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a b s t r a c t

Receiver Operating Characteristic (ROC) analysis is one of the most popular tools for the visual
assessment and understanding of classifier performance. In this paper we present a new representation
of regression models in the so-called regression ROC (RROC) space. The basic idea is to represent over-
estimation against under-estimation. The curves are just drawn by adjusting a shift, a constant that is
added (or subtracted) to the predictions, and plays a similar role as a threshold in classification. From
here, we develop the notions of optimal operating condition, convexity, dominance, and explore several
evaluation metrics that can be shown graphically, such as the area over the RROC curve (AOC).
In particular, we show a novel and significant result: the AOC is equivalent to the error variance. We
illustrate the application of RROC curves to resource estimation, namely the estimation of software
project effort.

& 2013 Elsevier Ltd. All rights reserved.
1. Introduction

Receiver Operating Characteristic (ROC) analysis [36,47,4,48,19,35,14,34] is a very popular technique for the graphical analysis of
classification models. ROC analysis is profusely used in many areas [21,37,30,31]: radiology, medicine, statistics, bioinformatics, machine
learning, pattern recognition, etc. Also, some metrics derived from the ROC curve, such as the Area Under the ROC Curve (AUC), are now
key for the evaluation and construction of classifiers [15,38,50,42,32].

In classification, the traditional notion of operating condition is common and well understood. Classifiers may be trained for one cost
proportion and class distribution (both making the operating condition) and then deployed on a different operating condition. ROC space
decomposes the performance of a classifier in a dual way. On the x-axis we show the false positive rate (FPR) and on the y-axis we show
the true positive rate (TPR). ROC curves neatly visualise how the TPR and the FPR change for different (crisp) classifiers or evolve for the
same (soft) classifier (or ranker) for a range of thresholds. The notion of threshold is the fundamental idea to adapt a soft classifier to an
operating condition. ROC analysis is the tool that illustrates how classifiers and threshold choices perform.

The adaptation of ROC analysis for regression has been attempted on many occasions. However, there is no such a thing as the
‘canonical’ adaptation of ROC analysis in regression, since regression and classification are different tasks, and the notion of operating
condition may be completely different. In fact, the mere extension of ROC analysis to more than two classes has always been difficult
because the degrees of freedom grow quadratically with the number of classes (see, e.g., [46,17,44]). Consequently it is even questionable
whether a similar graphical representation of ROC curves in regression (or other tasks [26]) can even be figured out. Notable efforts
towards ROC curves (or graphical tools) for regression are the Regression Error Characteristic (REC) Curves [3], the Regression Error
Characteristic Surfaces (RECS) [51], the notion of utility-based regression [41] and the definition of ranking measures [43]. These
approaches are based on gauging the tolerance, rejection rules or confidence levels. Some of these approaches actually convert the
evaluation of a regression problem into a classification problem (tolerable estimation vs. intolerable estimation). However, none of these
previous approaches started from a notion of ‘operating condition’, related to an asymmetric loss function. Also, the notion of threshold was
not replaced by a similar concept playing its role for adjusting to the operating condition, and the dual positive-negative character in ROC
analysis was blurred.

In this paper we present a graphical representation of regression performance based on a very usual view of operating condition. Many
regression applications have deployment contexts where over-estimations are not equally costly as under-estimations (or vice versa).
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This is called the loss asymmetry. Certainly, loss asymmetry is just one possible kind of operating condition (or one of its constituents), but
it is a very common and important one in many applications.

The ROC space for regression (RROC space) is then defined by placing the total over-estimation on the x-axis and the total under-
estimation on the y-axis. This duality leads to regions and isometrics in the ROC space where over-estimations have less cost than under-
estimations and vice versa. There we can plot different regression models to see the notions of dominance. We also consider the
construction of hybrid regression models by ‘interpolating’ between points in the RROC space. Moreover, the plot leads to curves (called
RROC curves) when we use the notion of shift, which is just a constant that we can add (or subtract) to example predictions in order to
adjust the model to an asymmetric operating condition. This notion is parallel to the notion of threshold in classification. Interestingly,
while we can derive the best shift for a dataset given an existing model (which boils down to finding the shift that makes its average error
equal to zero if the cost is symmetric), there are some effective methods to determine this shift for the deployment data given an
operating condition, as has been recently explored by [1,55]. All this leads to a more meaningful interpretation of what the ROC curves for
regression really mean, and what their areas represent.

The paper is organised as follows. Section 2 introduces some notation, the problem of cost-sensitive evaluation and the use of
asymmetric costs in regression. The RROC space is defined in Section 3, where we represent several regression models as points, derive
the isometrics of the space and develop the notions of hybrid models, dominance and convex hull. Section 4 introduces RROC curves,
which are drawn by ranging a constant additive shift. We define an algorithm for plotting them and determine some of its properties in
terms of segment slopes and convexity. Section 5 analyses the area over the RROC curve (AOC), proving its linear relation to error variance,
and showing that the squared error decomposition can be shown in RROC space. A real example is included in Section 6, which illustrates
how RROC curves are used from training to deployment. Finally, Section 7 closes the paper with an enumeration of issues for future
investigation.
2. Background

In this section we introduce some notation and the basic concepts about cost-sensitive regression and the need of asymmetric loss
functions.

2.1. Notation

Let us consider a multivariate input domain X and a univariate output domain Y⊂R. The domain space D is then X�Y. Examples or
instances are just pairs 〈x; y〉∈D, and datasets are subsets (actually multi-sets) of D. The length of a dataset will usually be denoted by n.
A crisp regression model m is a function m : X-Y. When the regression model is crisp, we just represent the true value by y and the
estimated value by ŷ. Subindices will be used when referring to more than one example in a dataset. Vectors (unidimensional arrays) are
denoted in boldface and its elements with subindices, e.g., v¼ ðv1; v2;…; vnÞ. Operations mixing arrays and scalar values will be allowed,
specially in algorithms, as usual in the matrix arithmetic of many statistical computing languages. For instance, v þ c means that the
constant c is added to all the elements in the vector v. The mean of a vector is denoted by μðvÞ and its standard deviation as sðvÞ—over the
population, i.e., divided by n. Given a dataset with n instances i¼ 1…n, the error vector e is defined such that ei≜ŷi−yi. The value μðe2Þ is
known as the mean squared error (MSE), μðeÞ is known as the mean error (or mean error bias, MEB), μðjejÞ is known as the mean absolute
error (MAE) and sðeÞ2 as the error variance. Occasionally, we will drop the preceding M, especially when referring to total squared error
(SE), total error bias (EB) and total absolute error (AE).

2.2. Cost-sensitive problems and loss functions

In cost-sensitive learning [13], there are several features which describe a context, such as the data distribution, the costs of using some
input variables and the loss of the errors over the output variables [52]. In this paper, we focus on loss functions over the output variable,
which is the kind of costs ROC analysis deals with (typically integrated, along with the class distribution, within the notion of skew). A loss
function is defined as follows:

Definition 1. A loss function is any function ℓ : Y�Y-R which compares elements in the output domain. For convenience, the first
argument will be the estimated value, and the second argument the actual value.

Typical examples of loss functions are the absolute error (ℓA) and the squared error (ℓS), with ℓAðŷ; yÞ≜jŷ−yj and ℓSðŷ; yÞ≜ðŷ−yÞ2. These two
loss functions are symmetric, i.e., for every y and r we have that ℓðyþ r; yÞ ¼ ℓðy−r; yÞ. Two of the most common metrics for evaluating
regression, the mean absolute error (MAE) and the mean squared error (MSE) are derived from these losses.

2.3. Asymmetric costs

Actually, although symmetric loss functions (and derived metrics) are common for the evaluation of regression models, it is rarely the
case that a real problem has a symmetric cost. For instance, the prediction of sales, consumptions, calls, prices, demands, survival times,
positions, reliabilities, etc., rarely has a symmetric loss. For instance, a retailing company may need to predict how many items will be sold
next week for stock (inventory) management purposes, e.g., in order to calculate howmany items must be ordered. Depending on the kind
of product, it is usually not the same to over-estimate (increasing stocking costs) than to under-estimate (an item goes out of stock and it
cannot be sold or sold with delays). In fact, it is also rare to find applications where even an asymmetric cost is invariable. In the above-
mentioned example, depending on the warehouse saturation, the cost (and the asymmetry) may change in a weekly or daily fashion.
Because of this, a specialised model for each fixed given asymmetry is not a practical solution in general. This motivates the adaptation
(or reframing) of models, rather than their re-training for each new asymmetric loss. This variability of the operating condition is at the
core of ROC analysis in classification.
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There has been an extensive amount of work on regression using asymmetric loss functions. In some cases, the loss function is
embedded in the learning algorithm (see, e.g., [10,45,11]), which is useful if the operating condition is stable and we know it during
training. However, the adaptation (or reframing) of an existing model to a different operating condition has also been investigated for
regression (e.g., Granger [22,23]). Many different kinds of asymmetric functions have been explored: Lin-Lin (asymmetric linear), Quad-
Quad (asymmetric quadratic), Lin-Exp (approximately linear on one side and exponential on the other side) and Quad-Exp (approximately
quadratic on one side and exponential on the other side) [53,54,6–8,2,49]. Some of these approaches try to adapt to the operating
condition using complex (generally non-parametric) density functions, which is problematic for complex asymmetric loss functions.

As mentioned above, there are many possible asymmetric loss functions. The simplest (and perhaps most common) one is the
asymmetric absolute error ℓAα :

Definition 2. The asymmetric absolute error ℓAα , also known as Lin-Lin, is a loss function defined as follows:

ℓA
α ðŷ; yÞ≜

2αðy−ŷÞ if ŷoy

2ð1−αÞðŷ−yÞ otherwise

(

with α being the cost proportion (or asymmetry) between 0 and 1, with increasing values meaning higher cost for low predictions (under-
estimation). In other words, when α¼ 0 we mean that predictions below the actual value have no cost. When α¼ 1 we mean that
predictions above the actual value have no cost. When α¼ 0:5 we mean that costs above and below are symmetric.

