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The recovery of the intrinsic geometric structures of data collections is an important problem in data 

analysis. Supervised extensions of several manifold learning approaches have been proposed in the re- 

cent years. Meanwhile, existing methods primarily focus on the embedding of the training data, and the 

generalization of the embedding to initially unseen test data is rather ignored. In this work, we build on 

recent theoretical results on the generalization performance of supervised manifold learning algorithms. 

Motivated by these performance bounds, we propose a supervised manifold learning method that com- 

putes a nonlinear embedding while constructing a smooth and regular interpolation function that extends 

the embedding to the whole data space in order to achieve satisfactory generalization. The embedding 

and the interpolator are jointly learnt such that the Lipschitz regularity of the interpolator is imposed 

while ensuring the separation between different classes. Experimental results on several image data sets 

show that the proposed method outperforms traditional classifiers and the supervised dimensionality re- 

duction algorithms in comparison in terms of classification accuracy in most settings. 

© 2018 Elsevier Ltd. All rights reserved. 
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. Introduction 

In many data analysis applications, collections of data are ac-

uired in a high-dimensional ambient space; however, the intrin-

ic dimension of data is much lower. For instance, the face images

f a person reside in a high-dimensional space, however, they are

oncentrated around a low-dimensional manifold that can be pa-

ameterized with a few variables such as pose and illumination

arameters. An important problem of interest in data analysis has

een the learning of low-dimensional models that provide suitable

epresentations of data for accurate classification. Many supervised

anifold learning methods have been proposed in the recent years

hat aim to enhance the separation between training samples from

ifferent classes while respecting the geometric structure of data

anifolds. However, the generalization capabilities of such meth-

ds to initially unavailable novel samples have rather been over-

ooked so far. In this work, we propose a nonlinear supervised di-

ensionality reduction method that builds on theoretically estab-

ished generalization bounds for manifold learning. 

Classical methods such as LDA and Fisher’s linear discriminant

educe the dimensionality of data by learning a projection so that

he between-class separation is increased while the within-class
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eparation is reduced. In the recent years, much research effort

as focused on the discovery of low-dimensional structures in data

ets, which gave rise to the topic of manifold learning [1–6] . Fol-

owing these works, many supervised extensions of methods such

s the Laplacian eigenmaps algorithm [3] have been proposed. Lin-

ar dimensionality reduction methods such as [7–14] learn a linear

rojection of training samples onto a lower-dimensional domain,

here the distance between samples from different classes are in-

reased and the distances within the same class are decreased.

ost of these methods include a structure preservation objective

s well, which aims to map nearby samples in the original domain

o nearby locations in the new domain of embedding. Nonlinear

ethods such as [15] pursue a similar objective; however, the em-

edding is given by a pointwise nonlinear mapping instead of a

inear projection. 

The performance of linear methods depends largely on the dis-

ribution of the data in the original ambient space, since the distri-

ution of the data after the embedding is strictly dependent on the

riginal distribution via a linear projection. Nonlinear dimension-

lity reduction methods such as [15] have greater flexibility in the

earnt representation. However, two critical issues arise concerning

upervised dimensionality reduction methods: First, most nonlin-

ar methods compute a pointwise mapping only for the initially

vailable data samples. In order to generalize them to new points,

n interpolation needs to be done, which is called the out-of-

ample extension of the embedding. Second, existing dimension-

https://doi.org/10.1016/j.patcog.2018.10.006
http://www.ScienceDirect.com
http://www.elsevier.com/locate/patcog
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ality reduction methods focus on the properties of the computed

embedding only as far as the training samples are concerned: Ex-

isting algorithms mostly aim to increase the between-class separa-

tion and preserve the local structure, however, only for the train-

ing data. Meanwhile, the important question is how well these al-

gorithms generalize to test data. This question is even more crit-

ical for nonlinear dimensionality reduction methods, as the clas-

sification performance of test data will not only depend on the

properties of the embedding of the training data, but also on the

properties of the interpolator that extends the embedding to the

whole space. Several methods have been proposed to solve the

out-of-sample extension problem, such as unsupervised general-

izations with smooth functions [16–19] or semi-supervised inter-

polators [20] . These methods intend to generalize an already com-

puted embedding to new data and are constrained by the initially

prescribed coordinates for training data. Meanwhile, the best strat-

egy for achieving satisfactory generalization to test data would be

to learn the embedding and the interpolator not sequentially, but

rather in a joint and coherent manner. 

In this work, we propose a nonlinear supervised manifold

learning method for classification where the embeddings of train-

ing data are learned and optimized in a joint way along with

the interpolator that extends the embedding to the whole ambi-

ent space. A distinctive property of our method is the fact that

it explicitly aims to have good generalization to test data in the

learning objective. In order to achieve this, we build on the previ-

ous work [21] where a theoretical analysis of supervised manifold

learning is proposed. The theoretical results in [21] show that for

good classification performance, the separation between different

classes in the embedding of training data needs to be sufficiently

high, while at the same time the interpolation function that ex-

tends the embedding to test data must be sufficiently regular. For

good generalization to initially unavailable test samples, a com-

promise needs to be found between these two important crite-

ria. In this work, we adopt radial basis function interpolators for

the generalization of the embedding, and learn the embedding of

the training data and the parameters of the interpolator, i.e., the

coefficients and the scale parameter of the interpolation function,

at the same time with a joint optimization algorithm. The anal-

ysis in [21] characterizes the regularity of an interpolator via its

Lipschitz regularity. We first derive an upper bound on the Lip-

schitz constant of the interpolator in terms of the parameters of

the embedding. Then, relying on the theoretical analysis in [21] ,

we propose to optimize an objective function that maximizes the

separation between different classes and preserves the local ge-

ometry of training samples, while at the same time minimizing

an upper bound on the Lipschitz constant of the RBF interpolator.

We propose an alternating iterative optimization scheme that first

updates the embedding coordinates, and then the interpolator pa-

rameters in each iteration. We test the classification performance

of the proposed method on several real data sets and show that it

outperforms the supervised manifold learning methods in compar-

ison and traditional classifiers. 

Our contributions with respect to previous works are the fol-

lowing: 

• The generalization capability of the classifier resulting from

a nonlinear supervised embedding is considered during the

learning of the embedding for the first time. 
• An embedding along with a continuous interpolator is learnt

with an optimization objective based on recent theoretical re-

sults on the performance of supervised manifold learning meth-

ods. 
• We show that enforcing the Lipschitz regularity of the inter-

polator function in addition to the separation between the dif-
ferent classes improves the accuracy of the classifier in most

experimental settings. 

The rest of the paper is organized as follows. In Section 2 , we

verview the related work. In Section 3 , we review the recent the-

retical results that motivate our method and in Section 4 , we for-

ulate the supervised manifold learning problem and present the

roposed algorithm. In Section 5 , we present results on several face

nd object data sets. Finally, we conclude in Section 6 . 

. Related work 

.1. Unsupervised manifold learning 

Manifold learning algorithms aim to compute a low-

imensional representation of data that is coherent with its

ntrinsic geometry, which is characterized in several different ways

ia geodesic distances [1] , locally linear representations [2] , second

rder characteristics [5] , and graph spectral decompositions [3] ,

4] in previous works. When the underlying manifold model is

ot analytically known, it is common to represent data with a

raph model. Given a set of data samples X = { x i } N i =1 
⊂ R 

n , most

anifold learning methods build a data graph such that two

amples x i and x j are linked with an edge when they are nearest

eighbors of each other ( x i ∼ x j ). The edge weights w ij are typically

ssigned with respect to a similarity measure between neighboring

amples. 

