.67 0.00 2.00 0.05 0.02 12.7 0.08
15 0.97474 × 105 6.53 147 0.92 1.62 3.41 0.08 0.00 20.3 0.13
20 0.81820 × 105 9.05 184 1.11 0.29 5.12 0.11 0.00 27.5 0.19
25 0.70419 × 105 16.64 208 1.17 0.23 6.99 0.13 0.00 35.1 0.28
30 0.61143 × 105 24.33 229 1.31 0.21 8.75 0.16 0.00 43.0 0.39
40 0.47832 × 105 37.83 290 1.61 3.59 14.6 0.23 0.00 60.4 0.66
50 0.39581 × 105 50.64 337 1.88 5.50 19.9 0.28 0.00 78.0 0.97

Table 5
Results for Ionosphere and Congressional Voting Records data sets

k fopt MS k-means GKM MGKM

E � t E � t E � t

Ionosphere
2 0.24194 × 104 0.00 5.75 0.45 0.00 0.663 0.03 0.00 1.90 0.05
5 0.18915 × 104 0.00 26.2 0.70 0.07 0.899 0.05 0.18 5.85 0.13

10 0.15694 × 104 1.02 67.3 1.88 1.73 1.40 0.08 0.00 12.5 0.27
15 0.14014 × 104 3.72 104 2.47 4.31 1.88 0.11 0.00 19.3 0.42
20 0.12714 × 104 2.62 136 3.05 5.73 2.53 0.13 0.00 26.1 0.77
25 0.11486 × 104 11.95 182 4.02 6.76 3.35 0.16 0.00 33.3 1.39
30 0.10469 × 104 13.99 200 4.19 7.37 4.35 0.20 0.00 40.6 2.20
40 0.85658 × 103 30.35 273 5.59 7.82 7.88 0.30 0.00 55.8 4.77
50 0.70258 × 103 45.90 352 6.72 6.63 11.1 0.38 0.00 71.6 8.39

Congressional Voting Records
2 0.16409 × 104 0.00 7.77 0.28 0.12 1.00 0.02 0.12 2.91 0.03
5 0.13371 × 104 0.00 37.5 0.39 1.02 1.60 0.05 1.02 9.15 0.11

10 0.11312 × 104 1.12 95.8 1.48 1.33 2.84 0.08 0.00 19.7 0.20
15 0.10089 × 104 1.42 134 1.73 0.00 4.72 0.13 0.17 30.7 0.31
20 0.91445 × 103 6.11 174 2.30 1.40 6.25 0.17 0.00 41.9 0.44
25 0.85032 × 103 5.87 209 2.38 2.03 7.55 0.22 0.00 53.0 0.58
30 0.78216 × 103 12.31 238 2.73 2.73 10.1 0.27 0.00 64.8 0.73
40 0.69412 × 103 18.36 291 3.20 3.32 15.2 0.38 0.00 87.1 1.16
50 0.62451 × 103 25.72 351 3.69 4.35 19.9 0.48 0.00 111 1.84

For Heart Disease data set the MS k-means algorithm finds the
best known or near best known solutions two times, the GKM
and MGKM algorithms find those solutions seven times. For Liver
Disorder data set the MS k-means algorithm finds the best known
or near best known solutions three times, the GKM algorithm five
times and the MGKM algorithm eight times. The MGKM algo-
rithm outperforms two other algorithms as the number of clusters
increases.

In Ionosphere and Congressional Voting Records data sets the MS
k-means algorithm again cannot find the global solution when the
number of clusters k >5 (see Table 5). For Ionosphere data set the
GKM algorithm does as same as the MGKM algorithm once, it does
once better and seven times worse than the MGKM algorithm. For
Congressional Voting Records data set the GKM algorithm does as
same as the MGKM algorithm two times and it does once better and
six times worse than the MGKM algorithm. Again the GKM algorithm
requires less computational efforts than other two algorithms.

