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k-Means algorithm and its variations are known to be fast clustering algorithms. However, they are
sensitive to the choice of starting points and inefficient for solving clustering problems in large data sets.
Recently, a new version of the k-means algorithm, the global k-means algorithm has been developed.
It is an incremental algorithm that dynamically adds one cluster center at a time and uses each data

point as a candidate for the k-th cluster center. Results of numerical experiments show that the global
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k-means algorithm considerably outperforms the k-means algorithms. In this paper, a new version of the
global k-means algorithm is proposed. A starting point for the k-th cluster center in this algorithm is
computed by minimizing an auxiliary cluster function. Results of numerical experiments on 14 data sets
demonstrate the superiority of the new algorithm, however, it requires more computational time than
the global k-means algorithm.
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1. Introduction

The cluster analysis deals with the problems of organization of
a collection of patterns into clusters based on similarity. It is also
known as the unsupervised classification of patterns and has found
many applications in different areas.

In cluster analysis we assume that we have been given a finite
set of points A in the n-dimensional space R", that is
A={da',...,d™} whered eR", i=1,....m.

There are different types of clustering. In this paper, we consider the
hard unconstrained partition clustering problem, that is the distri-
bution of the points of the set A into a given number k of disjoint
subsets Al, j=1, ..., k with respect to predefined criteria such that:

(DA #0j=1,..k
2) A’mAll:w,‘j,lzl,...,k,j;él;
(3) A=Ujs14s

(4) no constraints are imposed on the clusters A/, j=1,..., k.

The sets A’J =1,...,k are called clusters. We assume that each
cluster A/ can be identified by its center (or centroid) ¥ e
R",j=1,...,k Then the clustering problem can be reduced to the
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following optimization problem (see Refs. [1,2]):

k
S 1 )
minimize y(x, w) = ZZWU'HXJ .l (1)
i=1j=1
subject to x = (x!, ..., xK) e Rk, (2)
k
ZWU:L i=1,...,m and (3)
j=1

WU:O or 1, i:],...

where wj; is the association weight of pattern a' with the cluster j,
given by

|1 if pattern al is allocated to the cluster j, 5)
U7 |0 otherwise
and
. mwial
xfzzﬁn#, j=1,....k (6)
2i=1Wij
Here | - || is an Euclidean norm and w is an m x k matrix. Prob-
lem (1)—(6) is also known as minimum sum-of-squares clustering
problem.

Different algorithms have been proposed to solve the cluster-
ing problem. The paper [3] provides survey of most of existing
algorithms. We mention among them heuristics like k-means algo-
rithms and their variations (h-means, j-means, etc.), mathematical
programming techniques including dynamic programming, branch
and bound, cutting plane, interior point methods, the variable
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neighborhood search algorithm and metaheuristics like simulated
annealing, tabu search, genetic algorithms (see Refs. [2,4—-15]).

The objective function y, in Eq. (1) has many local minimizers
(local solutions of problem (1)—(6)). Local minimizers are points,
where the function y, achieves its smallest value in some feasible
neighborhood of these points. Global minimizers (or global solutions
of problem (1)-(6)) of y, are points where the function attains its
least value over the feasible set. It is expected that global minimizers
provide better cluster structure of a data set. However, the most of
clustering algorithms can locate only local minimizers of the func-
tion y, and these local minimizers may differ from global ones sig-
nificantly as the number of clusters increases. Global optimization
algorithms, mentioned above, are not applicable to even relatively
large data sets. Another difficulty is that the number of clusters is
not known a priori.

Over the last several years different incremental algorithms have
been proposed to address these difficulties. Incremental cluster-
ing algorithms attempt to optimally add one new cluster center at
each stage. In order to compute k-partition of the set A these al-
gorithms start from an initial state with the k — 1 centers for the
(k — 1)-clustering problem and the remaining k-th center is placed
in an appropriate position. Results of numerical experiments show
that these algorithms are able to locate either a global minimizer
or a local minimizer close to global one. The paper [16] develops
an incremental algorithm based on nonsmooth optimization ap-
proach to clustering. The incremental approach is also discussed in
Ref. [17].

The global k-means (GKM) algorithm, introduced in Ref. [18], is
a significant improvement of the k-means algorithm. It is an incre-
mental algorithm. In this algorithm each data point is used as a
starting point for the k-th cluster center. Such an approach leads at
least to a near global minimizer. However, this approach is not effi-
cient since it is very time consuming, as m applications of k-means
algorithm are made. Instead the authors suggest two procedures to
reduce computational load.

The first algorithm is called the fast GKM algorithm. Given the
solution x1, ..., xk=1 of the (k — 1)-clustering problem and the cor-
responding value ‘/’ltfl = 1//k_1(x1 ..... xk=1y of the function Yy in
Eq. (1) this algorithm does not execute the k-means algorithm for
each data point. Instead it computes an upper bound z//;; < WL] —b;
on the |//z, where

m
b= max(0.d,_, — & —d'|?), j=1.....m. 7
i=1

Here d;<71 is the squared distance between ai and the closest center
among k — 1 cluster centers x!, ..., xk~1:

i, =min{x! —d'|2, ... XK1 —d)?). (8)

A data point @ e A with the maximum value of bj is chosen as a
starting point for the k-th cluster center.

In the second procedure a k — d tree is used to partition A into
m’ <m subsets; their centroids are used as starting points in the GKM
scheme. The second procedure can be applied to low dimensional
data sets.