Denoting as W the weight matrix containing the edge weights

 ij , and defining the diagonal degree matrix D with the i -th diago-

al entry given by d(i ) = 

∑ 

x j ∼x i 
w i j , the graph Laplacian matrix is

efined as L = D − W . The Laplacian eigenmaps algorithm [3] maps

ach data sample x i ∈ R 

n to a sample y i ∈ R 

d such that the follow-

ng optimization problem is solved 

in 

Y 
tr (Y T L Y ) = min 

Y 

∑ 

i ∼ j 

‖ y i − y j ‖ 

2 w i j , s.t. Y T Y = I (1)

here Y = [ y 1 y 2 . . . y N ] 
T is the data matrix consisting of the coor-

inates to be learned and I is the identity matrix. Hence, the Lapla-

ian eigenmaps algorithm formulates the new coordinates of data

s the functions that have the slowest variation on the data graph,

o that neighboring samples in the original domain are mapped to

earby coordinates in the new domain of embedding. The locality

reserving projections (LPP) [4] algorithm has the same objective;

owever, the new coordinates y i = P T x i are constrained to be given

y a linear projection of the original coordinates. 

.2. Supervised manifold learning 

Many supervised manifold learning algorithms have been pro-

osed in the recent years, most of which are extensions of the

aplacian eigenmaps method. These methods seek to embed data

nto new coordinates such that neighboring samples in the same

lass are mapped to nearby coordinates, while samples from differ-

nt classes are mapped to distant points. This is often represented

s an objective function that minimizes tr( Y T L w 

Y ) while maximiz-

ng tr( Y T L b Y ), where L w 

and L b are the within-class and between-

lass Laplacian matrices, derived respectively from the within-class

nd between-class weight matrices W w 

and W b . The between-class

dges in W b can be set with respect to different strategies in dif-

erent methods. The supervised dimensionality reduction problem

s formulated in [15] as 

in 

Y 
tr (Y T L w 

Y ) − μ tr (Y T L b Y ) subject to Y T Y = I (2)

here μ> 0 is a constant that adjusts the weight between the

tructure preservation and the class-aware discrimination terms.
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imilar formulations are adopted in [8,22] ; however, under the lin-

ar projection constraint y i = P T x i . The recent work in [23] is based

n a similar objective, which also exploits subclass information by

dentifying favorable data connections within the same class. A lo-

al adaptation of the Fisher discriminant analysis is proposed in

7] . A projection matrix P is sought so that an objective of the

orm tr ((P T S w 

P ) −1 P T S b P ) is maximized over P , where S w 

and S b 
re the within-class and between-class scatter matrices obtained

ith the edge weights of samples on the data graph. The meth-

ds in [9,10,12,13,24] also optimize a similar Fisher-like objective 

y maximizing the between-class local scatter and minimizing the

ithin-class local scatter. The method in [25] proposes a scatter

iscriminant analysis to learn embeddings of local image descrip-

ors. In another recent work [26] , the optimization of within- and

etween-class local scatters is formulated via � 1 -norms for robust-

ess against image degradations. 

Several supervised linear dimensionality reduction methods are

ased on preserving locally linear representations of data. The al-

orithm in [27] provides a supervised extension of the well-known

LE method [2] by introducing a label-dependent distance func-

ion; however, it is a nonlinear method without an explicit con-

ideration of the out-of-sample problem. The Neighborhood Pre-

erving Discriminant Embedding method presented in [28] is a lin-

ar dimensionality reduction method extending the unsupervised

PE method [29] based on locally linear representations. The Hy-

rid Manifold Embedding method [30] computes a locally linear

ut globally nonlinear mapping function by first grouping the data

nto local subsets via geodesic clustering and then learning a su-

ervised embedding of each cluster. The supervised dimensionality

eduction method in [31] partitions the manifold into local regions

nd takes into account the variation of the embedding along tan-

ent directions of the manifold. 

.3. Continuous embeddings via nonlinear functions 

The vast majority of supervised dimensionality reduction meth-

ds relies on linear projections, and the methods computing a

ontinuous supervised nonlinear embedding are less common. The

eneralization of the embedding of a given set of training samples

o the whole space via continuous interpolation functions is known

s the out-of-sample extension problem. The out-of-sample prob-

em is of critical importance especially for nonlinear supervised

anifold learning methods computing a pointwise embedding only

t training samples. 

The Nyström method [16] proposes an out-of-sample solution

or unsupervised manifold learning algorithms that embed train-

ng samples to coordinates computed from the eigenvectors of a

ymmetric similarity matrix M , such that the entries of the similar-

ty matrix are obtained from a kernel function K as M i j = K(x i , x j ) .

et Y = [ y 1 y 2 . . . y N ] 
T be the matrix consisting of the embed-

ings y i ∈ R 

d of the training samples x i ∈ R 

n , such that the k -th

olumn Y k of Y is the k -th eigenvector of M with M Y k = λk Y k .

hen, the Nyström method maps a previously unseen test sample

 to the point y (x ) = [ y 1 (x ) . . . y d (x )] T , such that its k -th coor-

inate is given by y k (x ) = 

1 
λk 

∑ N 
i =1 Y ik K(x, x i ) , which is shown to

xtend the embedding of the training samples to the whole am-

ient space. The Nyström extension can be applied to many com-

on unsupervised manifold learning algorithms including ISOMAP

1] , LLE [2] , and Laplacian eigenmaps [3] , by suitably identifying

 kernel-induced similarity matrix M associated with these meth-

ds. However, the Nyström method is often inappropriate for the

ut-of-sample extension of supervised manifold learning methods,

ince in this case the similarity matrix M is often class-dependent

nd can no longer be induced from a unique kernel function as

 i j = K(x i , x j ) . 
Another possible way to obtain the out-of-sample generaliza-

ion of an embedding is to employ linear representations. The out-

f-sample extension for a test sample x is obtained in [32] , by first

omputing a sparse representation of x in terms of the training

amples as x ≈ ∑ N 
i =1 a i x i , where a = [ a 1 . . . a N ] 

T is a sparse coeffi-

ient vector. Regarding the magnitudes of the sparse coefficients

s a measure of similarity between x and the training samples,

he embedding y of the test sample x is then obtained as a lin-

ar combination of the embeddings y i of the training samples as

 = ( 
∑ N 

i =1 | a i | y i ) / ( 
∑ N 

i =1 | a i | ) . 
Besides such unsupervised out-of-sample extension methods, 

he method in [20] proposes a solution for the out-of-sample prob-

em in a semi-supervised setting. Given a data set containing la-

eled and unlabeled samples, and the embeddings of the labeled

amples learnt via any supervised manifold learning algorithm, the

ethod in [20] first computes an RBF out-of-sample interpola-

or that fits the learnt embedding to the labeled training data.

his RBF interpolator is then gradually refined using the unlabeled

raining samples, such that the RBF interpolator and the estimated

lass labels of the unlabeled samples are jointly updated in an it-

rative learning procedure. 