3. The RROC space

For every regression model and dataset we can determine the error ei for each instance i and summarise positive and negative errors
separately.

Definition 3. The total over-estimation is given by OVER≜∑ifeijei40g and the total under-estimation is given by UNDER≜∑ifeijeio0g.
The following example illustrates this:

Example 1. Consider a regression model m1 which is applied to a dataset with n¼10 instances, producing the predicted values ŷ that,
compared with the actual values y, leads to the error values e¼ ŷ−y:

1 2 3 4 5 6 7 8 9 10
ŷ −0:082 3:323 2:320 1:080 7:893 4:983 5:121 3:442 2:083 1:112
y 0:211 2:725 1:933 3:242 7:858 6:061 7:173 3:082 0:894 1:203
e −0:293 0:598 0:387 −2:162 0:035 −1:078 −2:052 0:360 1:189 −0:091

The error row (e) shows the difference, which is positive for over-estimations and negative for under-estimations. The sum of over-
estimations (OVER) is 2.569 while the sum of under-estimations (UNDER) is −5.676. This regression model clearly under-estimates (it has a
negative error bias, since μðeÞ ¼ −0:3107o0). The MAE (0.825) and the MSE (1.219) do not show the asymmetry of predictions.
3.1. Showing models in RROC space

The basic idea of the ROC space for regression is to show model asymmetry:

Definition 4. The Regression Receiver Operating Characteristic (RROC) space is defined as a plot where we depict total over-estimation
(OVER) on the x-axis and total under-estimation (UNDER) on the y-axis. Since OVER is always positive (but unbounded) and UNDER is
always negative (but unbounded), we will typically place the point (0,0) on the upper left corner (the RROC heaven), and will clip both the
x-axis and y-axis as necessary to show the region of interest.

Fig. 1 (left) shows the RROC space and the regression model m1 in Example 1. We will occasionally draw a diagonal dashed line
OVERþ UNDER¼ 0 to show the points where the under-estimation equals the over-estimation.

Example 2. Consider a regression model m2 which is applied to the same dataset as Example 1:

1 2 3 4 5 6 7 8 9 10
ŷ 0:786 2:078 0:587 1:676 9:052 5:875 6:885 3:038 4:097 0:308
y 0:211 2:725 1:933 3:242 7:858 6:061 7:173 3:082 0:894 1:203
e 0:575 −0:647 −1:346 −1:566 1:194 −0:186 −0:288 −0:044 3:203 −0:895

The sum of over-estimations (OVER) is 4.972 while the sum of under-estimations (UNDER) is −4.972. This regression model finds an
equilibrium between over and under-estimations (it is unbiased, since μðeÞ ¼ 0). However, the MAE (0.9944) and the MSE (1.7619) are
worse than for m1 in Example 1.

Model m2 is also shown in Fig. 1 (left). Clearly it is on the diagonal.
Finally let us consider a third model:



Fig. 1. Left: RROC space and the representation for regression models m1 (in red), m2 (in blue) and m3 (in green) in Examples 1–3. The diagonal (dashed black) shows where
UNDER and OVER are equal. Model m2 has zero error bias (μðeÞ ¼ 0). We also show the first isometric line (solid light grey) corresponding to α¼ 0:8 (slope¼ 0:25) touching
any of the three models. Right: RROC space with regression model m1 (in red) in Example 1 (note that the RROC space has been zoomed in now for both x-axis and y-axis).
We show several metrics that can be plotted on the RROC space: the sum of the length of the two dot-dashed segments in brown is exactly the absolute error (AE): 8.25; the
length of the dotted violet segment equals the unweighted macro-average squared error (uSE): 6.23; the length of either the horizontal or vertical orange segment
connecting the point m1 with the diagonal is exactly the total error bias (EB¼ μðeÞ � n¼OVERþ UNDER): −3.107; and the area of the orange-shaded triangle is clearly half of
the squared error bias (12 ðμðeÞ � nÞ2 ¼ 1

2 ðOVERþ UNDERÞ2): 4.827. (For interpretation of the references to colour in this figure caption, the reader is referred to the web version
of this article.)

J. Hernández-Orallo / Pattern Recognition 46 (2013) 3395–34113398
Example 3. Consider a regression model m3 as follows:

1 2 3 4 5 6 7 8 9 10
ŷ 1:253 4:232 1:734 5:325 6:842 9:325 8:232 3:525 1:352 1:778
y 0:211 2:725 1:933 3:242 7:858 6:061 7:173 3:082 0:894 1:203
e 1:042 1:507 −0:199 2:083 −1:016 3:264 1:059 0:443 0:458 0:575

In this case, the sum of over-estimations (OVER) is 10.431 while the sum of under-estimations (UNDER) is −1.215. This regression model
clearly over-estimates (it has a positive error bias, since μðeÞ ¼ 0:921640). The MAE (1.165) and the MSE (2.12) show that this model is
worse than models m1 and m2.

From each point in RROC space, we can derive several metrics very easily, as seen in Fig. 1 (right) for model m1. We have that
MAE¼ 0:825¼ ðOVER−UNDERÞ=n, so AE is just half the perimeter of the rectangle that each point creates with the RROCheaven (0,0).
In other words, the AE is just the Manhattan distance to RROC heaven. The diagonal of this rectangle (the Euclidean distance) is just given
by

ffiffi
ð

p
OVER2 þ UNDER2Þ. This measure, which we call uSE (as an unweighted macro-averaged version of the total squared error, SE), is

interesting in itself, because highly penalises models with a high imbalance between over and under-estimations, and can be seen as a
measure of ‘symmetric calibration’. Finally, the total error bias EB¼ μðeÞ � n equals the length of the two parallel (horizontal and vertical)
segments from the model point to the diagonal.

In RROC space we denote the regression model always outputting ∞ and the model always outputting −∞ as the (trivial) extreme
regression models, which fall at ð∞;0Þ and ð0;−∞Þ; respectively in RROC space.
3.2. RROC space isometrics

We have mentioned above that (half) the perimeter of the rectangle from RROC heaven to the regression model corresponds to the
absolute error. Can we extend this observation to the asymmetric loss? The following straightforward lemma shows that total asymmetric
absolute loss can be calculated graphically as the sum of the distance to the y-axis (OVER¼ 0) and to the x-axis (UNDER¼ 0), using the
appropriate asymmetry factor α.

Lemma 1. The total asymmetric absolute loss is given by:

L¼∑
i
ℓA
α ðŷi ; yiÞ ¼ 2ð1−αÞ � OVER−2α � UNDER

Proof.

L¼∑
i
ℓA
α ðŷi ; yiÞ ¼∑

i
f2αðyi−ŷi Þ if ŷi oyi; 2ð1−αÞðŷi−yiÞ otherwiseg

¼∑
i
f2αð−eiÞjeio0g þ∑

i
f2ð1−αÞðeiÞjei40g

¼−2α � UNDERþ 2ð1−αÞ � OVER □

Clearly, for α¼ 0:5, we have that this is the absolute error. This also shows that the closer we are to RROC heaven (0,0) (in terms of a
Manhattan distance) the better. All this leads to loss isometrics:



Fig. 2. The three models as in Fig. 1 (left). Left: by considering any model which can be constructed by randomly choosing (with any bias) between models m1 and m3, we
can show a segment of models (in solid black). Right: completing this for any other two models—including the extreme models at ð0;−∞Þ and ð∞;0Þ—we can derive the
convex hull (shown in solid black).
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Definition 5. RROC isometrics are defined by varying t over:

2ð1−αÞ � OVER−2α � UNDER¼ t

The following proposition just gets the slope of each parallel isometric:

Proposition 2. Given an isometric 2ð1−αÞ � OVER−2α � UNDER¼ t, the slope only depends on α and is given by:

slope¼ 1−α
α

Proof. By isolating the variable UNDER we have:

UNDER¼ −2ð1−αÞ � OVERþ t
−2α

¼ 1−α
α

� OVERþ −2t
α

¼ slope � OVERþ intercept ð1Þ
The slope is then given by the first term ð1−αÞ=α □

Clearly, for α¼ 0 (under-estimations have no cost) we have infinite slope. For α¼ 1 (over-estimations have no cost), we have a slope 0.
This notion of isometric is very similar to the notion already present in ROC analysis for classification [18]. In fact, this means that we can
slide isometrics (moving t) to find optimal points in RROC space, in the very same way as we do in ROC space.

Let us illustrate this. Fig. 1 (left) shows the RROC space and the regression models m1,m2 andm3 in Examples 1–3, respectively. We also
consider the operating condition α¼ 0:8, meaning that under-estimations are 4 times more expensive than over-estimations. This α leads
to a slope of 0.25. By sliding through all the parallel isometric lines from the one crossing the RROC heaven (0,0) to the first isometric
touching a point corresponding to any model, we touch at (10.431, −1.215) first. In fact, the intercept is given by isolating it from the line
equation (Eq. (1) above), which, in this case, leads to −3.82275. The line UNDER¼ 0:25 � OVER−3:82275 is then shown on Fig. 1 (left),
touching regression model m3. Even though model m3 has a worse mean (symmetric) absolute error than m1 (and m2), for this operating
condition α it leads to lower total asymmetric absolute error. Namely, while m1 has a loss of 2ð1−αÞ � OVER−2α � UNDER¼
0:4 � 2:569−1:6 � ð−5:676Þ ¼ 10:1092, we have that m3 has a loss of 2ð1−αÞ � OVER−2α � UNDER¼ 0:4 � 10:431−1:6 � ð−1:215Þ ¼ 6:1164.

3.3. Hybrid models, dominance and convex hull

Another construction that is also originally present in ROC analysis for classification is the notion of hybrid models. Given any two
models, we can construct a hybrid model by randomly choosing each prediction from any of both models using a (possibly biased) coin.
We can also do this in regression. Fig. 2 (left) shows the isometric (in light grey) passing through models m1 and m3. The solid black
segment connecting both models shows that any model along the segment can be constructed. More precisely, each point in that segment
would represent the expected value of a model constructed by choosing between the models in a random (biased) way. Consequently, we
can just connect both points since any point in between is technically achievable (at least in expectation).

