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The recovery of the intrinsic geometric structures of data collections is an important problem in data
analysis. Supervised extensions of several manifold learning approaches have been proposed in the re-
cent years. Meanwhile, existing methods primarily focus on the embedding of the training data, and the
generalization of the embedding to initially unseen test data is rather ignored. In this work, we build on
recent theoretical results on the generalization performance of supervised manifold learning algorithms.
Motivated by these performance bounds, we propose a supervised manifold learning method that com-
putes a nonlinear embedding while constructing a smooth and regular interpolation function that extends
the embedding to the whole data space in order to achieve satisfactory generalization. The embedding
and the interpolator are jointly learnt such that the Lipschitz regularity of the interpolator is imposed
while ensuring the separation between different classes. Experimental results on several image data sets
show that the proposed method outperforms traditional classifiers and the supervised dimensionality re-

duction algorithms in comparison in terms of classification accuracy in most settings.

© 2018 Elsevier Ltd. All rights reserved.

1. Introduction

In many data analysis applications, collections of data are ac-
quired in a high-dimensional ambient space; however, the intrin-
sic dimension of data is much lower. For instance, the face images
of a person reside in a high-dimensional space, however, they are
concentrated around a low-dimensional manifold that can be pa-
rameterized with a few variables such as pose and illumination
parameters. An important problem of interest in data analysis has
been the learning of low-dimensional models that provide suitable
representations of data for accurate classification. Many supervised
manifold learning methods have been proposed in the recent years
that aim to enhance the separation between training samples from
different classes while respecting the geometric structure of data
manifolds. However, the generalization capabilities of such meth-
ods to initially unavailable novel samples have rather been over-
looked so far. In this work, we propose a nonlinear supervised di-
mensionality reduction method that builds on theoretically estab-
lished generalization bounds for manifold learning.

Classical methods such as LDA and Fisher’s linear discriminant
reduce the dimensionality of data by learning a projection so that
the between-class separation is increased while the within-class
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separation is reduced. In the recent years, much research effort
has focused on the discovery of low-dimensional structures in data
sets, which gave rise to the topic of manifold learning [1-6]. Fol-
lowing these works, many supervised extensions of methods such
as the Laplacian eigenmaps algorithm [3] have been proposed. Lin-
ear dimensionality reduction methods such as [7-14] learn a linear
projection of training samples onto a lower-dimensional domain,
where the distance between samples from different classes are in-
creased and the distances within the same class are decreased.
Most of these methods include a structure preservation objective
as well, which aims to map nearby samples in the original domain
to nearby locations in the new domain of embedding. Nonlinear
methods such as [15] pursue a similar objective; however, the em-
bedding is given by a pointwise nonlinear mapping instead of a
linear projection.

The performance of linear methods depends largely on the dis-
tribution of the data in the original ambient space, since the distri-
bution of the data after the embedding is strictly dependent on the
original distribution via a linear projection. Nonlinear dimension-
ality reduction methods such as [15] have greater flexibility in the
learnt representation. However, two critical issues arise concerning
supervised dimensionality reduction methods: First, most nonlin-
ear methods compute a pointwise mapping only for the initially
available data samples. In order to generalize them to new points,
an interpolation needs to be done, which is called the out-of-
sample extension of the embedding. Second, existing dimension-
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ality reduction methods focus on the properties of the computed
embedding only as far as the training samples are concerned: Ex-
isting algorithms mostly aim to increase the between-class separa-
tion and preserve the local structure, however, only for the train-
ing data. Meanwhile, the important question is how well these al-
gorithms generalize to test data. This question is even more crit-
ical for nonlinear dimensionality reduction methods, as the clas-
sification performance of test data will not only depend on the
properties of the embedding of the training data, but also on the
properties of the interpolator that extends the embedding to the
whole space. Several methods have been proposed to solve the
out-of-sample extension problem, such as unsupervised general-
izations with smooth functions [16-19] or semi-supervised inter-
polators [20]. These methods intend to generalize an already com-
puted embedding to new data and are constrained by the initially
prescribed coordinates for training data. Meanwhile, the best strat-
egy for achieving satisfactory generalization to test data would be
to learn the embedding and the interpolator not sequentially, but
rather in a joint and coherent manner.