The above out-of-sample extension strategies can be cou-

led with several supervised and unsupervised nonlinear manifold

earning algorithms, and can be used to extend priorly learnt em-

eddings to the whole ambient space. Meanwhile, there also ex-

st nonlinear dimensionality reduction algorithms that learn a spe-

ific embedding along with its interpolation function extending the

mbedding to the whole space. The unsupervised manifold learn-

ng method [17] maps the training samples to a lower-dimensional

pace with a locally linear reconstruction objective as in the LLE al-

orithm [2] ; however, under the constraint that the embedding co-

rdinates be polynomial functions of data samples. The polynomial

oefficients are thus optimized to minimize the reconstruction er-

or of the locally linear representation. Previously unseen test data

an then be embedded into the new domain via the learnt poly-

omials. Finally, the method in [33] can be seen as a supervised

xtension of ISOMAP [1] that also addresses the problem of ex-

ension to novel samples. The training samples are first embedded

ia a modified version of the ISOMAP algorithm by using a super-

ised distance function that takes the class labels into account. The

earnt embedding is then generalized to the whole space via kernel

idge regression. 

The focus of our work is essentially different from that of out-

f-sample extension algorithms such as [16,20,32] , as these meth-

ds seek an extension of an already computed embedding to the

hole space, while we also address the question of what the

mbedding should be. Then, compared to manifold learning al-

orithms such as [17,33] that learn an embedding along with its

xtension, the main difference of our method is that it explicitly

akes into account the performance of the generalization of the

earnt classifier to test data, by formulating a supervised learning

bjective motivated by the recent theoretical generalization bounds

f supervised manifold learners. 

A possible solution to get around the limitations of linear em-

eddings while avoiding the out-of-sample problem of nonlinear

mbeddings is to employ kernel extensions of linear dimensional-

ty reduction methods. The kernel extensions of many well-known

imensionality reduction methods such as PCA , LDA , ICA exist [34–

6] . The construction of continuous functions via smooth kernels

s also quite common in Reproducing Kernel Hilbert Space (RKHS)

ethods [37,38] ; however, these methods differ from supervised

anifold learning methods in that the learnt mapping often repre-

ents class labels of data samples rather than their coordinates in

 lower-dimensional domain of embedding as in manifold learn-

ng. The choice of the kernel type and parameters can be critical

n kernel methods. Several previous works in the semi-supervised
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Fig. 1. Illustration of the setting considered in Theorem 1 . Samples from the same 

class having a distance of 2 δ are embedded to points at most A δ apart. Samples 

from different classes are separated by at least γ . 
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learning literature have addressed the learning of kernels by com-

bining known kernels [39,40] . A two-stage multiple kernel learn-

ing method is recently proposed in [41] for supervised dimension-

ality reduction, which finds a nonlinear mapping by optimizing

between-class and within-class distances. 

3. Theoretical bounds in supervised manifold learning 

Nonlinear dimensionality reduction methods in the literature

that minimize objectives as in (2) often yield embeddings where

training samples from different classes are linearly separable, and

the local neighborhoods on the same manifold are preserved as

imposed by the term involving the within-class graph Laplacian.

On the other hand, most existing methods fail to consider how

well these embeddings generalize to new test data: When a test

sample of unknown class label is mapped to the low-dimensional

domain of embedding via an interpolator or an out-of-sample ex-

tension method, what is critical is how likely the test sample is to

be correctly classified. This depends both on the coordinates of the

embedding for the training samples and the interpolator used to

generalize the embedding to the whole ambient space. In the pre-

vious work [21] , this problem is theoretically studied. In this sec-

tion, we overview some main results from [21] , which will provide

a basis for the proposed manifold learning algorithm. 

The classification problem is analyzed in [21] in a setting where

each data sample in the training set X = { x i } N i =1 
is assumed to be-

long to one of the classes { 1 , 2 , . . . , M} and the samples of each

class m are distributed according to the probability measure νm 

.

Let M m 

denote the support of the probability measure νm 

. Denot-

ing as B δ( x ) an open ball of radius δ around a point x 

B δ(x ) = { u ∈ R 

n : ‖ x − u ‖ < δ} , 
the following definition introduces the smallest possible measure

for a ball B δ( x ) of radius δ centered around a point in the support

M m 

of the m -th class. 

ηm,δ := inf 
x ∈M m 

νm 

(B δ(x )) 

Next, we recall the definition of Lipschitz continuity for a func-

tion f . 

Definition 1. A function f : R 

n → R 

d is Lipschitz continuous with

constant L > 0 if for any u, v ∈ R 

n , the inequality ‖ f (u ) − f (v ) ‖ �
L ‖ u − v ‖ holds. 

The analysis in [21] considers supervised manifold learning al-

gorithms that compute the embedding y i ∈ R 

d of each training

sample x i ∈ R 

n . It is assumed that a test sample x of unknown class

label is mapped to R 

d via an interpolation function f : R 

n → R 

d .

The following main result from [21] gives a bound on the classifi-

cation error, when the estimate ˆ C (x ) of the class label C ( x ) of x is

estimated via nearest-neighbor classification in R 

d as ˆ C (x ) = C(x i ) ,

where 

i = arg min 

j 
‖ y j − f (x ) ‖ . 

Theorem 1. Let X = { x i } N i =1 
⊂ R 

n be a set of training samples such

that each x i is drawn i.i.d. from one of the probability measures

{ νm 

} M 

m =1 , with νm 

denoting the probability measure of the m-th class.

Let Y = { y i } N i =1 
be an embedding of X in R 

d such that there exist a

constant γ > 0 and a constant A δ depending on δ > 0 satisfying 

‖ y i − y j ‖ < A δ, if ‖ x i − x j ‖ � 2 δ and C(x i ) = C(x j ) ‖ y i − y j ‖ > γ , if C(x i ) 	 = C(x j ) . 

For given ε > 0 and δ > 0, let f : R 

n → R 

d be a Lipschitz-continuous

interpolation function with constant L, which maps each x i to f (x i ) =
y i , such that 

Lδ + 

√ 

d ε + A δ � 

γ
. (3)
2 
onsider a test sample x randomly drawn according to the proba-

ility measure νm 

of class m. For any Q > 0, if X contains at least

 m 

training samples from the m-th class drawn i.i.d. from νm 

such

hat N m 

> Q / ηm, δ , then the probability of correctly classifying x with

earest-neighbor classification in R 

d is lower bounded as 

 

(
ˆ C (x ) = m 

)
� 1 − exp 

(
−2 (N m 

ηm,δ − Q ) 2 

N m 

)

− 2 d exp 

(
− Q ε2 

2 L 2 δ2 

)
. (4)

Theorem 1 considers an embedding such that nearby training

amples from the same class are mapped to nearby coordinates,

hile training samples from different classes are separated by a

istance of at least γ in the low-dimensional domain of embed-

ing. An illustration of the setting considered in the theorem is

iven in Fig. 1 . The parameter γ can be considered as the separa-

ion margin of the embedding. Then for such an embedding, the

ondition in (3) assumes an interpolator f that is sufficiently regu-

ar (with a sufficiently small Lipschitz constant L ) compared to the

eparation margin γ . Finally, a probabilistic classification guaran-

ee is given for this setting in (4) , which states that the misclas-

ification probability decreases exponentially with the number of

amples under these assumptions. The above result considers the

N classifier in the final stage, which is a simple and widely used

lassification strategy for which efficient algorithms exist [42] . An

xtension of this result is also presented in [21] which studies the

erformance of classification when a linear classifier is used in-

tead of nearest-neighbor classification in the low-dimensional do-

ain. If a linear classifier is used in the domain of embedding, a

ery similar condition to (3) relating the interpolator regularity to

he separation margin is obtained, which yields a similar proba-

ilistic bound on the misclassification error. 