For instance, a hybrid model using a random (in this case unbiased) choice between these two models leads to points OVER¼ ð2:569þ
10:431Þ=2¼ 6:5 and UNDER¼ ð−5:676−1:215Þ=2¼ −3:45 on expectation, which is exactly on the middle of the segment. This point
represents that we use m1 half of the times and m2 the other half.1 This is like ROC analysis for classification.

In this particular case, we just draw a line between the point representing m1: ð2:569;−5:676Þ and the point representing m3:
ð10:431;−1:215Þ, leading to UNDER¼ 0:567 � OVER−7:134. From this slope of 0.567, we just calculate α¼ 1=ð1þ slopeÞ ¼ 0:638. Obviously,
for this α both models have the same loss. Lðm1Þ ¼ ð1−0:638Þ � 2:569þ 0:638 � 5:676¼ 4:551 and Lðm3Þ ¼ ð1−0:638Þ � 10:431þ
0:638 � 1:215¼ 4:551.
1 Remarkably, this is very different to averaging both models. For instance, if we calculate the (unweighted) average of m1 and m3 we have an error vector
e¼ 〈0:375;1:053;0:094;−0:040;−0:491;1:093;−0:497;0:402;0:824;0:242〉, with OVER¼ 4:081 and UNDER¼ −1:0265. This point is not on the segment.
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Given these two models, we say that, for slopes lower than 0.567 (asymmetries α greater than 0.638), model m3 dominates, while we
have that model m1 dominates for the rest of operating conditions.

This leads to the notion of dominance and convex hull. In fact, after connecting all the points by the segments representing the hybrid
models, and also including the extreme classifiers at ð0;−∞Þ and ð∞;0Þ, we can calculate the convex hull. Any model under the convex hull
can be discarded, in the same way as traditional ROC analysis does. Fig. 2 (right) shows the convex hull of the three models and the
extreme models. We see that model m2 can be discarded. It cannot be optimal for any operating condition.
4. RROC curves

In ROC analysis for classification, we can tweak the predictions of a crisp classifier by changing the predicted class of a random
percentage of examples. With this, we can move the classifier in ROC space. However, this just moves the classifier along the two straight
lines that connect the original point with the points at ð0;0Þ and ð1;1Þ (the trivial, or extreme, classifiers).

In general, however, in ROC analysis, curves are constructed by the use of soft classifiers, i.e., classifiers which output a rank, score or
probability estimation. By moving a threshold from the lowest possible value to the highest possible value (or vice versa) we get many
possible crisp classifiers, each of them represented by a point in ROC space, leading to a ROC curve.

Interestingly, in RROC space, we do not need soft regression models in order to create a curve. It is just sufficient to use a shift, which
works as a parallel concept to the notion of threshold. For each example we can get a modified prediction as ŷ′←ŷ þ s, where s is the shift.
Although there are, as we will see, many ways of determining this shift, it seems natural to consider first that s is constant, i.e., that we
apply the same value for all the examples.

Definition 6. Given a regression model m, a (constant-) shifted regression model, denoted by m〈s〉, is the result of adding the same shift s
to all its predictions, i.e., ŷ′←ŷ þ s for all predictions ŷ.

The use of a shift s can lead to models with different values of UNDER and OVER, denoted by UNDER〈s〉 and OVER〈s〉, and lower (or
higher) loss. In fact, given the asymmetric absolute loss with an operating condition α, and assuming a (constant-)shifted regression
model, the optimal shift choice method snðαÞ is derived from Lemma 1 as

snðαÞ ¼ arg min
s

∑
i
ℓA
α ðŷi ; yiÞ ¼ arg min

s
f2ð1−αÞ � OVER〈s〉−2α � UNDER〈s〉g ð2Þ

This means that the original bias of the model is irrelevant as we can use snðαÞ to eliminate the bias (for symmetric losses) or to minimise
an asymmetric loss. Actually, this shift can be moved from the lowest possible value (−∞) to the maximum possible value (∞). All this leads
to the notion of RROC curve.

Definition 7. Given a regression model m, its RROC curve using a (constant) shift is given by plotting all the models m〈s〉 with s ranging in
½−∞; ∞�.

In fact, the function snðαÞ is non-decreasing, and we only need to explore the shifts from snð0Þ ¼ arg mins2 � OVER〈s〉¼ −maxðeÞ to
snð1Þ ¼ arg mins2 � UNDER〈s〉¼ −minðeÞ. For Example 1, these values are s0ð0Þ ¼ −0:598 and s1ð0Þ ¼ 2:162. We can instantly plot the curves
point-wise, by just using a sufficient number of values for s in this range. However, there is a more direct way of plotting and analysing the
RROC curve. This is what we do next.

4.1. Algorithm for drawing RROC curves

We can realise that if we move the shift from s1 to s2 and no example changes from OVER to UNDER or vice versa, then the increment/
decrement in OVER and UNDER is linear, as the following proposition shows:

Proposition 3. Given a model m, for any two shifts s1 and s2 such that the examples for which m〈s1〉 and m〈s2〉 over-estimate are the same (and
hence the rest that under-estimate are also the same for both), then for any other shift s3 with s1≤s3≤s2 we have that the points ðOVER;UNDERÞ
for the three models m〈s1〉, m〈s2〉 and m〈s3〉 lie on the same straight line.

Proof. We have that OVER for m〈s1〉 is calculated as: OVER〈s1〉¼∑ifei þ s1jei þ s140g while OVER for m〈s2〉 is calculated as:
OVER〈s2〉¼∑ifei þ s2jei þ s240g. Since, by assumption, the examples which over-estimate are the same for m〈s1〉 and m〈s2〉, let us call
this number no. The previous two expressions can then be rewritten as

OVER〈s1〉¼ nos1 þ∑
i
feijei þ s140g

OVER〈s2〉¼ nos2 þ∑
i
feijei þ s140g

Note that the second term is also rewritten with s1, since the elements are the same. Also, since the examples which over-estimate are the
same for s1 and s2 they are necessarily the same for every s3 with s1≤s3≤s2. So, we have

OVER〈s3〉≜nos3 þ∑
i
feijei þ s140g

We can see that these three co-ordinates only differ on the first term, which is linearly related to s (s1, s2 or s3). We can obtain similar
expressions for UNDER〈s1〉, UNDER〈s2〉 and UNDER〈s3〉 and their nu examples. The three points are related by a linear term on s, expressed as
ðnos;nusÞ, so they lie on the same line. □

From Proposition 3 we can introduce a very simple algorithm to draw RROC curves (Algorithm 1).
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Fig. 3. Left: Model m1 in Example 1 drawn as a RROC curve by changing the shift. Vertex points (10 in this case, since the two extremes are not visible in the plot) are shown
as small circles. The curve is then composed of 11 segments. The original shift (s¼0) is still represented with a small square and lies on a segment between two vertex points.
Right: Model m4 in Example 4 drawn as a RROC curve by changing the shift. The model has several errors with the same value (two triple ties and a double tie), so the
number of distinct visible points is reduced from n¼10 to n−2−2−1¼ 5.
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Algorithm 1. Draws a RROC curve. We use boldface for array notation
Algorithm: PlotRROCCurve
input: An error array ê of size n with the values ŷ−y.
output: The nþ 2 vertex points of the curve in arrays RROCX and RROCY
// Draws the curve from bottom-left corner to top-right corner
e←Sort DecreasinglyðeÞ
RROCX1 ← 0
RROCY1 ← −∞
for i ← 1 to n do
s ← −ei==The shift s as examples change from OVER to UNDER

t ← eþ s==Applies a constant shift s to the array e
RROCXiþ1 ← ∑jftjjtj40g==OVER
RROCYiþ1 ← ∑jftjjtj≤0g==UNDER

����������

RROCXnþ2 ← ∞
RROCYnþ2 ← 0
Fig. 3 (left) shows a RROC curve using this algorithm for model m1 in Example 1. The points where the slope of the RROC Curve change
are called vertex points, and the rest of points fall onto the segments. Consequently a RROC Curve for a regression model applied to a
dataset with n instances has nþ 2 vertex points (typically, only n are visible on the plot, because two are the extreme points) and nþ 1
segments, denoted by i; iþ 1 with i¼ 1…nþ 1.

In case there are some ties in the error vector, some vertex points and segments collapse into a single point. Let us see this:

Example 4. Consider a regression model m4 as follows:

1 2 3 4 5 6 7 8 9 10
ŷ 0:123 1:221 1:845 4:573 8:558 7:392 5:669 1:578 0:806 1:245
y 0:211 2:725 1:933 3:242 7:858 6:061 7:173 3:082 0:894 1:203
e −0:088 −1:504 −0:088 1:331 0:700 1:331 −1:504 −1:504 −0:088 0:042

We see a triple tie between Examples 1, 3 and 9, another triple tie between Examples 2, 7 and 8, and a double tie between Examples
4 and 6.

Fig. 3 (right) only has five points as there are only 5 different error values.

4.2. Properties: slope and convexity

From the new RROC curve, we may want to calculate the slopes of each segment, in order to exactly determine where each possible
isometric (and asymmetry α) would lead to on the curve. This can be done very easily:

Lemma 2. The slope of each segment i; iþ 1 in the RROC curve is given by ðnþ 1−iÞ=ði−1Þ, with i¼ 1…nþ 1.