In this work, we propose a nonlinear supervised manifold
learning method for classification where the embeddings of train-
ing data are learned and optimized in a joint way along with
the interpolator that extends the embedding to the whole ambi-
ent space. A distinctive property of our method is the fact that
it explicitly aims to have good generalization to test data in the
learning objective. In order to achieve this, we build on the previ-
ous work [21] where a theoretical analysis of supervised manifold
learning is proposed. The theoretical results in [21] show that for
good classification performance, the separation between different
classes in the embedding of training data needs to be sufficiently
high, while at the same time the interpolation function that ex-
tends the embedding to test data must be sufficiently regular. For
good generalization to initially unavailable test samples, a com-
promise needs to be found between these two important crite-
ria. In this work, we adopt radial basis function interpolators for
the generalization of the embedding, and learn the embedding of
the training data and the parameters of the interpolator, i.e., the
coefficients and the scale parameter of the interpolation function,
at the same time with a joint optimization algorithm. The anal-
ysis in [21] characterizes the regularity of an interpolator via its
Lipschitz regularity. We first derive an upper bound on the Lip-
schitz constant of the interpolator in terms of the parameters of
the embedding. Then, relying on the theoretical analysis in [21],
we propose to optimize an objective function that maximizes the
separation between different classes and preserves the local ge-
ometry of training samples, while at the same time minimizing
an upper bound on the Lipschitz constant of the RBF interpolator.
We propose an alternating iterative optimization scheme that first
updates the embedding coordinates, and then the interpolator pa-
rameters in each iteration. We test the classification performance
of the proposed method on several real data sets and show that it
outperforms the supervised manifold learning methods in compar-
ison and traditional classifiers.

Our contributions with respect to previous works are the fol-
lowing:

o The generalization capability of the classifier resulting from
a nonlinear supervised embedding is considered during the
learning of the embedding for the first time.

e An embedding along with a continuous interpolator is learnt
with an optimization objective based on recent theoretical re-
sults on the performance of supervised manifold learning meth-
ods.

 We show that enforcing the Lipschitz regularity of the inter-
polator function in addition to the separation between the dif-

ferent classes improves the accuracy of the classifier in most
experimental settings.

The rest of the paper is organized as follows. In Section 2, we
overview the related work. In Section 3, we review the recent the-
oretical results that motivate our method and in Section 4, we for-
mulate the supervised manifold learning problem and present the
proposed algorithm. In Section 5, we present results on several face
and object data sets. Finally, we conclude in Section 6.

2. Related work
2.1. Unsupervised manifold learning

Manifold learning algorithms aim to compute a low-
dimensional representation of data that is coherent with its
intrinsic geometry, which is characterized in several different ways
via geodesic distances [1], locally linear representations [2], second
order characteristics [5], and graph spectral decompositions [3],
[4] in previous works. When the underlying manifold model is
not analytically known, it is common to represent data with a
graph model. Given a set of data samples X = {x,-}f"=1 c R", most
manifold learning methods build a data graph such that two
samples x; and x; are linked with an edge when they are nearest
neighbors of each other (x; ~x;). The edge weights wy; are typically
assigned with respect to a similarity measure between neighboring
samples.

Denoting as W the weight matrix containing the edge weights
wj;, and defining the diagonal degree matrix D with the i-th diago-
nal entry given by d(i) = ijwxi wjj, the graph Laplacian matrix is
defined as L = D — W. The Laplacian eigenmaps algorithm [3] maps
each data sample x; € R" to a sample y; € R? such that the follow-
ing optimization problem is solved

; TLYY) — mi PV Ty _
min tr(Y LY)_rrgn;Hy, yilPwy, st Y'Y =1 (1)

where Y = [y; y» ... yn]T is the data matrix consisting of the coor-
dinates to be learned and I is the identity matrix. Hence, the Lapla-
cian eigenmaps algorithm formulates the new coordinates of data
as the functions that have the slowest variation on the data graph,
so that neighboring samples in the original domain are mapped to
nearby coordinates in the new domain of embedding. The locality
preserving projections (LPP) [4] algorithm has the same objective;
however, the new coordinates y; = PTx; are constrained to be given
by a linear projection of the original coordinates.