While most supervised manifold learning methods in the litera-

ure focus on achieving large separation between the training sam-

les from different classes in the embedding, the condition (3) in

he above theoretical analysis points to a critical compromise to

eek in supervised dimensionality reduction: Achieving high sepa-

ation between different classes in the training set does not neces-

arily mean that the classifier will generalize well to test samples.

he presence of a sufficiently regular interpolator is furthermore

eeded, so that the Lipschitz constant L of the interpolator remains

elow a threshold involving the separation margin γ of the em-

edding. From this perspective, depending on the data distribution,

ncreasing the separation too much has the risk of forcing the in-

erpolator to be too irregular, which may in turn cause condition

3) to fail. What we propose in this work is to learn the embed-

ing { y i } N i =1 
together with the interpolator f in view of condition

3) , which is detailed in the next section. 
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. Proposed nonlinear supervised smooth embedding method 

In this section, we present our proposed supervised dimension-

lity reduction method. We first formulate the manifold learning

roblem and define an optimization problem based on the per-

pectives discussed in Section 3 . We then describe our algorithm. 

.1. Formulation of the manifold learning problem 

Given training points X = { x i } N i =1 
⊂ R 

n from M classes, our pur-

ose is to learn an embedding of data Y = { y i } N i =1 
⊂ R 

d together

ith a continuous interpolation function f : R 

n → R 

d , such that

f (x i ) = y i . The interpolator f will then be used to classify new test

oints x by mapping x to the low-dimensional domain R 

d as f ( x ),

o that examining f (x ) ∈ R 

d with respect to the embedding Y of

he training points with known class labels provides an estimate

f the class label of x . 

Our method relies on the theoretical results presented in

ection 3 . Recall from Theorem 1 that, a necessary condition to

btain good generalization performance is 

δ + 

√ 

d ε + A δ ≤ γ

2 

. 

n the sequel, we formulate a manifold learning problem in view of

his condition, whose purpose is to make the Lipschitz constant L

f the interpolator and the distance A δ between neighboring points

rom the same class as small as possible, while making the sepa-

ation γ between different classes as large as possible, in order to

ncrease the chances that the above condition be met. 

Let f (x ) = [ f 1 (x ) . . . f d ( x )] ∈ R 

d , where f k ( x ) is the k -th dimen-

ion of f ( x ), with f k : R 

n → R . We propose to choose the function

 as a radial basis function (RBF) interpolator, as RBF interpolators

re a well-studied family of functions [43,44] with many desirable

roperties such as smoothness and adjustable spread around an-

hor points. Hence, each component f k of f is of the form 

f k (x ) = 

N ∑ 

i =1 

c k i φ(‖ x − x i ‖ ) (5)

here φ : R → R 

+ is an RBF kernel, c k 
i 

are the coefficients, and

 i are the kernel centers. A common choice for the RBF kernel is

he Gaussian kernel φ(r) = e −r 2 /σ 2 
, which we also adopt in this

ork. Under this setting, we now examine our three entities of in-

erest, namely the regularity of the interpolator, the distance be-

ween neighboring points from the same class and the separation

etween different classes. 

Interpolator regularity. We begin with proposing a Lipschitz con-

tant for f in terms of the function parameters. 

roposition 1. Let L φ := 

√ 

2 e −
1 
2 σ−1 and let C be the matrix consist-

ng of the RBF coefficients such that C i j = c 
j 
i 
. Then the RBF interpolator

 satisfies for all u, v ∈ R 

n the inequality ‖ f (u ) − f (v ) ‖ � L ‖ u − v ‖ ,
here L := 

√ 

N L φ‖ C‖ F . 
The proof of Proposition 1 is available in the accompanying

echnical report [45] where more details about our work can be

ound. When learning an interpolator, we would like to mini-

ize the Lipschitz constant L = 

√ 

N L φ‖ C‖ F of f ( x ). From the form

5) of the interpolator components and the fact that the interpo-

ator values at training points must correspond to the coordinates

f the embedding y i = f (x i ) , we get the relation �C = Y, where

∈ R 

N×N is the matrix consisting of the values of the RBF kernels

ith �i j = φ(‖ x i − x j ‖ ) and Y = [ y 1 y 2 . . . y N ] 
T ∈ R 

N×d is the ma-

rix consisting of the coordinates of the embeddings of the training

amples. Then the coefficient matrix is given by C = �−1 Y, so that

 C‖ 

2 
F = ‖ �−1 Y ‖ 

2 

F = tr (Y T �−2 Y ) . (6)
In order to keep the Lipschitz constant L = 

√ 

N L φ‖ C‖ F of the in-

erpolator small, we need to keep both the Lipschitz constant L φ
f the Gaussian kernel and the norm ‖ C ‖ F of the coefficient ma-

rix small. Using the expression of ‖ C‖ 2 
F 

in (6) and recalling that

 φ = 

√ 

2 e −
1 
2 σ−1 , we thus propose to minimize the following ob-

ective for controlling the interpolator regularity 

in 

Y,σ
tr (Y T �−2 Y ) + 

μ

σ 2 
(7) 

here μ is a weight parameter. The objective is chosen propor-

ionally to the squares of the terms ‖ C ‖ F and L φ instead of them-

elves, due to the convenience of the analytical expression ob-

ained for ‖ C‖ 2 
F 

in (6) . 

Distance between neighboring points from the same class. Recall

rom Theorem 1 that the condition (3) required for good classifi-

ation performance enforces the term A δ to be sufficiently small,

here A δ is an upper bound on the distance between the embed-

ings of nearby samples; i.e., ‖ y i − y j ‖ < A δ whenever ‖ x i − x j ‖ �
 δ. It is not easy to study the distance ‖ y i − y j ‖ in relation with

he ambient space distance ‖ x i − x j ‖ for each pair of samples x i , x j .

evertheless, we adopt a constructive solution here and relax this

roblem to the minimization of the distance between the embed-

ings of nearby points from the same class. The total distance be-

ween the embeddings of neighboring points from the same class,

eighted by the edge weights, is given by ∑ 

 i ,x j : C(x i )= C(x j ) 

‖ y i − y j ‖ 

2 
w i j = tr (Y T L w 

Y ) . 

ere L w 

= D w 

− W w 

is the within-class Laplacian matrix associated

ith the within-class weight matrix W w 

, where D w 

is the diago-

al degree matrix whose entries are given by (D w 

) ii = 

∑ 

j (W w 

) i j .

he within-class weight matrix W w 

contains the weights w ij of the

dges between each pair of neighboring samples x i ∼ x j from the

ame class. A common choice for assigning the edge weights is the

aussian kernel, in which case the matrix W w 

is of the form 

(W w 

) i j = 

{ 

e −
‖ x i −x j ‖ 2 

β , if C(x i ) = C(x j ) , x i ∼ x j 
0 , otherwise. 

hen, the objective 

in 

Y 
tr (Y T L w 

Y ) (8) 

sed in several previous works is an appropriate choice for our

urpose. 