Proof. Let us assume there are no ties in the error vector. As shown in Proposition 3, there is one example changing from UNDER to OVER
(from bottom-left to top-right) at each vertex point. At the first vertex point i¼1, all the examples are under-estimated, and the shift
change moves along an infinite slope. For the next vertex point i¼2, we have n−1 under-estimated examples and 1 over-estimated
example. This means that any shift increment corresponds to one unit right and n−1 units up. This is a slope of n−1. By induction, this leads
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Fig. 4. The left plot shows the three models m1 (red), m2 (blue) and m3 (green) in Examples 1–3 drawn as RROC curves by changing the shift. Note that in this case model m3

cannot be rejected, because there are regions where it is optimal. If we select the best portions from the three models we see concavities, which can be resolved by the use of
a convex hull (shown on the right) in black. There are 12 visible points (represented as black crosses) on the convex hull: 6 from m1 (red), 3 from m3 (green), and 3 from m2

(blue). (For interpretation of the references to colour in this figure caption, the reader is referred to the web version of this article.)

J. Hernández-Orallo / Pattern Recognition 46 (2013) 3395–34113402
to ðnþ 1−iÞ=ði−1Þ, with the last segment having 0 slope. If there are ties, then more than one example will change from under-estimation
to over-estimation at a time. □

Thus, and somewhat surprisingly, given a a dataset with a fixed number of examples, all regression models (without ties) will have
exactly the same slopes. The difference between the curves will be given by the length of the segments, not their slopes. From the
equation ð1−αÞ=α¼ slope in Proposition 2 relating asymmetries and slopes, we have that each segment i; iþ 1 corresponds to
α¼ 1=ðslopeþ 1Þ, leading to α¼ ði−1Þ=n with i¼ 1…nþ 1.

Finally, we can see immediately that RROC curves are convex:

Proposition 4. For every regression model, the RROC Curve is convex.

Proof. It is direct from Lemma 4 since the sequence of the segment slopes of the curve ðnþ 1−iÞ=ði−1Þ is non-increasing. □

This property is very useful when working with curves (e.g., for calculating their dominance regions) and it also allows the direct
calculation of the optimal shift as for Eq. (2). The convexity of a single RROC curve does not mean that the notion of convex hull seen in the
previous section is useless. More on the contrary, whenever we have more than one model, we can see concavities. Fig. 4 (left) precisely
shows this, and the convex hull is shown in Fig. 4 (right).

4.3. Related and alternative graphical tools

Before further analysing RROC curves, it is appropriate to take a look at other curves and graphical tools that are used for the analysis of
regression models. Regression Error Characteristic (REC) curves [3] are, by far, the most successful attempt to bring ROC analysis to
regression. The idea is based on plotting the percentage of examples (accuracy) whose predictions are inside a tolerance level ϵ. As the
tolerance level increases on the x-axis the accuracy increases on the y-axis, so REC curves are always non-decreasing. Alternatively, REC
curves can be seen as a plot of the cumulative distribution function of the prediction error. Similarly to ROC curves, several models can be
represented in the same space, so that dominance regions can be determined. The crucial point about REC curves is what the operating
condition means. In the case of REC curves, the operating condition is the maximum tolerance level that is admitted for predictions. This is
useful in applications where the maximum admitted error can vary from time to time. If a context is very strict on errors we can use the
models that perform better in that range. On the other hand, if we are more flexible on errors, we can choose a different model. We will
plot some REC curves in Section 6.

Regression Error Characteristic Surfaces (RECS) [51] are an extension of REC curves where the cumulative distribution of the dependent
variable is set as an additional dimension [51]. In this way, REC surfaces (if the loss function is the absolute deviation) show the joint
cumulative distribution function of the errors and the target variable. The operating condition is then a pair of tolerance level ϵ and the
value of the dependent variable. This is useful if we have different tolerance levels depending on the output variable. In fact, it is easy to
make a section of the REC surface to account for relative performance, as, e.g., admitting an error of at most 25%.

Despite their usefulness, none of the previous approaches focusses on the problem of asymmetric loss functions and the notion of
operating condition as a parameter of the loss function.2 As a result, we do not have the dual (TPR vs. FPR) view of ROC analysis (where
both axes have the same dimension and commensurable meaning), from where the notion of loss isometrics can be derived. Also, we
think that the problem of asymmetry in regression is arguably more common than the problem of limited tolerance. Nonetheless, we see
RROC curves and REC curves as complementary tools, which either (or both) can be used depending on the kind of operating conditions
we want to deal with.

There are other more classical plots for analysing regression models, such as scatter plots (predicted vs. actual), residual density plots
and residual boxplots [33]. While these plots make it possible to see model asymmetries, it is very difficult to compare several models and
determine the dominance regions. Also, Fig. 5 (left) will also show a residual density plot. In Section 6, we will show scatter plots and
residual density plots and compare them to RROC curves and REC curves.
2 In the so-called utility-based regression [41], the asymmetric absolute loss function (Lin-Lin) is discussed, but no specific plot is introduced to deal with this
asymmetry.
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Fig. 5. Left: The error density plots of the same three models as in Fig. 4. We can see that similar error density functions will produce similar RROC curves. Here, more
peaked density functions mean better RROC curves. Right: Model m1 as in Example 1 drawn as a normalised RROC curve, using a normalised scale for the x-axis and y-axis
(n¼10 examples). Compare with Fig. 3 (left). Now we can see the average metrics of those shown in Fig. 1 (right).
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Finally, as there is a point-to-line (or point-to-point [29]) correspondence between ROC curves and cost curves [12] in classification, we
can also consider the definition of cost curves for regression. The cost space for regression (RCOST) is defined as a plot where the expected
loss (e.g., the asymmetric absolute loss) is shown on the y-axis for a range of operating conditions (e.g., the asymmetry α) on the x-axis .
We will also show a RCOST curve in Section 6.
5. Areas and metrics

RROC curves, as in ROC analysis, can be especially useful for analysing models under different operating conditions and select the best
one for a single operating condition or a region an interval of operating conditions. Also, we can create hybrids through the notion of
convex hull. Nonetheless, in ROC analysis we are also interested in evaluating models that can work well for a wide range of operating
conditions. One measure that gives us a good indication of a classifier performing well in a wide range of operating conditions is the Area
Under the ROC Curve (AUC). Can we develop a similar measure for RROC curves? The following definition introduces such a measure:

Definition 8. The Area Over the RROC Curve (AOC) is defined as follows:

AOC≜−
Z ∞

0
UNDER d OVER¼

Z 0

−∞
OVER d UNDER

Lower values for AOC are better. This area can be calculated very easily by using the sum of the nþ 1 upward trapeziums given between
the elements 1 and n+2 from RROCX and RROCX in Algorithm 1. Actually, for models always outputting finite values, this can be calculated
from 2 to n, since the extreme trapezium 1 to 2 has area 0 and the trapezium nþ 1 to nþ 2 as well, so we only need to sum n−1
trapeziums. Consequently:

AOC ¼ ∑
n

i ¼ 2
−
RROCYiþ1 þ RROCYi

2
ðRROCXiþ1−RROCXiÞ

As the RROC space is unbounded, only the area over the curve makes sense:

Proposition 5. For any regression model m which always outputs finite values, the AOC is finite.

Proof. Since the model m always outputs finite values, there is a shift so, such that for any shift s≤so we have that OVER¼ 0 and there is
also a shift su, such that for any shift s≥su we have that UNDER¼ 0. This means that the curve touches (and stays at) both the x-axis and
the y-axis. Then the area is finite. □

For the three models m1, m2 and m3 in Fig. 4 (left), the AOC is 56.1387, 88.0933 and 63.9295, respectively. What is the meaning of these
figures? To answer this question, let us first consider the ‘best’ possible model in terms of AOC (a perfect square with top-left corner at the
RROC heaven (0,0)). This model means that there is a shift that achieves 0 error. This is rarely the case, except for datasets with one single
example (where there is always a shift getting 0 loss). It is also very rare to have a dataset for which all the examples have the same error,
another possible situation where we would have AOC ¼ 0.

We could also think about the relation of AOC to other metrics, For instance, a model with very high MSE or MAE could, in principle,
have AOC ¼ 0. This would suggest that the shift was very badly chosen. This phenomenon mirrors what happens with classical ROC
analysis; we can have bad accuracy for a model with optimal AUC by choosing a bad threshold.

A possible way to look at AOC is as the expected value of the total under-estimation given a distribution for the total over-estimation.
Alternative, if we look at the distance to RROC heaven, we can see AOC as an aggregate of the macro-average squared error (n � uSE) with a
distribution which depends on the model, which is similar to one recent interpretation given to AUC [24]. Other interpretations as an
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aggregation of expected loss may be possible,3 as it has happened with AUC recently, where new interpretations have been introduced
[20,28].

Having said all this, the idea of the AOC being related to the distribution of errors seems more appealing. If we have a compact error
distribution, then AOC will be low because many shifts will be able to place most errors close to 0. If we have a sparse error distribution,
then AOC will be high. One classical measure of dispersion is precisely the variance, defined and decomposed as follows:

Definition 9. The error variance sðeÞ2 (or, simply, s2) is defined as:

sðeÞ2≜∑n
i ¼ 1ðei−μðeÞÞ2

n
¼ ∑n

i ¼ 1e
2
i

n
−μðeÞ2 ¼ μðe2Þ−μðeÞ2 ¼MSE−μðeÞ2

where μðeÞ (or, simply, μ) represents the mean of the vector e.

Note that we define the population error variance, by dividing by n (instead of n−1). The last term in Definition 9 is just the classical
MSE decomposition as the sum of the squared mean error bias (μ2) and the error variance (s2).

Quite surprisingly, the observation that the AOC and the error variance are related can be made extremely precise, as the following
theorem shows:

Theorem 7. The area over the RROC curve equals the population variance s2 of the errors multiplied by a factor n2=2 which is independent of
the model. Namely:

AOC ¼ n2

2
s2

The proof is found in the appendix.

Corollary 8. If the model is unbiased (i.e., μðeÞ ¼ 0) then:

AOC ¼ n2

2
MSE

The proof of this corollary is direct from Theorem 7 and Definition 9 (error variance decomposition). These important results provide a
natural interpretation of the AOC and its connection with error variance and MSE. Also, AOC (and indirectly MSE) can be interpreted as a
measure of performance over a range of asymmetry parameters α, provided we choose the shift optimally (Eq. 2).