Table 6
Results for Breast Cancer and Pima Indians Diabetes data sets

k fopt MS k-means GKM MGKM

E � t E � t E � t

Breast Cancer
2 0.19323 × 105 0.00 0.891 0.38 0.00 0.242 0.05 0.00 0.709 0.06
5 0.13705 × 105 0.00 8.50 1.30 2.28 0.306 0.09 1.86 2.17 0.17

10 0.10216 × 105 4.40 15.8 1.47 0.00 0.559 0.17 0.02 4.60 0.33
15 0.87813 × 104 0.20 24.2 1.91 0.00 0.803 0.23 0.04 7.14 0.48
20 0.77855 × 104 5.99 34.0 2.45 1.80 1.06 0.31 0.00 9.65 0.66
25 0.69682 × 104 9.87 40.6 2.66 4.12 1.27 0.38 0.00 12.4 0.83
30 0.64415 × 104 10.44 49.3 3.23 3.43 1.63 0.45 0.00 15.0 0.98
40 0.56171 × 104 15.99 61.7 3.77 3.70 2.22 0.61 0.00 20.2 1.39
50 0.49896 × 104 22.37 74.2 4.27 4.21 3.03 0.77 0.00 25.6 1.83

Pima Indians Diabetes
2 0.51424 × 107 0.00 2.30 1.13 0.00 0.318 0.06 0.00 0.909 0.09
5 0.17370 × 107 0.00 10.6 1.58 0.14 0.440 0.13 0.14 2.81 0.22

10 0.94436 × 106 0.00 30.4 2.75 0.36 0.646 0.20 0.36 5.98 0.41
15 0.69725 × 106 2.30 46.5 3.73 0.00 1.06 0.30 0.03 9.36 0.59
20 0.57438 × 106 3.50 56.1 3.94 0.00 1.53 0.39 0.36 12.8 0.80
25 0.49058 × 106 5.75 66.5 4.61 0.00 2.20 0.52 0.53 16.3 0.98
30 0.43641 × 106 10.65 77.2 5.28 1.84 2.53 0.59 0.00 19.9 1.22
40 0.36116 × 106 13.77 106 6.61 0.00 4.02 0.83 0.51 27.0 1.70
50 0.31439 × 106 20.16 120 7.09 0.24 5.31 1.06 0.00 34.1 2.28

Table 7
Results for TSPLIB1060 and Image Segmentation data sets

k fopt MS k-means GKM MGKM

E � t E � t E � t

TSPLIB1060
2 0.98319 × 1010 0.00 1.71 0.75 0.00 0.580 0.08 0.00 1.71 0.08

10 0.17548 × 1010 0.05 53.1 2.36 0.23 1.45 0.36 0.05 11.6 0.34
20 0.79179 × 109 8.74 93.9 2.78 1.88 2.96 0.69 1.88 24.3 0.66
30 0.48125 × 109 4.91 123 3.14 3.34 4.70 1.03 3.37 37.3 0.97
40 0.35312 × 109 8.23 141 3.48 1.14 6.45 1.38 0.00 50.3 1.30
50 0.25551 × 109 21.17 167 3.95 3.10 8.92 1.73 2.53 64.2 1.69
60 0.20443 × 109 22.11 199 4.58 0.72 11.3 2.08 0.00 78.0 2.06
80 0.13535 × 109 33.51 251 5.47 0.00 17.2 2.80 0.06 107 2.89

100 0.10041 × 109 52.12 281 5.94 0.10 22.7 3.53 0.00 135 3.75

Image Segmentation
2 0.35606 × 108 0.00 6.49 11.59 0.00 2.71 1.06 0.00 8.04 1.39

10 0.97952 × 107 2.25 80.3 15.95 1.76 3.67 3.97 1.76 51.6 6.75
20 0.51283 × 107 14.06 188 20.58 0.09 6.36 7.58 1.49 108 13.11
30 0.35076 × 107 14.52 270 23.83 0.06 12.5 11.36 0.06 167 20.89
40 0.27398 × 107 21.56 339 26.59 1.25 17.1 16.67 1.24 225 28.92
50 0.22249 × 107 27.33 423 30.55 2.41 22.8 18.73 2.41 283 37.72
60 0.19095 × 107 35.21 493 33.33 0.00 29.7 22.50 0.86 343 46.91
80 0.14440 × 107 45.87 659 39.47 0.93 45.9 30.19 0.00 466 68.81

100 0.11512 × 107 50.03 805 45.17 0.92 63.8 38.00 0.00 589 93.69

For Ionosphere data set the MS k-means and GKM algorithms
find the best known (or near best known) solutions two times and
MGKM algorithm finds those solutions nine times. For Congressional
Voting Records data set the MS k-means and GKM algorithms find
such solutions two times and the MGKM algorithm eight times. The
MGKM algorithm significantly outperforms two other algorithms as
the number of clusters increases.