In this paper, we propose a new version of the GKM algorithm.
The difference between the new version and the fast GKM algorithm
lies in the way a starting point for the k-th cluster center is obtained.
Given the solution x1, ..., xk=1 of the (k — 1)-clustering problem, we
formulate the so-called auxiliary cluster function:

_ 1m0 .
fe =" minidj_y. 1y —d'I?). 9)
i=1

We apply the k-means algorithm to minimize this function. A local
minimizer found is selected as a starting point for the k-th cluster
center. We present the results of numerical experiments on 14 data
sets. These results demonstrate that the superiority of the proposed
algorithm over the GKM algorithm, however, it is less computation-
ally efficient.

The rest part of the paper is organized as follows: Section 2 gives
a brief description of k-means and the GKM algorithms. The nons-
mooth optimization approach to clustering and an algorithm for the
computation of a starting point is described in Section 3. Section 4
presents an algorithm for solving clustering problems. The results of
numerical experiments are given in Section 5. Section 6 concludes
the paper.

2. k-Means and the GKM algorithms

In this section we give a brief description of the k-means and the
GKM algorithms.
The k-means algorithm proceeds as follows.

Algorithm 1. The k-means algorithm.

Step 1: Choose a seed solution consisting of k centers (not neces-
sarily belonging to A).

Step 2: Allocate data points a € A to its closest center and obtain
k-partition of A.

Step 3: Recompute centers for this new partition and go to
Step 2 until no more data points change their clusters.

This algorithm is very sensitive to the choice of a starting point.
It converges to a local solution which can significantly differ from
the global solution in many large data sets.

The GKM algorithm proposed in Ref. [18] is an incremental clus-
tering algorithm. To compute k <m clusters this algorithm proceeds
as follows.

Algorithm 2. The GKM algorithm.
Step 1: (Initialization) Compute the centroid x! of the set A:

10 ;
1_ 5 i i T
X _mZa, adecA i=1,....m (10)
i=1
and set g=1.
Step 2: (Stopping criterion) Set q = q + 1. If ¢ > k, then stop.
Step 3: Take the centers x!,x2, ..., x4=1 from the previous it-

eration and consider each point a of A as a starting point for the
g-th cluster center, thus obtaining m initial solutions with q points
«1,...,x9-1 a); apply the k-means algorithm to each of them; keep
the best g-partition obtained and its centers y!,y2, ..., yd.

Step 4: Set xi =yi,i=1,...,q and go to Step 2.

This version of the algorithm is not applicable for clustering on
middle sized and large data sets. Two procedures were introduced
to reduce its complexity (see Ref. [18]). We mention here only one
of them, because the second procedure is applicable only to low
dimensional data sets. Let d;{_l be a squared distance between a' e
A,i=1,...,m and the closest cluster center among the k — 1 cluster
centers obtained so far. In order to find the starting point for the
k-th cluster center, for each @ € A,j=1,..., m we compute bj using
Eq. (7).

bij=1...., m shows how much one can decrease the value of
the function v, from Eq. (1) if the data point d is chosen as the
k-th cluster center. Obviously, if @ € A, j=1, ..., m is not among the
cluster centers x1, ..., xk=1 then b; > 0. This means that by selecting
any such data point as a starting point for the k-th cluster center one
can decrease the value of the function ), at least by bj. It is clear
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that a data point @/ € A with the largest value of the b; is the best
candidate to be a starting point for the k-th cluster center. Therefore,
first we compute

b= max b
j=1,...m

(11)

and find the data point @ e A such that bj = b. This data point
is selected as a starting point for the k-th cluster center. In our
numerical experiments we use this procedure.

3. Computation of starting points

The clustering problem (1) can be reformulated in terms of non-
smooth, nonconvex optimization as follows (see Refs. [1,19,20]):

minimize f,(x) subject to x = «l ..., XKy e Rk, (12)
where
1 n S
feel, . xky = = > mini_; ¥ —d?. (13)
i=1

We call fj, a cluster function. Comparing two different formulations
(1) and (12) of the hard clustering problem one can note that:

1. The objective function y, depends onvariables wy;, i=1,...,m, j=
1,..., k (coefficients, which are integers) and x1,x2, ..., xk x e
R",j=1,..., k (cluster centers, which are continuous variables).

However, the function f, depends only on continuous variables
X1, xk,

2. The number of variables in problem (1) is (m + n) x k whereas
in problem (12) this number is only n x k and the number
of variables does not depend on the number of instances. It
should be noted that in many real-world data sets the num-
ber of instances m is substantially greater than the number of
features n.

3. The function y, is continuously differentiable with respect to
both variables w and x. Since the function f is represented as a
sum of minima functions it is nonsmooth for k > 1, that is it is
not differentiable everywhere.

4. Both functions v, and f}, are nonconvex.

5. Problem (1) is mixed integer nonlinear programming problem
and Eq. (12) is nonsmooth global optimization problem. How-
ever, they are equivalent in the sense that their global minimizers
coincide (see Ref. [1]).

Circumstances mentioned in Items 1 and 2 can be considered as
advantages of the nonsmooth optimization formulation (12) of the
clustering problem.

Assume that k > 1 and the cluster centers x!, ..., xk=1 for (k—1)-
partition problem are known. Considering k-partition problem we
introduce the following function:

- 1 .
fewy = > minidj_y.ly - a'1?), (14)
i=1

where y € R" stands for k-th cluster center and d§<71 is defined in Eq.