For the models m1, m2 and m3 in Examples 1–3 we have a variance of 1.1228, 1.7619 and 1.2786, respectively. The AOC is 56.1387,
88.0933 and 63.9295 respectively. Since m2 is unbiased, its MSE is precisely 1.7619, its error variance. The constant factor is n2=2¼ 50 in
the three cases.

In general, we can show the MSE decomposition (the squared error bias and the error variance) in RROC space. In Fig. 1 (right) we saw
that the area of the shadowed triangle is exactly half the squared error bias. By summing this area to the AOC we have half the squared
error (SE). This again draws a parallelismwith classification, where a perfectly calibrated model has 0 calibration loss, andMSE is just given
by the refinement loss, recently connected with AUC [28]. In regression, we have just seen that a model with no bias leads to a MSE which
is just the error variance, now connected with AOC.

Given this link between the area over the RROC curve and the error variance, we can also explore the link with an error density plot.
As we can see in Fig. 5 (left), there is a high correspondence between the density plots and the RROC curve, but the cumulative character
of the RROC curve makes the latter smoother.

Note that this connection between AOC and the error variance indicates that it is the dispersion that counts when adapting our models
to cost-sensitive situations with asymmetries, and not the position, which can be ignored if the optimal shift is chosen for each particular
operating condition. This again shows a parallel with ROC analysis, where the absolute values of the scores do not affect the AUC. Only
their order matters. Here, for RROC curves, the position of the mean error (the error bias) does not affect the AOC, only the dispersion of
the error.

Interestingly, the n2 factor in Theorem 7 also suggests that a scaled representation of RROC curves could be done by dividing both
x-axis and y-axis by n, i.e., plotting OVER=n against UNDER=n. This would make the curves independent of the number of examples and
could be the standard representation in many applications, especially when the number of examples in the datasets may vary or we may
even compare several models (or the same model) against different datasets (with different sizes). Fig. 5 (right) shows the same plot as
Fig. 3 (left) but normalising by the number of examples (in this case n¼10). It also shows the same metrics as in Fig. 1 (right), but now the
magnitudes correspond to the mean versions (MAE, MSE, uMSE and MEB).

Finally, the derivation of an area from a curve is not exclusive of ROC curves (or RROC curves). Some of the curves discussed in Section
4.3 have associated areas with particular meanings. For instance, the AOC for REC curves have been shown [3] to be a lower estimation of
MAE if the error function is the absolute error and a lower estimation of MSE if the error function is the squared error. As a result, we can
say that if the error bias is zero, then the AOC of a REC curve is always lower than or equal to the AOC of a RROC curve. Nonetheless, it is
important to note that the AOC is the sample error variance (more precisely a linear function of it), and not an estimation. Also, these two
areas for REC and RROC curves represent different things and may serve different purposes. In order to see this, we include the AOC for the
REC curves and the RROC curves in the real example that follows.
3 We suggest some possible pathways for exploration. Since AOC is related to the magnitude of predictions (and errors), it cannot be directly related to rank-based
correlation measures in regression. However, it could be related to this sum ∑y1 ;y2 ðŷ1−ŷ2jy14y2Þ, which would work as a counterpart of the Wilcoxon–Mann–Whitney
interpretation of the AUC.
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6. A case study

Cost asymmetries and biased predictions are an issue in most application areas where regression is used: sales forecasting, inventory
control, position and speed tracking, pose estimation, survival analysis, consumption estimation, demand prediction, weather forecasting,
series analysis and econometrics, among many others. Project effort estimation is one application area where over-estimations and under-
estimations may have different costs depending on the situation. As a real example, we will work with a software engineering project
effort dataset. In this area in particular [45], “underestimating software projects can have detrimental effects on business reputation,
competitiveness, and performance” while “overestimated projects can result in poor resource allocation and missed opportunities to take
on other projects” [5]. This phenomenon is extensible to other areas as well [53,2,6,49,39]. The relation between under-estimation and
over-estimation costs can be tuned by the project manager depending on the context.

We will use a dataset comprising 145 projects from the Computer Science Corporation (CSC). This dataset has been thoroughly
discussed and analysed in [33]. We use the (compact) version of the dataset published in [33], with attributes “client code” (cc), “project
type” (pt) and “adjusted function points” (afp) as predictive variables, and the ”actual effort” (ae) in hours as the dependent variable.4

Typically, the evaluation metrics used for this and other effort estimation problems are [33]: (1) the mean magnitude relative error
(MMRE), which is a normalisation of the absolute error, (2) “the proportion of project estimates within 25% of the actual”, denoted as “Pred
(25)”, and (3) boxplots for the residuals. The first one is a special case of the asymmetric absolute loss used in RROC curves (assuming
α¼ 0:5), while the third one is used to “show whether or not the estimates are biased […] and whether the model has a tendency to
under- or over-estimate” [33]. With RROC curves we will be able to see both things (and more, such as dominance, isometrics and areas)
with the same plot. The second one seems to be closely related to the concept of tolerance in REC curves, although REC curves use a notion
of absolute tolerance, while Pred(25) refers to a notion of relative tolerance. As a result, RROC curves are very suitable for this kind of
problem in conjunction with other approaches, such as REC curves.

We considered the following experimental scenario. We randomly split the dataset into a work dataset (2/3 of the data) for model
training and selection and a deployment dataset (1/3 of the data) for final evaluation. We built several models with the work dataset using
10-fold cross-validation. As a custom procedure (see, e.g., [3]), the aggregated results of the 10 trials were used to build the plots
(RROC and REC curves), estimate the metrics and dominance regions. Then, the 10 trials were discarded and the whole work dataset was
used to retrain the models, as usual in cross-validation. Finally, the models were evaluated for the deployment dataset under several
operating conditions (the asymmetry cost parameter α).

We compared five methods: Mean is the mean of the dependent variable for the training set, LR is a linear regression using the function
lm in R [40], SVM is a support vector machine using the function ksvm in the R package kernlab, and Tree is a regression tree using the
function rpart in the R package rpart. In addition, for comparison, we also included a method known as Given, which is provided by [33]
as an estimation method used by CSC (“first estimate”).

Fig. 6 shows the results of these five methods on the work dataset (the test values for the 10 trials) using two common plots: a scatter
plot and a residual density plot. While these two plots show some relevant information, it is very difficult to compare several models with
them, see the tolerance levels or the asymmetries. Things improve significantly when we plot the REC curves (described in Section 4.3) for
the five models (see Fig. 7). We see that the Mean model and especially the Given model behave much worse for almost all ranges of error
tolerance. Also, e.g., we can see on Fig. 7 (left) that if we set our absolute deviation tolerance at 2000 h, then the best model seems to be
SVM. However, REC curves are not devised to show asymmetry information and we cannot see the bias either.

Fig. 8 shows the corresponding RROC curve. Here we can clearly see the asymmetries. For low over-estimations (low values of α), Mean
and SVM are better, while LM is better for low under-estimations (high values of α). Note that the curves implicitly assume the best shift for
each operating condition α. By using Eq. (2), snðαÞ can be exactly calculated on a sample (in this case the work dataset). The ultimate
goodness of this mapping on a deployment dataset will be given by the quality of the RROC curve estimation (we will explore this below).

We can also compare some metrics that can be derived from the plots we have seen so far (see Table 1). Interestingly, we can also see
the contribution of each of these measures graphically and whether the differences between two models are originated uniformly from a
wide range of operating conditions (as happens with the difference in MAE between LR and Tree) or it conceals a cancellation for two
different dominance regions (as happens with the difference in MAE between LR and SVM). This can only be seen on the RROC curves, and
not by any global metric (including AOC).

Once the analysis has been done on a work dataset, it is time to see how our findings and selections behave on a deployment dataset.
From work to deployment, we need to keep three things: (1) the five models, (2) the dominance regions (see Fig. 8) and (3) the five shift
mappings snðαÞ corresponding to each model (that can be stored into an array for a range of α∈½0;1�)5 Note that elements 2 and 3 are
available if we just keep the segments of the RROC curves. With all these elements, the procedure at deployment time is simple:
(1) recognise the operating condition α, (2) look at the dominance regions and see which model m is best for that α, (3) take the mapping
sn for m to calculate the shift snðαÞ, and (4) apply the shift to m to make the predictions.

The effectiveness of the above procedure will depend on the accurate estimation of the RROC curve. For instance, the dominance
regions for the work dataset could differ from those in the deployment dataset. We can see whether this happens in this example by
comparing the curves shown on Figs. 8 and 9 and the intervals identified in their captions. Actually, the regions are similar. But the
ultimate quality criterion must be whether this procedure can choose the model that (using sn) minimises the loss function for each
possible condition. This is nicely reproduced by the RCOSTcurve (introduced at the end of Section 4) shown on the right of Fig. 9. This
shows that the procedure has worked almost perfectly, by choosing the best model for almost all over the range.

On other occasions we may be interested in part of the range of α∈½0;1�. For instance, in this software effort problem we may be told
that operating conditions usually range between α∈½0:33;0:8�, i.e., from cases where an over-estimation is up to 2 times (0.33 vs. 0.67)
4 This attribute setting is similar to “model 1” in [33]. We investigated the logarithmic transformation of the numerical variables afp and ae (as done in some models in
[33]), but we did not find any significant improvement for any of the regression methods we used. For the two categorical variables we merged all the values (including
missing values) with less than 10 instances into a single merger label (so that new values cannot appear on the test set if they have not previously appeared on the training
set). Finally, we removed the outlier example 102, following [33].

5 There are more elaborate methods, such as those of [1,55], using non-constant shifts, or even using soft regressors [25], which can also work with other loss functions.
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been removed, since they can be safely discarded (as far as the curves are well estimated). We show three isometrics corresponding to α¼ 0:05, 0.25, 0.75, in grey, clockwise
from bottom left to top right. By taking the slopes where the curves cross, we can easily calculate the dominance intervals: α∈½0;0:103� for the Mean model, α∈½0:103;0:453�
for the SVM model, and α∈½0:453;1� for the LR model.
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more costly than an under-estimation to cases where under-estimation is up to 4 times (0.2 vs. 0.8) more costly than an over-estimation).
Then we only need to look at this range of operating conditions on Fig. 8, and see that it is enough to keep the LR model and the
SVM model.