Results from Table 6 show that the MS k-means algorithm cannot
find the global solution when the number of clusters k >5 in Breast
Cancer data set and when k >10 in Pima Indians Diabetes data set.
For Breast Cancer data set the GKM algorithm does as same as the
MGKM algorithm once, it does two times better and six times worse
than the MGKM algorithm. For Pima Indians Diabetes data set the
GKM algorithm does as same as the MGKM algorithm three times
and it does four times better and two times worse than the MGKM
algorithm. Again the GKM algorithm requires less computational ef-
forts than other two algorithms.



3198 A.M. Bagirov / Pattern Recognition 41 (2008) 3192 -- 3199

Table 8
Results for TSPLIB3038 and Page Blocks data sets

k fopt MS k-means GKM MGKM

E � t E � t E � t

TSPLIB3038
2 0.31688 × 1010 0.00 0.860 12.97 0.00 0.469 1.38 0.00 1.39 0.86

10 0.56025 × 109 0.00 14.2 11.52 2.78 0.857 8.41 0.58 9.16 3.30
20 0.26681 × 109 0.42 37.1 14.53 2.00 1.60 16.63 0.48 19.2 5.77
30 0.17557 × 109 1.16 57.8 19.09 1.45 2.97 25.00 0.67 29.5 8.25
40 0.12548 × 109 2.24 74.6 22.28 1.35 3.98 33.23 1.35 39.9 10.70
50 0.98400 × 108 2.60 84.5 23.55 1.19 5.26 41.52 1.41 50.5 13.23
60 0.82006 × 108 5.56 103 27.64 0.00 6.39 49.75 0.98 61.0 15.75
80 0.61217 × 108 4.84 119 30.02 0.00 9.56 66.42 0.63 82.9 20.94

100 0.48912 × 108 5.99 138 33.59 0.59 12.9 83.16 0.00 105 26.11

Page Blocks
2 0.57937 × 1011 0.24 1.82 577.05 0.24 1.50 8.19 0.00 4.50 6.92

10 0.45662 × 1010 206.38 42.3 168.45 0.80 1.66 49.62 0.00 28.6 34.09
20 0.17139 × 1010 70.44 259 367.39 0.00 2.30 92.30 0.19 59.3 62.09
30 0.94106 × 109 399.77 452 417.28 0.75 3.15 132.41 0.00 90.1 89.42
40 0.62570 × 109 485.89 641 477.88 0.17 4.22 172.13 0.00 121 118.55
50 0.42937 × 109 725.19 760 503.03 0.04 5.86 212.27 0.00 152 149.77
60 0.31185 × 109 1057.99 920 571.77 0.00 10.1 254.88 0.33 185 184.06
80 0.20576 × 109 1647.96 889 513.25 1.46 14.2 334.36 0.00 250 258.69

100 0.14545 × 109 998.80 796 443.64 0.00 20.5 415.19 0.10 316 346.94

For Breast Cancer data set the MS k-means and GKM algorithms
find the best known or near best known solutions three times and the
MGKM algorithm finds such solutions eight times. For Pima Indians
Diabetes data set the MS k-means algorithm finds such solutions
three times, the GKM algorithm eight times and theMGKM algorithm
nine times.

The MS k-means algorithm cannot find the global solution when
the number of clusters k >10 for TSPLIB1060 data set and k >2 for
Image Segmentation data set (Table 7). For TSPLIB1060 data set the
GKM algorithm does as same as the MGKM algorithm two times, it
does two times better and five times worse than the MGKM algo-
rithm. For Image Segmentation data set the GKM algorithm does as
same as the MGKM algorithm five times and it does two times better
and two timesworse than theMGKM algorithm. Again the GKM algo-
rithm requires less computational efforts than two other algorithms.

For TSPLIB1060 data set the MS k-means algorithm finds the
best known (or near best known) solutions two times, the GKM
algorithm five times and the MGKM algorithm six times. For Im-
age Segmentation data set the MS k-means algorithm finds such
solutions only once, the GKM algorithm six times and the MGKM
algorithm five times.

The MS k-means algorithm again cannot find the global solution
when the number of clusters k >10 for TSPLIB3038 data set and k�2
for Page Blocks data set (Table 8). For TSPLIB3038 data set the GKM
algorithm does as same as the MGKM algorithm two times, it does
three times better and four times worse than the MGKM algorithm.
For Page Blocks data set the GKM algorithm does three times better
and six timesworse than theMGKM algorithm. TheMGKM algorithm
requires less CPU time than other two algorithms for both data sets.