Separation between samples from different classes. The last entity

o be examined in view of the condition (3) is the separation mar-

in γ . In order to satisfy the condition (3) , the separation between

he samples from different classes must be sufficiently high. Al-

hough the margin γ stands for a lower bound for the distance

 y i − y j ‖ between any pair of samples from different classes in

heorem 1 , the examination of the minimum value of ‖ y i − y j ‖ for

ll pairs of samples is a relatively hard problem. We propose to re-

ax this and evaluate the total distance between the embeddings of

ifferent-class samples. Hence, in order to increase the separation

argin γ , we propose to maximize ∑ 

 (x i ) 	 = C (x j ) 

‖ y i − y j ‖ 

2 = tr (Y T L b Y ) 

here W b is a between-class weight matrix given by (W b ) i j = 1 if

 ( x i ) 	 = C ( x j ), and (W b ) i j = 0 if C(x i ) = C(x j ) . The diagonal between-

lass degree matrix is defined as (D b ) ii = 

∑ 

j (W b ) i j , and L b = D b −
 b is the corresponding between-class Laplacian matrix. Thus, the

aximization of the separation margin is represented by the ob-

ective function 

ax 
Y 

tr 
(
Y T L b Y 

)
. (9) 
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Overall optimization problem. Now, bringing together the objec-

tive functions presented in (7) –(9) , we propose to solve the fol-

lowing optimization problem in order to learn an embedding Y to-

gether with its corresponding interpolator: 

min 

Y,σ
tr 
(
Y T L w 

Y 
)

− μ1 tr 
(
Y T L b Y 

)
+ μ2 tr 

(
Y T �−2 Y 

)
+ 

μ3 

σ 2 
, s.t. Y T Y = I (10)

Here μ1 , μ2 , and μ3 are positive weights that balance the differ-

ent terms in the objective function, and the normalization condi-

tion Y T Y = I is imposed in order to prevent solutions with arbitrar-

ily small embedding coordinates that might trivially minimize the

objective. 

4.2. Proposed manifold learning algorithm 

The proposed objective function (10) can be made convex with

respect to Y if the weight parameters μ1 and μ2 are suitably

chosen; however, it is not jointly convex with respect to both

optimization variables Y and σ . We thus propose to minimize

(10) with an alternating iterative optimization algorithm. In each

iteration, we first fix the scale parameter σ and optimize the em-

bedding coordinates Y , which is then followed by fixing Y and op-

timizing σ . 

Optimization of Y. When the scale parameter σ is fixed, the min-

imization of the objective (10) is equivalent to the following opti-

mization problem 

 

∗ = arg min Y tr (Y T L w 

Y ) − μ1 tr (Y 
T L b Y ) + μ2 tr (Y 

T �−2 Y ) 
s.t. Y T Y = I 

= arg min Y tr 
(
Y T (L w 

− μ1 L b + μ2 �
−2 ) Y 

)
s.t. Y T Y = I. 

(11)

The solution to this problem is given by the N × d matrix Y ∗ whose

k -th column consists of the eigenvector of the matrix 

A = L w 

− μ1 L b + μ2 �
−2 (12)

that corresponds to its k -th smallest eigenvalue, for k = 1 , . . . , d. 

Optimization of σ . Note that the dependence of the objective

function (10) on the scale parameter σ is through its third term

μ2 tr (Y 
T �−2 Y ) and fourth term μ3 / σ

2 . Hence, when the embed-

ding Y is fixed, the optimization of the objective is reduced to the

problem 

σ ∗ = arg min 

σ
μ2 tr (Y 

T �−2 Y ) + 

μ3 

σ 2 
. (13)

The objective in (13) is not a convex function of σ in general.

Nevertheless, a useful observation is the following: As the entries

of the matrix � consist of the RBF kernel terms φ(‖ x i − x j ‖ ) =
exp 

(
−‖ x i − x j ‖ 2 /σ 2 

)
, the matrix � and its inverse �−1 have poor

conditioning when σ takes arbitrarily large values. Hence, the first

term tr (Y T �−2 Y ) in (13) increases with increasing large values of

σ . On the other hand, the term σ−2 approaches infinity as σ ap-

proaches 0. These observations imply that that there exists a pos-

itive kernel scale σ ∗ > 0 that minimizes the objective (13) . As the

problem (13) requires the optimization of a single parameter σ ,

an optimal value σ ∗ can be computed easily. In practice, we find

σ ∗ via an exhaustive search procedure, by computing the objective

(13) over a sufficiently dense sampling of the σ values within a

suitably chosen interval [ σ min , σ max ] of typical scale parameters.

The optimal parameter σ ∗ is then taken as the σ value at which

the objective is minimum. 

These steps for the alternating optimization of Y and σ are ap-

plied successively until the stabilization of the objective function.

Note that if μ1 is chosen sufficiently small to make the matrix A

in (12) positive semi definite, the overall objective function (10) is
ositive. In this case, since both of the alternating optimization

teps in (11) and (13) bring updates that cannot increase the ob-

ective function in each iteration, being bounded from below, the

bjective function is guaranteed to converge. 

Once the embedding Y of the training points and the kernel

cale σ are computed in this way, the interpolator f is simply ob-

ained as in (5) by computing the coefficients as C = �−1 Y . We

all the proposed method Nonlinear Supervised Smooth Embed-

ing (NSSE) and give its description in Algorithm 1 . 

lgorithm 1 Nonlinear supervised smooth embedding (NSSE). 

1: Input: 

X = { x i } N i =1 
⊂ R 

n : Training samples with known class labels 

d: Embedding dimension 

μ1 , μ2 , μ3 : Weight parameters 

2: Initialization: Set kernel scale σ ∗ to a typical positive value. 

3: repeat 

4: Fix σ = σ ∗ and optimize Y by solving Y ∗ =
arg min Y tr 

(
Y T (L w 

− μ1 L b + μ2 �
−2 ) Y 

)
s.t. Y T Y = I

5: Fix Y = Y ∗ and optimize σ by solving σ ∗ =
arg min σ μ2 tr (Y 

T �−2 Y ) + μ3 σ
−2 

6: until Objective function in (10) is stabilized 

7: Compute interpolator coefficients as C = �−1 Y . 

8: Output : 

Y = { y i } N i =1 
⊂ R 

d : Embedding of training samples 

f : R 

n → R 

d : Interpolation function 

.3. Complexity of the proposed algorithm 

We now analyze the computational complexity of the proposed

SSE method. The algorithm is composed of three main stages,

hich are the initialization stage (calculation of the L w 

and L b ma-

rices), the main loop between steps 3 and 6 of Algorithm 1 , and

he finalization stage in step 7. 

In the initialization step, the complexity of the computation of

 w 

and L b is mainly determined by the complexity of computing

he within-class and between-class weight matrices W w 

and W b ,

hich is of O ( nN 

2 ). 

We next consider the main loop of the algorithm. The ma-

rix � in step 4 can be calculated with complexity O ( nN 

2 ) and

t is inverted with complexity O ( N 

3 ) to obtain �−1 . As a result,

he computation of �−2 is of complexity O (nN 

2 ) + O (N 

3 ) . In or-

er to find Y ∗ in step 4, the eigenvectors of L w 

− μ1 L b + μ2 �
−2 

hould be found, which is of complexity O ( N 

3 ). Then, the total

omplexity of step 4 is O (nN 

2 ) + O (N 

3 ) . In step 5, the expression

2 tr (Y 
T �−2 Y ) + μ3 σ

−2 must be computed repeatedly to find σ ∗,

hich is of complexity O ( N 

3 ). Hence, the complexity of the main

oop is found as O (nN 

2 ) + O (N 

3 ) . 