Fig. 9 also shows a close (and very interesting) relation between RROC curves and RCOST curves. While RCOST curves are obviously
better for locating the expected loss for each operating condition, RROC curves have more information: under-estimation and over-
estimation. In fact, from them, we can get the loss, but not the other way round. Also, the AOC corresponds to the variance of the residual,
while the area under the RCOST curve is only meaningful as an expected loss for a uniform distribution of operating conditions. Another
advantage of RROC space over RCOST space is that by varying the isometrics (from straight lines to any other function) we could see the
notion of dominance for several asymmetric loss functions, while cost curves would need to be redrawn. This comparison is extremely
similar to that in classification [12,29] and unveils a potential for further exploration.

Finally, Table 2 shows the quality metrics for the deployment dataset. The comparison with Table 1 shows that there are important
differences in global metrics. Despite this, the model selection that we have performed with RROC analysis has still been quite robust.



Table 1
Averaged 10-fold cross-validation results on the work dataset. We see several metrics for the five models of our case study:MAE,MSE,MEB, the area over the REC curve using
absolute error, the area over the REC curve using squared error and the normalised version of the area over the RROCcurve (which equals the error variance). While the AOC
of the REC curves are under-estimations of the MAE and MSE metrics (as shown by [3]), we see that the AOC of the RROC curve is just the MSE minus the squared MEB as
given by the decomposition in Eq. (9).

Model MAE MSE MEB AOCRECAE AOCRECSE 2AOCRROC=n2 ¼ s2

Mean 1572.6 5803921 0.1 1496.6 4,865,235 5,803,921
LR 991.7 2714267 7.3 931.4 2,169,130 2,714,214
SVM 993.4 3533795 −301.8 916.7 2,646,860 3,442,698
Tree 1033.1 2,866,122 17.5 999.0 2,586,698 2,865,817
Given 2186.2 11,348,130 157.1 2122.0 10,558,810 11,323,462
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Fig. 9. Left: the RROC curve for the five models (previously trained with the whole work dataset) on the deployment dataset. The dominance intervals are now: α∈½0;0:159�
for the Mean model, α∈½0:159;0:548� for the SVM model, and α∈½0:548;0:938� for the LR model (there is a small interval for the Tree model for α∈½0:938;1�). These are
approximate to those found for the work dataset (see Fig. 8). Right: a RCOST curve shows the actual asymmetric loss for α∈½0;1�. The dotted curve in black shows the results
obtained by the selection of models performed for the work dataset, using the dominance regions in Fig. 8 (shown as grey vertical lines) and the map function sn obtained
from the work dataset. We see that piecewise composition of the choices made by this procedure has led to a very good choice for this deployment dataset.
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7. Discussion

We said in the introduction that there is no such a thing as the ‘canonical’ ROC space for regression, corresponding exactly to the ROC
space for classification, since regression and classification are very different tasks. Having said this, we think that the RROC space, curves
and analysis that we have introduced in this paper present so many parallelisms and share so many common notions and procedures, that
their curves could reasonably be called the ROC curves for regression, with arguably more support than other previous attempts. We have
seen that the notions of operating condition, cost asymmetry, RROC space, points, segments, RROC heaven, RROC isometrics, hybrid
models, convexity, dominance, convex hull, curves, shift choice methods, etc., derive smoothly and work almost the same as in the
classification case, so the practitioners which are used to ROC curves can directly apply their expertise on ROC analysis to regression quite
easily.

There are also some caveats. First, while we have argued that asymmetric costs are common in many regression applications, there
might also be some problems where asymmetries are not important. Second, when asymmetry is important the operating condition may
be unknown on deployment time.6 Third, keeping several models and choosing the best one depending on the operating condition seems
a reasonable way to adapt predictions to the new context, but there is always the alternative approach of retraining the model (provided
that we can use specialised regression techniques for each cost function [11,39]). This is known as the reframing/retraining dilemma.
Fourth, on occasions the data at hand may be insufficient to do a good estimation of the RROC curves (even if we use cross-validation or
confidence bands). Hence the rejection of regression models and the identification of dominance regions may be statistically unreliable.
These four caveats are not new to RROC curves, but inherited from the very nature of ROC analysis as a method of choosing the best model
given the operating condition.

We now point out other more specific limitations of RROC curves and suggest some possible solutions, which can be used as start
points for future work. The first issue that could be explored and generalised is the very notion of operating condition. We have only
considered the loss asymmetry while, in classification, the class distribution can also be integrated (along with the cost proportion) in
what is usually referred to as skew. In regression, the distribution of the output value (and not only the loss asymmetry) may also be
considered part of the operating condition as well. This integration does not seem to be direct as a single parameter, but it is worth being
investigated as a 3D plot, possibly in the same way REC surfaces extend REC curves by including the cumulative distribution of the
dependent variable as an additional dimension [51]. Also, the combination of REC curves and RROC curves could be explored.

A (related) second issue is the use of other loss functions. For instance, instead of an asymmetric absolute error, we could use an
asymmetric squared error Quad-Quad. This would lead to non-straight isometrics in the RROC curve, but the basic ideas would remain.
6 Related to these two first caveats, we note that there has been some work to explore whether costs should or should not be asymmetric and even determine their
parameters from the dataset (e.g., [9], for the Lin-Lin cost function, as the one used here).



Table 2
Similar to Fig. 1 but calculated on the deployment dataset.

Model MAE MSE MEB AOCRECAE AOCRECSE 2AOCRROC=n2 ¼ s2

Mean 1731.4 7,305,474 −516.2 1642.5 6,646,875 7,039,046
LR 1278.2 4,200,835 −296.2 1197.2 3,659,776 4,11,3120
SVM 1263.1 5,134,660 −618.4 1174.8 4,503,110 4,752,242
Tree 1455.5 5,119,506 −141.8 1376.3 4,532,698 5,099,411
Given 2303.8 12,689,846 −381.3 2203.8 11,748,335 12,544,431
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Again, plotting different isometrics in RROC space for many different loss functions (Lin-Lin, Quad-Quad, Lin-Exp, Quad-Exp, etc.) would
closely resemble the celebrated paper [18] on isometrics for ROC curves in classification.

The most common application of RROC curves is the local selection of models according to an operating condition, as we have seen in a
real scenario in Section 6, instead of the selection of models by the use of global metrics. Nonetheless, a third important avenue of future
work would be to further investigate the connection with the error variance we have unveiled here and to analyse the relation of AOC with
other global metrics. We think that RROC curves represent the expected loss for a range of operating conditions on one side, and the
distribution of the error on the other side (as the AOC has been shown to be equivalent to the error variance). The derivation of global or
partial (see, e.g., the use of partial AUC in [42]) areas using some knowledge about the ranges and/or distributions of the operating
conditions may be useful in many applications, where we do not know the exact operating condition, but we may still have some
information about some asymmetries being more likely than others. In general, there may be important connections to be unveiled
between regression techniques trying to minimise the error variance (instead of squared error) and those classification techniques trying
to maximise the AUC (instead of accuracy) [15]. Also, the link between AOC and the MSE decomposition could be related to the recently
discovered equivalence of AUC to the refinement loss term of theMSE decomposition using the ROC curve [28]. So we anticipate a plethora
of connections between RROC curves and many other performance metrics in regression, as has been done for classification in the past
years [16,24,20,27,28].

Finally, the relation between classification and regression could be better understood, since any scoring classifier (producing
probabilities, likelihoods or other kinds of scores) can also be examined in terms of asymmetry as if they were regression models. In
fact, some datasets (e.g., in signal detection) are presented with a quantitative output, modelled with regression and ultimately converted
into categorical decisions (alarm, failure, etc.) with a (varying) threshold.

Overall, we think that RROC curves could become a fundamental tool in the assessment, improvement and deployment of regression
models. In order to facilitate their use in real applications, we have developed a library for plotting RROC curves,7 the intercepts and
dominance regions, calculating their areas and deriving their convex hulls. The library also includes tools for plotting REC curves and
RCOST curves, as well as the code for reproducing all the examples in this paper. The availability of software, the ubiquitous appearance of
asymmetric losses in regression applications, and the success of ROC analysis for classification in the past decades suggests that
RROC curves may soon become mainstream in all the areas where ROC analysis has shown to be useful: medicine, bioinformatics,
statistics, machine learning and pattern recognition.
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Appendix A. Proof of the connection between AOC and error variance

We include the proof of Theorem 7:

AOC ¼ s2n2

2

Proof. We start with an error vector e of length n, which we assume is sorted in decreasing order, as in Algorithm 1. We use a different
notation for the points on the RROC curve. Instead of using nþ 2 points, we will just ignore the two extremes (which do not contribute to
the area for finite cases) and we will just work with n points, denoted by p1;…; pn. The components of each point are pi ¼ ðoi;uiÞ. Note that
oi ¼ RROCXiþ1 using the notation in Algorithm 1 and ui ¼ RROCYiþ1. We will also introduce the error differences di ¼ ei−eiþ1, which are
7 The software, in R [40], is at http://users.dsic.upv.es/%7ejorallo/RROC/.

http://users.dsic.upv.es/%7ejorallo/RROC/
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defined from i¼1 to i¼ n−1. Note that di≥0 since the error vector e is in decreasing order. It is easy to see that oi ¼∑i−1
j ¼ 1j � dj and

ui ¼ −∑n−1
j ¼ iðn−jÞ � dj. According to this notation:

AOC ¼− ∑
n−1

i ¼ 1

ui þ uiþ1

2
ðoiþ1−oiÞ

In order to prove this theorem, we will proceed by induction.
Base case: The base case will consider any error vector of size n¼2. In this case, we only have two points p1 ¼ ð0;−d1Þ and p2 ¼ ðd1;0Þ.