(8). The function fk is called an auxiliary cluster function. It depends
on n variables only. It is clear that

fen =fixl, .. XK1y (15)

for all y € R™. This means that the auxiliary cluster function f;, co-
incides with the cluster function fj, with fixed k — 1 cluster centers

x!,...,xk=1. For each data point a’ € A consider also the following
function:
i) = min{d} .y —d'|?). (16)

This function is represented as a minimum of constant and very
simple quadratic function. If the data point a' is a cluster center then
dj,_; =0 and ¢y, (y) = 0. Otherwise

_ a2 _ a2 i
ly —d? if |y - <di .

. . ! 17
d_,  ifly-diP>d_,. 4

PikY) =
Since it is natural to assume that k <m, it is obvious that ¢;;,(y) >0
for some a' e Aandy € R" and fj,(y) > 0 for all y € R". As a minimum
function, ¢y, is nonsmooth and nonconvex. It is nondifferentiable
at points y € R", where |y — d'[|2 = dL]- Therefore, the function
fi is also nonsmooth and nonconvex. The set where this function
is nondifferentiable can be represented as a union of sets, where
functions ¢;, are nondifferentiable.
Minimum value f ; of the function fi_; is

18
1
fir=1 2y (18)
i=1
If the data point @ € A is not a cluster center, then

P L S
el A ) = S mingd . 1@ - d')). (19)
i=1

Given & € A consider the following two index sets:
L=(ie(l...om:a —d|?>d_,) (20)
h=(ie{l....om:la —d|?<d,_ ). (21)

Using this notation one can rewrite a formulae for bj from Eq. (7) as
follows:

bj=Y (4 —ld —d'|?. (22)
i€12

Then
fe@) =fxl, .. %K1 dl)

= % (Z di  +> I - ai||2) (23)

iGI] iEIZ
and therefore,

fk_](xl, xRy —fk(xl, CxkT
=Y d,_;—1d —d'?
iEIZ
=b. (24)

This means that if one selects @/ as a starting point for the k-th
cluster center then the optimal value of the function f,_; can be
decreased by b; >0. Therefore it is natural to select a data point with
the largest value of bj as a starting point for the k-th cluster center,
which is done in one of the versions of the GKM algorithm. In this
paper, we suggest to minimize the auxiliary cluster function fj, to
find a starting point for the k-th cluster center. Since the auxiliary
cluster function coincides with the cluster function f; when previ-
ous k — 1 cluster centers x!, ..., xk=1 are fixed, the minimization of
the auxiliary cluster function is equivalent to the minimization of
the cluster function f;, with fixed k — 1 cluster centers x!, ..., xk=1,
The k-means algorithm is applied to find a local minimizer
of f.
Now consider the set

D=(yeR":|y—d?>dl , ¥;e{l.....m). (25)
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Dis the set where the distance between any its point y and any data
point a’ € A is no less than the distance between this data point and
its cluster center. We also consider the following set:

Dg=R™D
={yeR":3c(l,...m,I#0:|y—d|?
<dj_,viel). (26)

The function fj, is a constant on the set D and its value is

_ 1M _
fk=do=— % di_y VyeD. (27)
i=1

It is clear that ¥ e D forall j=1,..., k—1and d e Dy for all a' e
Ad #£x,j=1,...,k—1.1tis also clear that fi(y) <dj for all y € Dg.

Any y € Dy can be selected as a starting point for the k-th clus-
ter center. The function fk is nonconvex function with many local
minima and the global minimizer of this function can be the best
candidate to be starting point for the k-th cluster center. However,
it is not always possible to find the global minimizer of fj in a rea-
sonable time. Therefore, we propose an algorithm for finding a local
minimizer of the function f.

For any y € Dy consider the following sets:

Sin={d eA:lly—d|?=d_,} (28)
S0 ={d eA:y-d|?<d, ), (29)
S3) =ta' €A: |y —a'|?>dl_,} (30)

The set Sy(y) # ¢ for any y € D.
The following algorithm is proposed to find a starting point for
the k-th cluster center.

Algorithm 3. An algorithm for finding a starting point.

Step 1: For each d' ¢ Do N A compute the set S,(a), its center c
and the value fk di = fi.(c!) of the function f} at the point c’.

Step 2: Compute

fk,min: ‘min f_k ai‘ (31)
alEDO ’
@ = arg min fk a (32)
a’eDoﬂA

the corresponding center ¢/ and the set S, (d)).
Step 3: Recompute the set S, (¢/) and its center until no more data
points escape or return to this set.

Let x be a cluster center generated by Algorithm 3. Since we
consider the hard clustering problem, that is each data point belongs
to only one cluster, one can assume that S (x) =
Proposition 1. The point X is a local minimizer of the function fk.

The proof can be found in Appendix.

4. An incremental clustering algorithm

In this section we describe an incremental algorithm for solving
cluster analysis problems.

Algorithm 4. An incremental algorithm for clustering problems.

Step 1: (Initialization) Select a tolerance ¢ > 0. Compute the center
x! € R" of the set A. Let f1 be the corresponding value of the objective
function (13). Set k=1.

Step 2: (Computation of the next cluster center) Set k =k + 1.
Let x!, ..., xk=1 be the cluster centers for (k — 1)-partition problem.
Apply Algorithm 3 to find a starting point y € R" for the k-th cluster
center.

Step 3: (Refinement of all cluster centers) Select 1, .. xk1 )
as a new starting point, apply k-means algorithm to solve k-partition
problem. Let y!, ..., y¥ be a solution to this problem and fk be the
corresponding value of the objective function (13).