In step 7, the complexity of the calculation of �−1 is O ( N 

3 ), and

he matrix product �−1 Y is of complexity O ( dN 

2 ). We may assume

 � N , which then gives the complexity of step 7 as of O ( N 

3 ). Com-

ining this with the previous stages, the overall complexity of the

lgorithm is found as O (nN 

2 ) + O (N 

3 ) . 

. Experimental results 

In this section, we evaluate the performance of the proposed

SSE method on six real data sets. We first describe the data

ets, then study the iterative optimization procedure employed in

he proposed method, and then compare the performance of NSSE

ith that of other supervised manifold learning algorithms and

raditional classifiers. 
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Fig. 2. Sample images from one class of the used databases. 

5

 

a

 

i  

[  

i

 

c  

e  

d

 

w  

f  

f

 

t  

j  

u  

e

 

f  

t  

o

 

s  

i  

a

 

a  

v  

s  

p  

w  

b  

m  

a  

t  

s  

e  

w  

w  

t  

o  

r  

t  

o  

W  

a  

t  

t  

a  

c  

v  

a

5

 

p  

S  

t  

r  

s

 

w  

p  

v  

A  

t  

t  

e  

s  

i  

e  

s  

d  

m  

t  

c  

g  

b  

r  

t  

a  

t  

f  

t  

n  

p

 

k  

i  

R  

w  

t  

T  

f  

o  

c  
.1. Data sets and experimentation setting 

We experiment on the data sets listed below. Some sample im-

ges from one class of each data set are presented in Fig. 2 . 

Yale Face Database. The data set consists of 2242 greyscale face

mages of 38 different subjects, where each subject has 59 images

46] . All images are taken from a single viewpoint with variations

n the lighting angles and rates. 

COIL-20 Database. The Columbia Object Image Library database

onsists of 1440 grayscale images of 20 different objects, where

ach object has 72 images captured by rotation increments of 5

egrees [47] . 

ORL Database. The database consists of a total of 400 images,

ith 10 images of each one of the 40 subjects taken in an upright,

rontal position [48] . The images contain variations in the lighting,

acial expressions and facial details such as glasses. 

FEI Database. The FEI database is a face database containing a

otal of 2800 images, with 14 images for each one of the 200 sub-

ects taken in an upright frontal position with profile rotation of

p to about 180 degrees and scale variation of about 10% [49] . We

xperiment on 50 classes from this database. 

ROBOTICS-CSIE Database. The database contains a total of 3330

ace images of 90 subjects, with 37 images for each subject cap-

ured under rotation increments of 5 degrees [50] . We experiment

n 40 classes from this database. 

MIT-CBCL Database. The database contains face images of 10

ubjects [51] . We experiment on a total of 5240 images, with 524

mages per subject captured under rotations of up to 30 degrees

nd varying illumination conditions. 

We experiment on greyscale versions of the images resized to

round 25 × 25 pixels. All experiments are conducted in a super-

ised setup, by randomly separating the images into a training

et and a test set in each repetition of the experiment. In all ex-

eriments, the proposed NSSE algorithm is evaluated in a setting

here the training images are used to learn a continuous em-

edding into a low-dimensional domain. The test images are then

apped to the domain of embedding via the learnt interpolator

nd their class labels are estimated via nearest neighbor classifica-

ion in the low-dimensional domain. The graph edge weights are

et with a Gaussian kernel. In all experiments, the weight param-

ters μ1 , μ2 , and μ3 of NSSE are set with cross-validation. The

eight parameters are set sequentially, by first initializing them

ith some typical values and then optimizing one of them at a

ime via cross validation where the others are kept fixed. When

ptimizing one weight parameter, the training samples are divided

andomly into two sets as training and validation, the algorithm is

rained on the training set, and the classification error is measured

n the validation set for different values of the weight parameter.

e repeat this several times by randomly assigning the training

nd the validation set, and then finally select the parameter value

hat gives the smallest average classification error on the valida-

ion set. In practice, we have observed that the typical ranges of

ppropriate μ1 , μ2 , and μ3 values do not usually vary dramati-

w

ally between different data sets and setting these parameters to

alues within the intervals μ1 ∈ [100, 1000], μ2 ∈ [0.0001, 0.001],

nd μ3 ∈ [1, 5] often yields satisfactory performance. 

.2. Study of the iterative optimization procedure 

In this first experiment, we study the iterative optimization

rocedure employed in the proposed method. As discussed in

ection 4.2 , the NSSE algorithm follows an alternating optimiza-

ion scheme by minimizing the objective function in (10) first with

espect to the embedding Y of the training samples, and then the

cale parameter σ of the RBF kernels. 

The results given in Fig. 3 are obtained on the FEI face data set,

here an embedding into a d = 10 dimensional domain is com-

uted using a total of 100 training samples. Fig. 3 (a) shows the

ariation of the objective function in (10) throughout the iterations.

lthough the proposed alternating optimization procedure is not

heoretically guaranteed to find the global optimum of the objec-

ive, it is observed from the figure that the proposed scheme can

ffectively minimize the objective function, which converges in a

mall number of iterations. The misclassification rates of the test

mages in percentage are reported in Fig. 3 (b) obtained with the

mbeddings and interpolators computed in each iteration. The re-

ults show that the progressive update of the continuous embed-

ing throughout the iterations improves the classification perfor-

ance. The comparison of the plots in Figs. 3 (a) and (b) reveals

hat the variations of the objective function and the misclassifi-

ation rate throughout the iterations are quite similar. This sug-

ests that the choice of the objective function in (10) , motivated

y theoretical bounds, indeed matches the actual classification er-

or. Fig. 3 (c) shows the evolution of the RBF kernel scale parame-

er σ throughout the iterations. The RBF kernel scale σ is deliber-

tely initialized with a too high value in this experiment in order

o study the effect of the initial conditions on the algorithm per-

ormance. Despite the initialization of σ with a too large value,

he iterative minimization of the objective gradually pulls the ker-

el scale towards a favorable value that improves the classification

erformance. 

The same experiment is also repeated by initializing the RBF

ernel scale this time with a small value, whose results are given

n the lower row of Fig. 3 . It is observed in Fig. 3 (f) that the

BF scale σ is effectively optimized throughout the iterations to-

ards a larger value, which gradually decreases the objective func-

ion and improves the classification accuracy in Figs. 3 (d) and 3 (e).

hese results suggest that the algorithm performance is not af-

ected much by the initialization of the RBF kernel scale. We have

btained similar results on the other data sets and under different

hoices of the parameters such as the number of training samples,

hich we skip here for brevity. 
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Fig. 3. Algorithm performance throughout iterations. Results in the upper and lower row are respectively obtained by initializing the algorithm with a high and a low RBF 

kernel scale. 
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5.3. Variation of the classification performance with the embedding 

dimension 

We now study the classification performance of the proposed

algorithm in relation with the dimension d of the embedding. The

proposed NSSE method is compared to some other dimensionality

reduction algorithms listed below. 

• The Supervised Laplacian Eigenmaps (SUPLAP) method pro-

posed in [15] computes a nonlinear low-dimensional embed-

ding of the training samples by minimizing the objective in (2) .

We extend the embedding of the training samples given by the

SUPLAP method to the whole space via an RBF interpolator of

the same form as in NSSE. We then embed the test samples

into the low-dimensional domain with this interpolation func-

tion. 
• The Local Fisher Discriminant Analysis (LFDA) method proposed

in [7] is a supervised manifold learning algorithm computing a

linear embedding with a Fisher-type cost with additional local-

ity preservation objectives. 
• The Local Discriminant Embedding method (LDE) [22] is a man-

ifold learning method that optimizes a similar objective as in

the SUPLAP method; however, learns a linear projection. 
• Linear Discriminant Analysis (LDA) is a classical dimensionality

reduction technique that maximizes the between-class scatter

while minimizing the within-class scatter. 