From here,

AOC ¼− ∑
1

i ¼ 1

ui þ uiþ1

2
ðoiþ1−oiÞ ¼ −

−d1 þ 0
2

ðd1−0Þ ¼
d21
2

¼ ðe2−e1Þ2
2

¼ ðe2−μþ μ−e1Þ2
2

¼ ðe2−μÞ2 þ ðμ−e1Þ2 þ 2ðe2−μÞðμ−e1Þ
2

¼ 2ðe2−μÞ2 þ 2ðμ−e1Þ2
2

¼ 4s2

2
¼ s2n2

2

Inductive step: We assume that the following expression holds for any dataset of size n:

AOC ¼ s2n2

2
ðA:1Þ

Without loss of generality, we consider that the case for nþ 1 is constructed by adding example enþ1, assumed to be lower than the other
examples e1; e2;…; en coming from the n case. Consequently, the error vector for the case nþ 1 is e1; e2;…; en; enþ1. The difference vector is
also an extension for nþ 1, denoted by d1;d2;…; dn. Note that since we assume that Eq. (A.1) holds for any dataset of n examples, we can
choose the order of examples that we prefer in order to build any case with nþ 1 examples.
The AOC for the n case is given by:

AOC ¼− ∑
n−1

i ¼ 1

ui þ uiþ1

2
ðoiþ1−oiÞ

The AOC for the nþ 1 case is given by

gAOC ¼− ∑
n

i ¼ 1

eui þ euiþ1

2
ðeoiþ1−eoiÞ ðA:2Þ

We will use a wide tilde to denote the gAOC , es, eμ, etc., for the nþ 1 case. The first thing we can see is that eu1 ¼ u1−d1−d2−⋯−dn,eu2 ¼ u2−d2−⋯−dn, etc. We use these latter expressions on Eq. (A.2):

gAOC ¼− ∑
n

i ¼ 1

ui þ f−∑n
j ¼ idjg þ uiþ1 þ f−∑n

j ¼ iþ1djg
2

ðeoiþ1−eoiÞ

The second thing we realise is that oi and eoi are equal for i¼ 1…n. From here, we can calculate the delta between nþ 1 and n as follows:

ΔAOC≜gAOC−AOC ¼ − ∑
n

i ¼ 1

f−∑n
j ¼ idjg þ f−∑n

j ¼ iþ1djg
2

ðeoiþ1−eoiÞ

But we have that eoiþ1−eoi ¼ i � di. So, we rewrite:

ΔAOC ¼− ∑
n

i ¼ 1

f−∑n
j ¼ idjg þ f−∑n

j ¼ iþ1djg
2

ði � diÞ

¼ ∑
n

i ¼ 1

ðdi þ 2∑n
j ¼ iþ1djÞði � diÞ
2

¼ ∑
n

i ¼ 1

i � d2i þ 2∑n
j ¼ iþ1i � didj
2

Using the expression of the square of a sum: ð∑iaiÞ2 ¼∑ia2i þ 2∑io jaiaj, and joining/distributing terms, we see that the above expression
can be rewritten as:

ΔAOC ¼ ∑
n

i ¼ 1

f∑n
j ¼ idig

2

2
¼ ∑

n

i ¼ 1

ðenþ1−eiÞ2
2

¼ ∑
n

i ¼ 1

e2nþ1−2enþ1ei þ e2i
2

¼ 1
2

n � e2nþ1−2enþ1 ∑
n

i ¼ 1
ei þ ∑

n

i ¼ 1
e2i

 !
¼ 1

2
fn � e2nþ1−2enþ1n � μþ nðs2 þ μ2Þg

¼ n
2
ðe2nþ1−2enþ1μþ s2 þ μ2Þ ¼ n

2
fðenþ1−μÞ2 þ s2g

From here, we can now write:

gAOC ¼ AOC þ ΔAOC ¼ AOC þ n
2
ððenþ1−μÞ2 þ s2Þ
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From the induction step (Eq. A.1), we have:

gAOC ¼ s2n2

2
þ n

2
ððenþ1−μÞ2 þ s2Þ ¼ n

2
ðs2nþ ðenþ1−μÞ2 þ s2Þ

¼ n
2
ðs2ðnþ 1Þ þ ðenþ1−μÞ2Þ ¼

n
2

∑n
i ¼ 1e

2
i

n
−μ2

� �
ðnþ 1Þ þ ðenþ1−μÞ2

� �

¼ 1
2

∑
n

i ¼ 1
e2i −nμ

2

 !
ðnþ 1Þ þ n � ðenþ1−μÞ2

( )

¼ 1
2

∑
nþ1

i ¼ 1
e2i

 !
ðnþ 1Þ−ðnμ2ÞðnÞ−e2nþ1−2n � enþ1μ

( )

¼ 1
2

∑
nþ1

i ¼ 1
e2i

 !
ðnþ 1Þ−ðnμþ enþ1Þ2

( )
¼ 1

2
∑
nþ1

i ¼ 1
e2i

 !
ðnþ 1Þ−ððnþ 1ðeμÞ2)(

¼ 1
2
ðnþ 1Þ2 ∑nþ1

i ¼ 1e
2
i

nþ 1
−eμ2

 !
¼ 1

2
ðnþ 1Þ2 es2

� 	
¼ es2ðnþ 1Þ2

2

This last expression completes the induction step and the proof. □

References

[1] G. Bansal, A. Sinha, H. Zhao, Tuning data mining methods for cost-sensitive regression: a study in loan charge-off forecasting, Journal of Management Information
System 25 (December) (2008) 315–336.

[2] A.P. Basu, N. Ebrahimi, Bayesian approach to life testing and reliability estimation using asymmetric loss function, Journal of Statistical Planning and Inference 29 (1–2)
(1992) 21–31.

[3] J. Bi, K.P. Bennett, Regression error characteristic curves, in: Twentieth International Conference on Machine Learning (ICML-2003), Washington, DC, 2003.
[4] A.P. Bradley, The use of the area under the ROC curve in the evaluation of machine learning algorithms, Pattern Recognition 30 (7) (1997) 1145–1159.
[5] L.C. Briand, I. Wieczorek, Resource estimation in software engineering, Encyclopedia of Software Engineering, 2 (2002) 1160–1196.
[6] M. Cain, C. Janssen, Real estate price prediction under asymmetric loss, Annals of the Institute of Statistical Mathematics 47 (3) (1995) 401–414.
[7] P.F. Christoffersen, F.X. Diebold, Further results on forecasting and model selection under asymmetric loss, Journal of Applied Econometrics 11 (5) (1996) 561–571.
[8] P.F. Christoffersen, F.X. Diebold, Optimal prediction under asymmetric loss, Econometric Theory 13 (1997) 808–817.
[9] M.A. Clatworthy, D.A. Peel, P.F. Pope, Are analysts' loss functions asymmetric? Journal of Forecasting 31 (8) (2012) 736–756.
[10] S. Crone, Training artificial neural networks for time series prediction using asymmetric cost functions, in: 9th International Conference on Neural Information

Processing, 2002.
[11] M. Demetrescu, An extension of the Gauss–Newton algorithm for estimation under asymmetric loss, Computational Statistics & Data Analysis 50 (2) (2006) 379–401.
[12] C. Drummond, R.C. Holte, Cost curves: an improved method for visualizing classifier performance, Machine Learning 65 (2006) 95–130.
[13] C. Elkan, The foundations of cost-Sensitive learning, in: Bernhard Nebel, (Ed.), Proceedings of the Seventeenth International Conference on Artificial Intelligence (IJCAI-

01), San Francisco, CA, 2001, pp. 973–978.
[14] T. Fawcett, An introduction to ROC analysis, Pattern Recognition Letters 27 (8) (2006) 861–874.
[15] C. Ferri, P. Flach, J. Hernández-Orallo, Learning decision trees using the area under the ROC curve, in: International Conference on Machine Learning, 2002, pp. 139–146.
[16] C. Ferri, J. Hernández-Orallo, R. Modroiu, An experimental comparison of performance measures for classification, Pattern Recognition Letters 30 (1) (2009) 27–38.
[17] C. Ferri, J. Hernández-Orallo, M. Salido, Volume under the ROC surface for multi-class problems, Machine Learning: ECML 2003, 2003, pp. 108–120.
[18] P. Flach, The geometry of ROC space: understanding machine learning metrics through ROC isometrics, in: Machine Learning, Proceedings of the Twentieth International

Conference (ICML 2003), 2003, pp. 194–201.
[19] P. Flach, H. Blockeel, C. Ferri, J. Hernández-Orallo, J. Struyf, Decision support for data mining, data mining and decision support, 2003, pp. 81–90.
[20] P. Flach, J. Hernández-Orallo, C. Ferri, A coherent interpretation of AUC as a measure of aggregated classification performance, in: Proceedings of the 28th International

Conference on Machine Learning, ICML2011, 2011.
[21] J.E. Goin, ROC curve estimation and hypothesis testing: applications to breast cancer detection, Pattern Recognition 15 (3) (1982) 263–269.
[22] C.W.J. Granger, Prediction with a generalized cost of error function, Operational Research Quarter 20 (1969) 199–207.
[23] C.W.J. Granger, Outline of forecast theory using generalized cost functions, Spanish Economic Review 1 (2) (1999) 161–173.
[24] D.J. Hand, Measuring classifier performance: a coherent alternative to the area under the ROC curve, Machine Learning 77 (1) (2009) 103–123.
[25] J. Hernández-Orallo, Probabilistic reframing for context-sensitive regression, submitted for publication, preliminary version at 〈http://arxiv.org/abs/1211.1043〉, 2012.
[26] J. Hernández-Orallo, C. Ferri, N. Lachiche, P. Flach, The 1st workshop on ROC analysis in artificial intelligence (ROCAI-2004), ACM SIGKDD Explorations Newsletter 6 (2)

(2004) 159–161.
[27] J. Hernández-Orallo, P. Flach, C. Ferri, Brier curves: a new cost-based visualisation of classifier performance, in: Proceedings of the 28th International Conference on