Step 4: (Stopping criterion) If

k— k
f fl —f <e (33)

then stop, otherwise set x' =y, i=1,..., k and go to Step 2.
It is clear that fX >0 for all k> 1 and the sequence {f¥} is decreas-
ing, that is,

el <k for all k>1.

This means that the stopping criterion in Step 4 will be satisfied after
finite many iterations. Thus Algorithm 4 computes as many clusters
as the data set A contains with respect to the tolerance ¢ > 0.

The choice of the tolerance ¢ > 0 is crucial for Algorithm 4. Large
values of ¢ can result in the appearance of large clusters whereas
small values can produce artificial clusters. The recommended values
for ¢ are ¢ € [0.01,0.1].

5. Results of numerical experiments

To verify the efficiency of the proposed algorithm numerical ex-
periments with a number of real-world data sets have been carried
out on a PC Pentium-4 with CPU 2.4 GHz and RAM 512 MB. Fourteen
data sets have been used in numerical experiments. The brief de-
scription of the data sets is given in Table 1. The detailed description
of German towns, Bavaria postal data sets can be found in Ref. [2],
Fisher's Iris Plant data set in Ref. [21], the traveling salesman prob-
lems TSPLIB1060 and TSPLIB3038 in Ref. [22] and all other data sets
in Ref. [23].

We computed up to 10 clusters in data sets with no more than 150
instances, up to 50 clusters in data sets with the number of instances
between 150 and 1000 and up to 100 clusters in data sets with more
than 1000 instances. The multi-start k-means (MS k-means) and
the GKM algorithms have been used in numerical experiments for
comparison purpose. To find k clusters, 100 times k starting points
were randomly chosen in the MS k-means algorithm for all data sets

Table 1
The brief description of data sets

Data sets Number of instances Number of attributes
German towns 59 2
Bavaria postal 1 89 3
Bavaria postal 2 89 4
Fisher's Iris Plant 150 4
Heart Disease 297 13
Liver Disorders 345 6
lonosphere 351 34
Congressional Voting Records 435 16
Breast Cancer 683 9
Pima Indians Diabetes 768 8
TSPLIB1060 1060 2
Image Segmentation 2310 19
TSPLIB3038 3038 2
Page Blocks 5473 10
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Table 2 Table 3
Results for German towns and Bavaria postal 1 data sets Results for Bavaria postal 2 and Iris Plant data sets
k  fopt MS k-means GKM MGKM k  fopt MS k-means GKM MGKM
E o t E o t B a t E o t E o t E o t

German towns

2 0.12143 x 10° 0.00 6.80 0.00 0.00 0.230 0.00 0.00 0.590 0.00
0.77009 x 10° 000 136 0.00 1.45 0.289 0.00 145 0.991 0.00
0.49601 x 10° 0.00 236 0.00 072 0366 0.00 0.72 1.430 0.00
0.38716 x 10° 0.00 312 0.00 0.00 0490 0.00 0.00 1.910 0.00
0.30536 x 10° 0.00 383 0.00 0.00 0.602 0.00 0.27 2.350 0.00
0.24433 x 10° 535 449 0.00 0.09 0.732 0.00 0.00 2.800 0.00
0.21748 x 10° 033 46.1 0.00 0.10 0.832 0.00 0.00 3.260 0.00
0.18946 x 10° 414 57.8 0.00 0.00 0997 0.00 2.28 3.730 0.00
0.16555 x 10° 1398 614 0.02 028 1.120 0.00 0.00 4270 0.00

O WO U AW

=

Bavaria postal 1

2 0.60255x 102 000 11.7 000 7.75 0445 000 000 126 0.00
0.29451 x 10" 000 305 0.0 0.0 0507 0.0 0.00 2.13 0.00
0.10447 x 10" 000 430 000 0.00 0730 0.0 0.00 3.16 0.00
0.59762 x 10!1 000 67.6 000 0.00 1.050 000 000 429 0.00
035909 x 10'" 2765 760 0.00 0.00 1.170 0.0 0.00 522 0.00
0.21983 x 10'1  0.61 107 0.02 150 1550 0.00 150 641 0.02
0.13385 x 10" 0.00 124 0.03 000 1980 0.00 0.00 7.65 0.02
0.84237 x 10'° 3581 135 0.03 0.00 2.150 0.00 0.00 8.71 0.02
0.64465 x 10'° 30.67 160 0.03 000 2870 0.00 0.00 102  0.02

O W oUW

=

and starting points were data points. In the GKM and the modified
global k-means (MGKM) algorithms a distance matrix D = (dij)?}.zl

of a data set was computed before the start of the algorithms. Here
dij = |la' — /|12, This matrix was used by both algorithms to find
starting points.

Results of numerical experiments are presented in Tables 2—8. In
these tables we use the following notation:

e k is the number of clusters;

o fopt is the best known value of the cluster function (13) (multi-
plied by m) for the corresponding number of clusters. For German
towns, Bavaria postal 1 and 2, Iris Plant data sets fop¢ is the value
of the cluster function at the known global minimizer (see Ref.
[17]);

o E is the error in %;

e N is the number of Euclidean norm evaluations for the computa-
tion of the corresponding number of clusters. To avoid big num-
bers in tables we use its expression in the form N =« x 10! and
present the values of « in tables. [ = 4 for German towns, Bavaria
postal 1 and 2, Iris Plant data sets, [=5 for Heart Disease, Liver Dis-
orders, lonosphere, Congressional Voting Records data sets, [ =6
for Breast Cancer, Pima Indians Diabetes, TSPLIB1060, Image Seg-
mentation data sets and [ = 7 for TSPLIB3038, Page Blocks data
sets.

o tis the CPU time (in seconds).