For TSPLIB3038 data set the MS k-means algorithm finds the
best known (or near best known) solutions three times, the GKM
algorithm four times and the MGKM algorithm seven times. For
Block Pages data set the MS k-means algorithm finds such solutions
only once, the GKM algorithm eight times and the MGKM algorithm
nine times.

Overall on 14 data sets, the GKM algorithm does as same as the
MGKM algorithm 50 (39.7%) times, it does 25 (19.8%) times better
and 51 (40.5%) times worse than the MGKM algorithm. The MS k-
means algorithm finds the best known (or near best known) solutions
42 (33.3%) times, the GKM algorithm 76 (60.3%) times and theMGKM
algorithm 102 (81.0%) times.

The following results clearly demonstrate that the MGKM algo-
rithm is better than two other algorithms at computing large num-
ber of clusters (k�25) in larger data sets (m >150). Indeed, in this
case the GKM algorithm does as same as the MGKM algorithm three
(6.3%) times, it does 12 (25.0%) times better and 33 (68.7 %) times
worse than the MGKM algorithm. The MS k-means algorithm failed
to find the best known (or near best known) solutions, the GKM al-
gorithm finds such solutions 22 (45.8%) times and the MGKM algo-
rithm 42 (87.5%) times.

Thus, these results allow us to draw the following conclusions:

1. The MS k-means algorithm is not effective at computing even
moderately large number of clusters in large data sets.

2. Three algorithms, considered in this paper, are different ver-
sions of the k-means algorithm. Their main difference is in the
way they compute starting points. In the MS k-means algo-
rithm starting points are chosen randomly, however, in two other
algorithms special schemes are applied to find them. Results
of numerical experiments show that the MGKM algorithm is
more effective than two other algorithms at finding good starting
points.

3. There is no any significant difference between the results of the
GKM and MGKM algorithms on small data sets. However, the
GKM requires significantly less computational efforts.

4. The MGKM algorithm works better than the GKM algorithm for
large data sets and for large number of clusters (k�25). The
MGKM algorithm is especially effective for data sets such as Iono-
sphere, Congressional Voting Records, Liver Disorders data sets,
which do not have well separated clusters.

6. Conclusions

In this paper, we have developed the new version of the global
k-means algorithm, the modified global k-means algorithm. This al-
gorithm computes clusters incrementally and to compute k-partition
of a data set it uses k −1 cluster centers from the previous iteration.
An important step in this algorithm is the computation of a start-
ing point for the k-th cluster center. This starting point is computed
by minimizing the so-called auxiliary cluster function. The proposed
algorithm computes as many clusters as a data set contains with
respect to a given tolerance.
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We have presented the results of numerical experiments on 14
data sets. These results clearly demonstrate that the multi-start
k-means algorithm cannot be alternative to both the global k-means
and the modified global k-means algorithms when the number of
clusters k >5. The results presented also demonstrate that the mod-
ified global k-means algorithm is more effective than the global
k-means algorithm at computing of large number of clusters in large
data sets. However, the former algorithm requires more CPU time
than the latter one. Results presented in this paper again confirm
that the choice of starting points in k-means algorithms is crucial.
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Appendix

Proof of Proposition 1. Since S1(x̄) = ∅ we get that

f̄k(x̄) = 1
m

∑
ai∈S2(x̄)

‖x̄ − ai‖2 + 1
m

∑
ai∈S3(x̄)

di
k−1. (35)

It is clear that x̄ is a global minimizer of the convex function

�(x) = 1
m

∑
ai∈S2(x̄)

‖x − ai‖2 (36)

that is �(x̄)��(x) for all x ∈ IRn.
Let B�(x̄) = {y ∈ IRn : ‖y − x̄‖ < �}. There exists � >0 such that

‖x − ai‖2 < di
k−1 ∀ ai ∈ S2(x̄) and ∀x ∈ B�(x̄), (37)

‖x − ai‖2 > di
k−1 ∀ ai ∈ S3(x̄) and ∀x ∈ B�(x̄). (38)

Then for any x ∈ B�(x̄) we have

f̄k(x) = 1
m

∑
ai∈S2(x̄)

‖x − ai‖2 + 1
m

∑
ai∈S3(x̄)

di
k−1

= �(x) + 1
m

∑
ai∈S3(x̄)

di
k−1

��(x̄) + 1
m

∑
ai∈S3(x̄)

di
k−1

= f̄k(x̄). (39)

Thus f̄k(x)� f̄k(x) for all x ∈ B�(x̄). �
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