Machine Learning, ICML2011, 2011.
[28] J. Hernández-Orallo, P. Flach, C. Ferri, A unified view of performance metrics: translating threshold choice into expected classification loss, Journal of Machine Learning

Research JMLR 13 (2012) 2813–2869.
[29] J. Hernández-Orallo, P. Flach, C. Ferri, ROC curves in cost space, Machine Learning, 2013, http://dx.doi.org/10.1007/s10994-013-5328-9.
[30] W. Khreich, E. Granger, A. Miri, R. Sabourin, Iterative boolean combination of classifiers in the ROC space: an application to anomaly detection with HMMs, Pattern

Recognition 43 (8) (2010) 2732–2752.
[31] W. Khreich, E. Granger, A. Miri, R. Sabourin, Adaptive ROC-based ensembles of HMMs applied to anomaly detection, Pattern Recognition 45 (1) (2012) 208–230.
[32] Y. Kim, K.A. Toh, A. Beng, J. Teoh, H.L. Eng, W.Y. Yau, An online AUC formulation for binary classification, Pattern Recognition 45 (6) (2012) 2266–2279.
[33] B. Kitchenham, P. Shari Lawrence, B. McColl, S. Eagan, An empirical study of maintenance and development estimation accuracy, Journal of Systems and Software 64 (1)

(2002) 57–77.
[34] W.J. Krzanowski, ROC Curves for Continuous Data, vol. 111, Chapman & Hall/CRC, 2009.
[35] T.A. Lasko, J.G. Bhagwat, K.H. Zou, L. Ohno-Machado, et al., The use of receiver operating characteristic curves in biomedical informatics, Journal of Biomedical

Informatics 38 (5) (2005) 404–415.
[36] L.B. Lusted, Signal detectability and medical decision-making, Science 171 (1971) 1217–1219.
[37] H. Mamitsuka, Selecting features in microarray classification using ROC curves, Pattern Recognition 39 (12) (2006) 2393–2404.
[38] C. Marrocco, R.P.W. Duin, F. Tortorella, Maximizing the area under the ROC curve by pairwise feature combination, Pattern Recognition 41 (6) (2008) 1961–1974.
[39] A.J. Patton, A. Timmermann, Testing forecast optimality under unknown loss, Journal of the American Statistical Association 102 (480) (2007).
[40] R. Team, et al., R: a language and environment for statistical computing, R Foundation for Statistical Computing, Vienna, Austria, 2012.
[41] R. Ribeiro, Utility-Based Regression, Ph.D. Thesis, Department of Computer Science, Faculty of Sciences - University of Porto, 2011.
[42] M.T. Ricamato, F. Tortorella, Partial AUC maximization in a linear combination of dichotomizers, Pattern Recognition 44 (10–11) (2011) 2669–2677.
[43] S. Rosset, C. Perlich, B. Zadrozny, Ranking-based evaluation of regression models, Knowledge and Information Systems 12 (3) (2007) 331–353.
[44] C.M. Schubert, S.N. Thorsen, M.E. Oxley, The ROC manifold for classification systems, Pattern Recognition 44 (2) (2011) 350–362.
[45] D.G. Silva, M. Jino, B.T. de Abreu, Machine learning methods and asymmetric cost function to estimate execution effort of software testing, in: Software Testing,

Verification and Validation (ICST), IEEE, 2010, pp. 275–284.

http://refhub.elsevier.com/S0031-3203(13)00266-5/sbref1
http://refhub.elsevier.com/S0031-3203(13)00266-5/sbref1
http://refhub.elsevier.com/S0031-3203(13)00266-5/sbref2
http://refhub.elsevier.com/S0031-3203(13)00266-5/sbref2
http://refhub.elsevier.com/S0031-3203(13)00266-5/sbref4
http://refhub.elsevier.com/S0031-3203(13)00266-5/sbref6
http://refhub.elsevier.com/S0031-3203(13)00266-5/sbref7
http://refhub.elsevier.com/S0031-3203(13)00266-5/sbref8
http://refhub.elsevier.com/S0031-3203(13)00266-5/sbref9
http://refhub.elsevier.com/S0031-3203(13)00266-5/sbref11
http://refhub.elsevier.com/S0031-3203(13)00266-5/sbref11
http://refhub.elsevier.com/S0031-3203(13)00266-5/sbref12
http://refhub.elsevier.com/S0031-3203(13)00266-5/sbref14
http://refhub.elsevier.com/S0031-3203(13)00266-5/sbref16
http://refhub.elsevier.com/S0031-3203(13)00266-5/sbref21
http://refhub.elsevier.com/S0031-3203(13)00266-5/sbref22
http://refhub.elsevier.com/S0031-3203(13)00266-5/sbref23
http://refhub.elsevier.com/S0031-3203(13)00266-5/sbref24
http://arxiv.org/abs/1211.1043
http://refhub.elsevier.com/S0031-3203(13)00266-5/sbref26
http://refhub.elsevier.com/S0031-3203(13)00266-5/sbref26
http://refhub.elsevier.com/S0031-3203(13)00266-5/sbref28
http://refhub.elsevier.com/S0031-3203(13)00266-5/sbref28
dx.doi.org/10.1007/s10994-013-5328-9
http://refhub.elsevier.com/S0031-3203(13)00266-5/sbref30
http://refhub.elsevier.com/S0031-3203(13)00266-5/sbref30
http://refhub.elsevier.com/S0031-3203(13)00266-5/sbref31
http://refhub.elsevier.com/S0031-3203(13)00266-5/sbref32
http://refhub.elsevier.com/S0031-3203(13)00266-5/sbref33
http://refhub.elsevier.com/S0031-3203(13)00266-5/sbref33
http://refhub.elsevier.com/S0031-3203(13)00266-5/sbref34
http://refhub.elsevier.com/S0031-3203(13)00266-5/sbref34
http://refhub.elsevier.com/S0031-3203(13)00266-5/sbref35
http://refhub.elsevier.com/S0031-3203(13)00266-5/sbref35
http://refhub.elsevier.com/S0031-3203(13)00266-5/sbref36
http://refhub.elsevier.com/S0031-3203(13)00266-5/sbref37
http://refhub.elsevier.com/S0031-3203(13)00266-5/sbref38
http://refhub.elsevier.com/S0031-3203(13)00266-5/sbref39
http://refhub.elsevier.com/S0031-3203(13)00266-5/sbref42
http://refhub.elsevier.com/S0031-3203(13)00266-5/sbref43
http://refhub.elsevier.com/S0031-3203(13)00266-5/sbref44


J. Hernández-Orallo / Pattern Recognition 46 (2013) 3395–3411 3411
[46] A. Srinivasan, Note on the Location of Optimal Classifiers in n-dimensional ROC Space, Technical Report PRG-TR-2-99, Oxford University Computing Laboratory, Wolfson
Building, Parks Road, Oxford., 1999.

[47] J.A. Swets, Measuring the accuracy of diagnostic system, Science 240 (1986) 1285–1293.
[48] J.A. Swets, R.M. Dawes, J. Monahan, Better decisions through science, Scientific American 283 (October (4)) (2000) 82–87.
[49] R.D. Thompson, A.P. Basu, Asymmetric Loss Functions for Estimating System Reliability, Bayesian Analysis in Statistics and Econometrics, John Wiley & Sons, 1996

pp. 471–482.
[50] K.A. Toh, J. Kim, S. Lee, Maximizing area under ROC curve for biometric scores fusion, Pattern Recognition 41 (11) (2008) 3373–3392.
[51] L. Torgo, Regression error characteristic surfaces, in: Proceedings of the Eleventh ACM SIGKDD International Conference on Knowledge Discovery in Data Mining, ACM,

2005, pp. 697–702.
[52] P. Turney, Types of cost in inductive concept learning, Canada National Research Council Publications Archive, 2000.
[53] H.R. Varian, A Bayesian approach to real estate assessment, Studies in Bayesian Econometrics and Statistics in Honor of Leonard J. Savage, 1975, pp. 195–208.
[54] A. Zellner, Bayesian estimation and prediction using asymmetric loss functions, Journal of the American Statistical Association (1986) 446–451.
[55] H. Zhao, A.P. Sinha, G. Bansal, An extended tuning method for cost-sensitive regression and forecasting, Decision Support Systems, 2011.

José Hernández-Orallo is currently an associate professor at the Department of Information Systems and Computation, Technical University of Valencia (UPV, Spain). He
holds a B.Sc. and a M.Sc. in Computer Science from UPV, partly completed at the École Nationale Supérieure de l'Électronique et de ses Applications (France), and a Ph.D. in
Logic with a doctoral extraordinary prize from the University of Valencia.

His academic and research activities have spanned several areas of artificial intelligence, machine learning, data mining and information systems. He has published four
books and about a hundred journal articles and conference papers on these topics. His research has been covered by specialised and lay-public media, such as The Economist
or New Scientist.

http://refhub.elsevier.com/S0031-3203(13)00266-5/sbref47
http://refhub.elsevier.com/S0031-3203(13)00266-5/sbref48
http://refhub.elsevier.com/S0031-3203(13)00266-5/sbref49
http://refhub.elsevier.com/S0031-3203(13)00266-5/sbref49
http://refhub.elsevier.com/S0031-3203(13)00266-5/sbref49
http://refhub.elsevier.com/S0031-3203(13)00266-5/sbref50
http://refhub.elsevier.com/S0031-3203(13)00266-5/sbref54

	ROC curves for regression
	Introduction
	Background
	Notation
	Cost-sensitive problems and loss functions
	Asymmetric costs

	The RROCspace
	Showing models in RROCspace
	RROCspace isometrics
	Hybrid models, dominance and convex hull

	RROCcurves
	Algorithm for drawing RROCcurves
	Properties: slope and convexity
	Related and alternative graphical tools

	Areas and metrics
	A case study
	Discussion
	Conflict of interest
	Acknowledgements
	Proof of the connection between AOCand error variance
	References