The values of fop; for German towns, Bavaria postal, Iris Plant,
Image Segmentation (k<50), TSPLIB1060 (k<50) and TSPLIB3038
(k<50) data sets are available, for example, in Refs. [16,17]. In
all other cases we take as fop; the best value obtained by the MS
k-means, GKM and MGKM algorithms.

The error E is computed as

E= = Jopt) x 100, (34)

Jopt

where f is the best value (multiplied by m) of the objective function
(13) obtained by an algorithm. E =0 implies that an algorithm finds
the best known solution. We say that an algorithm finds a near global
(or best known) solution if 0 <E < 1.

The results presented in Table 2 show that the MS k-means al-
gorithm can locate global solutions when the number of clusters

Bavaria postal 2
2 0.19908 x 10'" 14428 133 0.00 162.17 0445 0.00 162.17 1.25 0.00

3 0.17399 x 10'! 0.00 239 000 0.00 0507 0.00 0.00 2.13 0.00
4 0.75591 x 10'° 0.00 409 0.00 0.00 0.659 000 0.00 3.12 0.00
5 0.53429 x 10'° 0.00 53.5 0.00 1.86 0.801 0.00 1.86 4.08 0.00
6 032263 x10'° 3737 694 000 000 0917 000 000 500 0.02
7 022271 x10° 1075 916 000 000 149 000 000 632 0.2
8 0.17170 x 10'®  12.31 106 0.03 0.00 1.71 0.00 0.00 7.35 0.02
9 0.14030 x 10'° 9.50 126 0.03 0.00 2.12 0.00 0.00 8.41 0.02
10 0.11928 x 10'®  18.88 132 0.05 0.00 231 0.00 0.00 9.41 0.02
Iris Plant

2 152.348 000 17.8 000 0.00 1.26 0.00 0.00 3.55 0.00
3 78.851 0.00 419 000 0.01 1.78 0.00 001 6.34 0.00
4 57.228 0.00 81.4 0.03 0.05 221 0.00 0.05 9.11 0.00
5 46.446 0.00 105 0.05 0.54 2.53 0.02 054 11.7 0.02
6 39.040 0.00 121 0.05 144 2.81 0.02 144 144 0.02
7 34.298 420 157 0.05 3.17 3.14 0.02 3.17 17.0 0.02
8 29.989 10.69 171 0.05 1.71 3.88 0.02 1.71 199 0.02
9 27.786 231 184 006 285 4.16 0.02 2.85 224 0.02
10 25.834 827 212 0.08 3.55 448 0.02 3.55 25.0 0.02

k<6 for German towns and k<5 for Bavaria postal 1 data sets.
However, the results also show that this algorithm is not effective
at computing more than five clusters even for small data sets. For
German towns data set the GKM algorithm does as same as the
MGKM algorithm four times, it does two times better and three
times worse than the MGKM algorithm. For Bavaria postal 1 data
set the GKM algorithm does as same as the MGKM algorithm eight
times and it does once worse than the MGKM algorithm. The MS
k-means algorithm is better than two other algorithms when the
number of clusters k<5. The GKM algorithm requires less compu-
tational efforts than other two algorithms.

In these data sets both the GKM and MGKM algorithms in most of
cases could locate either global or near global solutions. For German
towns data set the MS k-means algorithm could find global or near
global solutions six times, the GKM algorithm eight times and the
MGKM algorithm seven times. On Bavaria postal 1 data set the MS
k-means algorithm finds global or near global solutions six times,
the GKM algorithm seven times and the MGKM algorithm eight
times.

As one can see from Table 3, the GKM and MGKM algorithms
find the same solutions for both Bavaria postal 2 and Iris Plant data
sets. However, the GKM algorithm requires less computational ef-
forts than the MGKM algorithm.

All algorithms failed to find the global solution for k=2 in Bavaria
postal 2 data set. The MS k-means algorithm fails to find the global
solution when the number of clusters k > 5 for Bavaria postal 2 data
set and k > 6 for Iris Plant data set. For Bavaria postal 2 data set the
MS k-means algorithm finds global or near global solutions three
times, the GKM and MGKM algorithms seven times. For Iris Plant
data set the MS k-means algorithm finds such solutions five times,
the GKM and MGKM algorithms four times.

The results from Table 4 demonstrate that the MS k-means al-
gorithm cannot locate the global solution for Heart Disease data set
when k> 5 and for Liver Disorders data set when k > 10. For Heart
Disease data set the GKM algorithm does as same as the MGKM al-
gorithm two times, it does four times better and three times worse
than the MGKM algorithm. For Liver Disorder data set the GKM al-
gorithm does as same as the MGKM algorithm two times and it does
once better and six times worse than the MGKM algorithm. Again
the GKM algorithm requires less computational efforts than other
two algorithms.
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Table 4 Table 6
Results for Heart Disease and Liver Disorders data sets Results for Breast Cancer and Pima Indians Diabetes data sets
k  fopt MS k-means GKM MGKM k fopt MS k-means GKM MGKM
E o t B} o t 6} o t E o t E o t E o t