The dimensionality reduction methods are applied on training

samples to compute a d -dimensional embedding, which is then

used to classify test samples via nearest neighbor classification in

the domain of embedding. The algorithms are evaluated for a range

of d values. The parameters of the other methods in comparison

are adjusted to attain their best performance. 

The variation of the misclassification rates of test samples in

percentage with the dimension d of the embedding is presented

in Figs. 4 and 5 . The results are the average of 20 random realiza-

tions of the experiments with different training and test sets, with

10, 10, 2, 2, 7, and 10 training images per class (chosen proportion-

ally to the total number of samples) respectively for the Yale, COIL-

20, ORL, FEI, ROBOTICS-CSIE and the MIT-CBCL databases. Most of

the tested methods are based on solving a generalized eigenvalue

problem and the rank of the involved matrices may be different for

each method depending on the number of training samples and
he number of classes. Hence, the maximum possible dimension

f the embedding may vary between different methods, as well as

he best range of dimensions where the methods perform well. For

his reason, the results on each data set are presented in two fig-

res with different d ranges for better visual clarity. 

The results in Figs. 4 and 5 show that the classification accu-

acy of the proposed NSSE algorithm compares quite favorably to

hose of the other methods, as NSSE often yields the smallest mis-

lassification rate at the optimal dimension. The misclassification

ate of LDA is observed to decrease monotonically with the dimen-

ion d and its best performance is attained when d reaches the

umber of classes. The LDE and LFDA algorithms exhibit their best

erformances at much higher dimensions compared to the other

lgorithms. The error rates of these algorithms usually decrease as

he embedding dimension increases; however, in some datasets a

ocal optimum for d can also be observed. 

Among all methods, the nonlinear NSSE and SUPLAP methods

ften perform better than the linear LDA, LFDA, and LDE methods.

his shows that the flexibility of nonlinear methods when learning

n embedding is likely to bring an advantage in computing better

epresentations for data. It is then interesting to compare the per-

ormances of the two nonlinear methods; NSSE and SUPLAP. The

UPLAP algorithm attains its best performance when the dimen-

ion d of the embedding is close to the number of classes, while

he optimum value of d for the proposed NSSE algorithm is smaller

n most data sets. Interestingly, the optimal dimension of NSSE is

uch smaller than that of SUPLAP in data sets with a low intrin-

ic dimension such as COIL-20, FEI, and ROBOTICS-CSIE, which are

enerated by the variation of only one or two camera angle pa-

ameters. Similarly, in data sets of larger intrinsic dimension such

s MIT-CBCL due to several pose and lighting parameters, the op-

imal dimension of NSSE is higher and closer to that of SUPLAP.

his may suggest that the embedding computed with NSSE tries to

apture the intrinsic geometry of data and provides a better repre-

entation when the embedding dimension is chosen proportionally

o the intrinsic dimension of data. 

The reduction of the embedding dimension is desirable espe-

ially regarding the complexity of the classification of test samples

n a practical application. Another advantage of NSSE over SUPLAP

s that NSSE is less sensitive to the choice of the dimension, as

he misclassification performance is less affected for non-optimal

alues of d . Such benefits of the proposed NSSE algorithm mainly
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Fig. 4. Variation of the misclassification rates of the NSSE, SUPLAP and LDA methods with the embedding dimension in various data sets. 

Fig. 5. Variation of the misclassification rates of the LFDA and LDE methods with the embedding dimension in various data sets. 

Fig. 6. Visual comparison of the embeddings given by the NSSE and SUPLAP algorithms. 
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esult from the fact that the Lipschitz continuity of the interpola-

or is imposed in the learning objective. Consequently, the training

amples are embedded more evenly in the low-dimensional space

o as to allow the construction of a regular interpolator, which in

eturn reduces the required number of dimensions or the sensitiv-

ty to the non-optimal choice of d . 

In fact, Fig. 6 provides a visual comparison of the embeddings

btained with the NSSE and the SUPLAP algorithms. Panels (a) and

b) show the two-dimensional embeddings of 70 training samples

rom 10 classes of the ROBOTICS-CSIE data set, respectively with

SSE and SUPLAP. The embeddings of training samples look similar

etween the two methods, although different classes are more reg-

larly spaced in NSSE. The performance difference between these
 r  
wo methods becomes much clearer when the embeddings of the

est samples in panels (c) and (d) are observed. Even at this very

mall embedding dimension of 2, NSSE separates test samples from

ifferent classes much more successfully than SUPLAP, which is

ue to the inclusion of the interpolator parameters in the learn-

ng objective in order to attain good generalization performance. 

.4. Overall comparison with several classification methods 

We now provide an overall comparison of the proposed NSSE

ethod with baseline classifiers and other manifold learning

ethods. In addition to the supervised manifold learning algo-

ithms used in the experiments of Section 5.3 , we compare NSSE
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Table 1 

Misclassification rates (%) of compared methods on Yale database. 

# Tr NSSE SUPLAP SVM NN LFDA LDA LDE NYS SPE IsoKRR MReg 

6 22.09 23.10 29.43 63.48 26.89 35.86 20.05 19.47 63.81 22.58 19.89 

10 12.60 12.92 15.17 52.89 40.63 63.97 21.79 11.88 53.19 12.58 12.36 

15 7.52 7.95 9.09 43.57 10.78 57.87 7.95 7.84 43.41 7.11 6.90 

20 5.02 5.60 6.14 37.51 7.42 52.80 5.16 6.43 38.31 4.61 4.50 

30 2.56 2.57 2.99 30.13 3.22 46.43 3.04 4.63 32.46 2.38 2.35 

Table 2 

Misclassification rates (%) of compared methods on COIL-20 database. 

# Tr NSSE SUPLAP SVM NN LFDA LDA LDE NYS SPE IsoKRR MReg 

7 8.09 10.97 10.38 13.90 17.93 11.84 20.86 13.87 13.90 11.17 8.49 

10 4.97 6.81 6.93 10.22 13.59 7.68 16.84 9.38 10.22 7.07 5.44 

15 2.79 3.85 4.60 6.88 11.32 4.22 14.01 5.70 6.88 3.96 3.05 

20 1.25 2.04 3.23 4.51 9.53 2.29 12.64 3.34 4.54 2.00 1.31 

30 0.53 0.80 2.27 2.31 7.08 0.99 13.28 1.56 2.44 0.79 0.73 

Table 3 

Misclassification rates (%) of compared methods on ORL database. 

# Tr NSSE SUPLAP SVM NN LFDA LDA LDE NYS SPE IsoKRR MReg 

2 14.11 16.04 19.74 19.34 27.70 21.18 24.92 17.03 19.34 14.81 14.85 

3 8.00 9.49 10.70 12.96 14.89 13.13 12.74 11.06 12.96 8.63 8.38 

5 3.90 5.32 4.35 6.92 8.10 7.74 7.05 6.90 6.92 4.23 4.13 

Table 4 

Misclassification rates (%) of compared methods on FEI database. 