Heart Disease

2 0.59890 x 10°  0.00 7.86 0.16 0.00 0.505 0.02 000 1.40 0.02
5 032797 x10° 000 29.7 047 052 0722 002 052 425 0.05
10 020222 x10° 276 801 084 000 157 003 193 931 0.9
15 0.14771 x 10° 879 113 1.14 0.00 268 006 068 146 0.17
20 0.11778 x10°  7.46 130 119 0.00 398 0.09 134 204 0.23
25 010213 x 105 516 151 131 048 546 011 000 259 0.33
30 0.88795x 10° 18.66 180 164 000 6.80 0.14 031 315 044
40 0.68645 x 10° 28.65 213 167 171 9.71 020 000 435 0.69
50 0.55894 x 10°> 33.68 250 1.88 206 132 027 000 554 1.03

Liver Disorders

2 042398 x 10°  0.00 6.91 0.09 93.96 0.600 0.00 93.96 0.600 0.00
5 021826 x10° 000 41.7 042 008 0990 0.03 008 575 0.03
10 0.12768 x 10° 0.09 875 067 0.00 200 005 002 127 008
15 097474 x 10° 653 147 092 1.62 341 0.08 0.00 203 013
20 0.81820x 10° 9.05 184 111 029 5.12 011 000 275 0.19
25 0.70419 x 10° 16.64 208 117 023 699 013 000 351 0.28
30 0.61143 x 10° 2433 229 131 021 875 0.16 000 430 039
40 0.47832 x 10° 37.83 290 161 359 146 023 000 604 0.66
50 0.39581 x 10°> 50.64 337 1.88 550 199 028 000 78.0 0.97

Breast Cancer

2 0.19323x10°  0.00 0.891 038 0.00 0.242 0.05 0.00 0.709 0.06
5 0.13705x 10°  0.00 850 130 2.28 0.306 0.09 186 217 0.17
10 0.10216 x 10° 440 158 147 0.00 0559 0.17 0.02 4.60 0.33
15 0.87813 x 10*° 020 242 191 0.00 0.803 023 0.04 7.14 048
20 0.77855x10* 599 340 245 1.80 1.06 031 000 9.65 0.66
25 069682 x10* 987 406 266 412 127 038 000 124 083
30 0.64415x 10* 1044 493 323 343 163 045 000 150 098
40 056171 x10* 1599 617 3.77 3.70 222 061 0.00 20.2 1.39
50 0.49896 x 10* 2237 742 427 421 3.03 077 0.00 256 1.83

Pima Indians Diabetes

2 051424 x 10’ 0.00 230 1.13 0.00 0.318 0.06 0.00 0.909 0.09
5 0.17370x 10 000 10.6 1.58 0.14 0.440 0.13 0.14 2.81 0.22
10 094436 x10° 000 304 275 036 0.646 020 036 598 0.41
15 0.69725 x 10° 230 465 3.73 0.00 1.06 030 0.03 936 059
20 0.57438x10° 350 56.1 394 0.00 1.53 039 036 128 080
25 049058 x10° 575 665 461 000 220 052 053 163 0.98
30 043641 x10° 1065 772 528 1.84 253 0.59 0.00 19.9 1.22
40 036116 x 106 13.77 106 6.61 0.00 4.02 083 0.51 27.0 1.70
50 0.31439 x 106 20.16 120 7.09 024 531 1.06 0.00 34.1 2.28

Table 5 Table 7
Results for lonosphere and Congressional Voting Records data sets Results for TSPLIB1060 and Image Segmentation data sets
k  fopt MS k-means GKM MGKM k fopt MS k-means GKM MGKM
E o t B o t E o t E o t B o t E o t
Ionosphere TSPLIB1060

2 024194 x10*  0.00 5.75 045 0.00 0.663 0.03 0.00 1.90 0.05

5 0.18915x10* 000 262 070 0.07 0899 0.05 0.18 5.85 0.13
10 0.15694 x 10*  1.02 673 1.88 1.73 140 008 0.00 125 027
15 014014 x 10* 372 104 247 431 188 0.11 0.00 193 042
20 0.12714x10* 262 136 3.05 573 253 0.13 000 26.1 0.77
25 0.11486 x 10* 11.95 182 4,02 676 335 0.16 0.00 333 139
30 0.10469 x 10* 13.99 200 419 737 435 020 0.00 406 220
40 0.85658 x 10° 30.35 273 559 7.82 788 030 000 558 4.77
50 0.70258 x 10> 4590 352 6.72 6.63 11.1 038 0.00 716 839

Congressional Voting Records

2 0.16409 x 10*  0.00 7.77 028 0.12 1.00 0.02 0.12 291 0.03

5 0.13371x10* 000 375 039 1.02 160 005 1.02 9.15 0.11
10 0.11312x10* 112 958 148 133 284 008 000 197 020
15 0.10089 x 10* 142 134 1.73 000 4.72 0.13 0.17 30.7 0.31
20 091445x10° 611 174 230 140 625 0.7 0.00 419 044
25 0.85032x 10> 587 209 238 2.03 755 022 000 53.0 058
30 078216 x 10° 12.31 238 273 2.73 10.1 027 0.00 64.8 0.73
40 069412 x10° 1836 291 320 332 152 038 0.00 87.1 1.16
50 0.62451 x 10> 2572 351 3.69 435 199 048 0.00 111 1.84

2 098319x10'° 000 171 075 000 0580 008 0.00 171 0.08
10 0.17548 x 10'° 005 53.1 236 023 145 036 005 116 034
20 079179 x10° 874 939 278 1.88 296 069 1.88 243 0.6
30 0.48125x10° 491 123 3.14 334 470 1.03 337 373 097
40 035312x10° 823 141 348 1.14 645 1.38 0.00 503 130
50 0.25551 x 10° 21.17 167 395310 892 173 253 642 1.69
60 0.20443 x 10° 22.11 199 4.58 0.72 11.3 2.08 0.00 78.0 2.06
80 0.13535x 10° 33.51 251 5.47 0.00 17.2 2.80 0.06 107 2.89

100 0.10041 x 10°  52.12 281 5.94 0.10 22.7 3.53 0.00 135 3.75

Image Segmentation

2 035606 x 108 000 649 1159 000 271 1.06 0.00 8.04 1.39
10 097952 x 107 225 803 1595 1.76 3.67 397 1.76 516 6.75
20 051283 x 10’ 14.06 188  20.58 0.09 636 7.58 1.49 108  13.11
30 0.35076 x 10’ 1452 270  23.83 0.06 125 11.36 0.06 167  20.89
40 027398 x 107 2156 339 2659 125 17.1 16.67 1.24 225 28.92
50 0.22249 x 107 27.33 423  30.55 2.41 22.8 1873 241 283  37.72
60 0.19095 x 107 3521 493  33.33 0.00 29.7 22.50 0.86 343 4691
80 0.14440 x 10’ 4587 659  39.47 093 459 30.19 0.00 466  68.81
100 0.11512 x 107 50.03 805 45.17 0.92 63.8 38.00 0.00 589  93.69

For Heart Disease data set the MS k-means algorithm finds the
best known or near best known solutions two times, the GKM
and MGKM algorithms find those solutions seven times. For Liver
Disorder data set the MS k-means algorithm finds the best known
or near best known solutions three times, the GKM algorithm five
times and the MGKM algorithm eight times. The MGKM algo-
rithm outperforms two other algorithms as the number of clusters
increases.

In lonosphere and Congressional Voting Records data sets the MS
k-means algorithm again cannot find the global solution when the
number of clusters k> 5 (see Table 5). For lonosphere data set the
GKM algorithm does as same as the MGKM algorithm once, it does
once better and seven times worse than the MGKM algorithm. For
Congressional Voting Records data set the GKM algorithm does as
same as the MGKM algorithm two times and it does once better and
six times worse than the MGKM algorithm. Again the GKM algorithm
requires less computational efforts than other two algorithms.

For Ionosphere data set the MS k-means and GKM algorithms
find the best known (or near best known) solutions two times and
MGKM algorithm finds those solutions nine times. For Congressional
Voting Records data set the MS k-means and GKM algorithms find
such solutions two times and the MGKM algorithm eight times. The
MGKM algorithm significantly outperforms two other algorithms as
the number of clusters increases.

Results from Table 6 show that the MS k-means algorithm cannot
find the global solution when the number of clusters k > 5 in Breast
Cancer data set and when k > 10 in Pima Indians Diabetes data set.
For Breast Cancer data set the GKM algorithm does as same as the
MGKM algorithm once, it does two times better and six times worse
than the MGKM algorithm. For Pima Indians Diabetes data set the
GKM algorithm does as same as the MGKM algorithm three times
and it does four times better and two times worse than the MGKM
algorithm. Again the GKM algorithm requires less computational ef-
forts than other two algorithms.
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Table 8
Results for TSPLIB3038 and Page Blocks data sets
k fopt MS k-means GKM MGKM
18 o t B o t B o t
TSPLIB3038
2 0.31688 x 10'° 0.00 0.860 12.97 0.00 0.469 1.38 0.00 139 0.86
10 0.56025 x 10° 0.00 14.2 11.52 2.78 0.857 8.41 0.58 9.16 3.30
20 0.26681 x 10° 0.42 371 14.53 2.00 1.60 16.63 0.48 19.2 5.77
30 0.17557 x 10° 1.16 57.8 19.09 1.45 2.97 25.00 0.67 29.5 8.25
40 0.12548 x 10° 224 74.6 22.28 135 3.98 33.23 1.35 39.9 10.70
50 0.98400 x 10® 2.60 845 23.55 1.19 5.26 41.52 141 50.5 13.23
60 0.82006 x 10° 5.56 103 27.64 0.00 6.39 49.75 0.98 61.0 15.75
80 0.61217 x 108 484 119 30.02 0.00 9.56 66.42 0.63 82.9 20.94
100 0.48912 x 10® 5.99 138 33.59 0.59 129 83.16 0.00 105 26.11
Page Blocks
2 0.57937 x 10" 0.24 1.82 577.05 0.24 1.50 8.19 0.00 4.50 6.92
10 0.45662 x 10'° 206.38 423 168.45 0.80 1.66 49.62 0.00 28.6 34.09
20 0.17139 x 10'° 70.44 259 367.39 0.00 2.30 92.30 0.19 59.3 62.09
30 0.94106 x 10° 399.77 452 417.28 0.75 3.15 132.41 0.00 90.1 89.42
40 0.62570 x 10° 485.89 641 477.88 0.17 422 172.13 0.00 121 118.55
50 0.42937 x 10° 725.19 760 503.03 0.04 5.86 212.27 0.00 152 149.77
60 0.31185 x 10° 1057.99 920 571.77 0.00 10.1 254.88 0.33 185 184.06
80 0.20576 x 10° 1647.96 889 513.25 1.46 14.2 334.36 0.00 250 258.69
100 0.14545 x 10° 998.80 796 443.64 0.00 20.5 415.19 0.10 316 346.94

For Breast Cancer data set the MS k-means and GKM algorithms
find the best known or near best known solutions three times and the
MGKM algorithm finds such solutions eight times. For Pima Indians
Diabetes data set the MS k-means algorithm finds such solutions
three times, the GKM algorithm eight times and the MGKM algorithm
nine times.