# Tr NSSE SUPLAP SVM NN LFDA LDA LDE NYS SPE IsoKRR MReg 

2 20.86 27.07 35.38 32.13 29.83 30.93 30.05 31.91 32.13 26.42 25.03 

4 8.05 12.46 12.85 19.45 12.90 12.56 10.80 19.20 19.45 11.06 10.77 

7 5.00 6.42 9.09 10.86 9.74 5.40 7.77 11.53 11.23 5.03 5.40 

Table 5 

Misclassification rates (%) of compared methods on ROBOTICS-CSIE database. 

# Tr NSSE SUPLAP SVM NN LFDA LDA LDE NYS SPE IsoKRR MReg 

7 13.56 27.23 23.97 34.46 24.87 29.43 25.13 34.87 34.53 24.29 20.32 

14 4.38 11.74 8.78 17.80 11.97 14.15 9.74 17.36 17.84 9.04 5.86 

21 2.83 6.52 4.77 10.09 6.99 10.57 5.88 9.85 9.76 4.81 3.08 

Table 6 

Misclassification rates (%) of compared methods on MIT-CBCL database. 

# Tr NSSE SUPLAP SVM NN LFDA LDA LDE NYS SPE IsoKRR MReg 

10 6.48 7.31 9.91 14.43 12.32 18.44 9.69 15.03 14.43 6.53 6.55 

20 2.49 3.38 4.18 5.65 8.36 8.38 6.02 6.06 5.66 2.50 2.85 

40 0.77 1.22 1.52 1.46 5.29 3.18 2.97 1.84 2.05 0.71 0.97 
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with the SVM classifier in the original domain, the nearest neigh-

bor (NN) classifier in the original domain, the out-of-sample gener-

alization of the Laplacian eigenmaps embedding with the Nyström

method (NYS) [16] , the out-of-sample generalization of Laplacian

eigenmaps with sparse coding (SPE) [32] , the IsoKRR method pro-

posed in [33] which computes a supervised nonlinear embedding

and generalizes it with kernel ridge regression, and the supervised

manifold regularization algorithm (MReg) proposed in [37] based

on Reproducing Kernel Hilbert Spaces. The embedding dimensions

and other algorithm parameters of the manifold learning methods

are set to their optimal values. The classification errors over test

samples are studied by varying the training/test ratio and the re-

sults are averaged over 20 realizations of the experiments under

different random choices of the training and test sets. 

The misclassification rates of test samples in percentage are

presented for the compared methods for different training data
sizes in Tables 1–6 for the tested data sets. The leftmost columns I  
f the tables show the number of training samples per class. Exper-

ments are conducted over a suitable range of number of training

amples for each data set, considering the total number of samples

n the data set. The smallest classification errors are shown in bold.

The proposed NSSE method is observed to outperform the other

ethods in most data sets. In Table 1 , out-of-sample generaliza-

ion with the Nyström method NYS [16] is seen to be one of the

wo best performing methods along with MReg [37] , while its per-

ormance is behind many others in the other data sets. The ex-

reme illumination changes in the Yale data set lead to degenera-

ies in the data manifold due to the very high local curvatures and

on-differentiability, which seems to pose a challenge for the pro-

osed NSSE method. Meanwhile, the global structure of this data

et can in fact be approximated with linear subspace models fairly

ell, thanks to which an unsupervised out-of-sample extension

ethod such as Nyström achieves good performance on this data.

n Tables 2–6 , the proposed NSSE method is seen to yield the best
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Table 7 

Running times of the NSSE algorithm observed for several data sizes on three 

data sets. The data size stands for the total number of training images. 

COIL-20 FEI ROBOTICS-CSIE 

Data size–Running time 140–.81 sec 100–0.82 sec 280–2.22 sec 

300–1.45 sec 200–1.52 sec 560–8.33 sec 

600–5.45 sec 350–3.74 sec 840–14.99 sec 
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erformance in most settings, and the algorithms closest in perfor-

ance to NSSE are the nonlinear and supervised SUPLAP, IsoKRR,

nd the MReg methods. Among the supervised manifold learning

lgorithms, the nonlinear methods seem to outperform the linear

nes in general. The linear manifold learning algorithms LFDA, LDA,

nd LDE exhibit variable performance depending on the data set.

s the performances of the algorithms improve with the increase

n the number of training samples, these linear manifold learning

ethods may get outperformed by the baseline SVM and NN clas-

ifiers especially when the number of samples is sufficiently high.

he performance gap between NSSE and the other nonlinear and

upervised MReg, IsoKRR, and SUPLAP methods is more significant

n the FEI and ROBOTICS-CSIE datasets containing a large number

f classes, especially when the number of training samples is lim-

ted. The lack of training samples compared to the large number

f classes is likely to lead to degenerate embeddings in nonlinear

ethods computing a pointwise embedding as in SUPLAP, while

he regularization term enforcing the regularity of the interpolator

n NSSE proves effective for the prevention of such degeneracies

nd ensuring the preservation of the overall geometric structure

f data in the embedding. For the particular case of initially few

abeled samples, the extension of our study to an active learning

ramework [52] remains as a potential future direction. 

Note that, unlike complex classifiers involving rich models with

any parameters to learn, the classifiers obtained with the pro-

osed method consist of a relatively simpler model with fewer pa-

ameters to learn. Based on models particularly fit to the priors

n the data geometry and dimensionality, the proposed method

ttains satisfactory classification accuracy on data sets conform-

ng to such low-dimensional models, even when the number of

raining samples is very limited. The accuracy of the proposed

ethod would inevitably degrade if applied directly to data col-

ections registered under highly uncontrolled settings violating the

ow-dimensional manifold assumption, e.g., data sets of complex

ackgrounds, with many different and dissimilar objects belonging

o the same class, etc. Nevertheless, the learning of representations

hat extract the useful and essential information from such data

ets registered under challenging conditions is still an open prob-

em. Referring the reader to [53] for a recent comparison of sev-

ral feature descriptors, we note that the proposed method can po-

entially be coupled with progressing representation learning tech-

iques that can capture the data geometry invariantly to acquire-

ent conditions. 

Finally, we report the observed computation times for jointly

earning an embedding and an interpolator with the proposed

SSE algorithm. The running times obtained for a single run of

he NSSE algorithm with a non-optimized MATLAB implementa-

ion on a laptop computer are given in Table 7 for three data sets,

or different data sizes. The observed running times seem to be

onsistent with the complexity analysis of the method provided in

ection 4.3 . 

. Conclusion 

We have proposed a nonlinear supervised manifold learning

ethod that learns an embedding of the training data jointly with

 smooth RBF interpolation function extending the embedding to
he whole space. The embedding and the interpolator parameters

re jointly optimized with the purpose of good generalization to

nitially unavailable data, based on recent theoretical results on the

erformance of supervised manifold learning methods. In particu-

ar, the embedding and the RBF paramaters are learnt such that the

nterpolator has sufficiently good Lipschitz regularity while differ-

nt classes are separated as much as possible. Experiments have

hown that the proposed method often yields better classification

erformance while requiring a smaller number of dimensions in

omparison with other approaches. Thanks to the priors on the

ipschitz regularity of the interpolator, the proposed method can

earn efficient representations even under limited availability of

raining samples, and is relatively robust to conditions such as the

on-optimal choice of the embedding dimension and unfavorable

nitialization. The proposed method can find use in a variety of

pplications concerning the classification and analysis of data, es-

ecially conforming to low dimensional models. The extensions of

ur study to multi-view or active learning settings remain as pos-

ible future directions. 
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