The MS k-means algorithm cannot find the global solution when
the number of clusters k > 10 for TSPLIB1060 data set and k > 2 for
Image Segmentation data set (Table 7). For TSPLIB1060 data set the
GKM algorithm does as same as the MGKM algorithm two times, it
does two times better and five times worse than the MGKM algo-
rithm. For Image Segmentation data set the GKM algorithm does as
same as the MGKM algorithm five times and it does two times better
and two times worse than the MGKM algorithm. Again the GKM algo-
rithm requires less computational efforts than two other algorithms.

For TSPLIB1060 data set the MS k-means algorithm finds the
best known (or near best known) solutions two times, the GKM
algorithm five times and the MGKM algorithm six times. For Im-
age Segmentation data set the MS k-means algorithm finds such
solutions only once, the GKM algorithm six times and the MGKM
algorithm five times.

The MS k-means algorithm again cannot find the global solution
when the number of clusters k > 10 for TSPLIB3038 data set and k> 2
for Page Blocks data set (Table 8). For TSPLIB3038 data set the GKM
algorithm does as same as the MGKM algorithm two times, it does
three times better and four times worse than the MGKM algorithm.
For Page Blocks data set the GKM algorithm does three times better
and six times worse than the MGKM algorithm. The MGKM algorithm
requires less CPU time than other two algorithms for both data sets.

For TSPLIB3038 data set the MS k-means algorithm finds the
best known (or near best known) solutions three times, the GKM
algorithm four times and the MGKM algorithm seven times. For
Block Pages data set the MS k-means algorithm finds such solutions
only once, the GKM algorithm eight times and the MGKM algorithm
nine times.

Overall on 14 data sets, the GKM algorithm does as same as the
MGKM algorithm 50 (39.7%) times, it does 25 (19.8%) times better
and 51 (40.5%) times worse than the MGKM algorithm. The MS k-
means algorithm finds the best known (or near best known) solutions
42 (33.3%) times, the GKM algorithm 76 (60.3%) times and the MGKM
algorithm 102 (81.0%) times.

The following results clearly demonstrate that the MGKM algo-
rithm is better than two other algorithms at computing large num-
ber of clusters (k>25) in larger data sets (m > 150). Indeed, in this
case the GKM algorithm does as same as the MGKM algorithm three
(6.3%) times, it does 12 (25.0%) times better and 33 (68.7 %) times
worse than the MGKM algorithm. The MS k-means algorithm failed
to find the best known (or near best known) solutions, the GKM al-
gorithm finds such solutions 22 (45.8%) times and the MGKM algo-
rithm 42 (87.5%) times.

Thus, these results allow us to draw the following conclusions:

1. The MS k-means algorithm is not effective at computing even
moderately large number of clusters in large data sets.

2. Three algorithms, considered in this paper, are different ver-
sions of the k-means algorithm. Their main difference is in the
way they compute starting points. In the MS k-means algo-
rithm starting points are chosen randomly, however, in two other
algorithms special schemes are applied to find them. Results
of numerical experiments show that the MGKM algorithm is
more effective than two other algorithms at finding good starting
points.

3. There is no any significant difference between the results of the
GKM and MGKM algorithms on small data sets. However, the
GKM requires significantly less computational efforts.

4. The MGKM algorithm works better than the GKM algorithm for
large data sets and for large number of clusters (k>25). The
MGKM algorithm is especially effective for data sets such as lono-
sphere, Congressional Voting Records, Liver Disorders data sets,
which do not have well separated clusters.

6. Conclusions

In this paper, we have developed the new version of the global
k-means algorithm, the modified global k-means algorithm. This al-
gorithm computes clusters incrementally and to compute k-partition
of a data set it uses k — 1 cluster centers from the previous iteration.
An important step in this algorithm is the computation of a start-
ing point for the k-th cluster center. This starting point is computed
by minimizing the so-called auxiliary cluster function. The proposed
algorithm computes as many clusters as a data set contains with
respect to a given tolerance.
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We have presented the results of numerical experiments on 14
data sets. These results clearly demonstrate that the multi-start
k-means algorithm cannot be alternative to both the global k-means
and the modified global k-means algorithms when the number of
clusters k > 5. The results presented also demonstrate that the mod-
ified global k-means algorithm is more effective than the global
k-means algorithm at computing of large number of clusters in large
data sets. However, the former algorithm requires more CPU time
than the latter one. Results presented in this paper again confirm
that the choice of starting points in k-means algorithms is crucial.
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Appendix

Proof of Proposition 1. Since S; () =¥ we get that
o= X i+ di (35)
K@= 3 Ix=dIP+ 3 4y
aleSy (®) aleS3(®)
It is clear that X is a global minimizer of the convex function
1 .
o= 3 Ix-d|? (36)
aieSy(®)

that is ®(k) < @(x) for all x € R™.
Let B;(x) = {y € R" : ||y — X|| <¢}. There exists ¢> 0 such that

Ix—d'|? <d, ; Vd eS® and Vx € B;(®), (37)
Ix—a?>di_, vd eS3®% and Vx € B,®). (38)

Then for any x € B.(X) we have

- 1 . 1 .
feo=— 37 Ix—diP+ 3 dy
aleSy ®) aleS3(X)
1 i
=000+ Z d, 4
01653()?)
1 ;
2R+ D
aleS3(R)
=fi®). (39)

Thus fi, %) > fix) for all x € B;®). O
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