2.2. Supervised manifold learning

Many supervised manifold learning algorithms have been pro-
posed in the recent years, most of which are extensions of the
Laplacian eigenmaps method. These methods seek to embed data
into new coordinates such that neighboring samples in the same
class are mapped to nearby coordinates, while samples from differ-
ent classes are mapped to distant points. This is often represented
as an objective function that minimizes tr(Y’L, Y) while maximiz-
ing tr(Y'L, Y), where L,, and L, are the within-class and between-
class Laplacian matrices, derived respectively from the within-class
and between-class weight matrices Wy, and W,,. The between-class
edges in W, can be set with respect to different strategies in dif-
ferent methods. The supervised dimensionality reduction problem
is formulated in [15] as

myin tr(Y'L,Y) — utr(Y'L,Y) subject to YTY =1 (2)

where >0 is a constant that adjusts the weight between the
structure preservation and the class-aware discrimination terms.
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Similar formulations are adopted in [8,22]; however, under the lin-
ear projection constraint y; = PTx;. The recent work in [23] is based
on a similar objective, which also exploits subclass information by
identifying favorable data connections within the same class. A lo-
cal adaptation of the Fisher discriminant analysis is proposed in
[7]. A projection matrix P is sought so that an objective of the
form tr((P'S,P)~1PTS,P) is maximized over P, where S,, and S,
are the within-class and between-class scatter matrices obtained
with the edge weights of samples on the data graph. The meth-
ods in [9,10,12,13,24] also optimize a similar Fisher-like objective
by maximizing the between-class local scatter and minimizing the
within-class local scatter. The method in [25] proposes a scatter
discriminant analysis to learn embeddings of local image descrip-
tors. In another recent work [26], the optimization of within- and
between-class local scatters is formulated via ¢;-norms for robust-
ness against image degradations.

Several supervised linear dimensionality reduction methods are
based on preserving locally linear representations of data. The al-
gorithm in [27] provides a supervised extension of the well-known
LLE method [2] by introducing a label-dependent distance func-
tion; however, it is a nonlinear method without an explicit con-
sideration of the out-of-sample problem. The Neighborhood Pre-
serving Discriminant Embedding method presented in [28] is a lin-
ear dimensionality reduction method extending the unsupervised
NPE method [29] based on locally linear representations. The Hy-
brid Manifold Embedding method [30] computes a locally linear
but globally nonlinear mapping function by first grouping the data
into local subsets via geodesic clustering and then learning a su-
pervised embedding of each cluster. The supervised dimensionality
reduction method in [31] partitions the manifold into local regions
and takes into account the variation of the embedding along tan-
gent directions of the manifold.

2.3. Continuous embeddings via nonlinear functions

The vast majority of supervised dimensionality reduction meth-
ods relies on linear projections, and the methods computing a
continuous supervised nonlinear embedding are less common. The
generalization of the embedding of a given set of training samples
to the whole space via continuous interpolation functions is known
as the out-of-sample extension problem. The out-of-sample prob-
lem is of critical importance especially for nonlinear supervised
manifold learning methods computing a pointwise embedding only
at training samples.

The Nystrom method [16] proposes an out-of-sample solution
for unsupervised manifold learning algorithms that embed train-
ing samples to coordinates computed from the eigenvectors of a
symmetric similarity matrix M, such that the entries of the similar-
ity matrix are obtained from a kernel function K as M;; = K(x;, X;).
Let Y =[y; y2 ... yn]T be the matrix consisting of the embed-
dings y; € RY of the training samples x; € R", such that the k-th
column Y of Y is the k-th eigenvector of M with MY} = A;Y,.
Then, the Nystrom method maps a previously unseen test sample
x to the point y(x) =[y'(x) ... y4(x)]", such that its k-th coor-
dinate is given by yk(x) = %k >N YyK(x, %), which is shown to
extend the embedding of the training samples to the whole am-
bient space. The Nystrom extension can be applied to many com-
mon unsupervised manifold learning algorithms including ISOMAP
[1], LLE [2], and Laplacian eigenmaps [3], by suitably identifying
a kernel-induced similarity matrix M associated with these meth-
ods. However, the Nystrom method is often inappropriate for the
out-of-sample extension of supervised manifold learning methods,
since in this case the similarity matrix M is often class-dependent
and can no longer be induced from a unique kernel function as
Mij = K(X,‘, Xj).

Another possible way to obtain the out-of-sample generaliza-
tion of an embedding is to employ linear representations. The out-
of-sample extension for a test sample x is obtained in [32], by first
computing a sparse representation of x in terms of the training
samples as x ~ Zf'zl a;x;, where a =[a; ... ay]" is a sparse coeffi-
cient vector. Regarding the magnitudes of the sparse coefficients
as a measure of similarity between x and the training samples,
the embedding y of the test sample x is then obtained as a lin-
ear combination of the embeddings y; of the training samples as
y = laily)/(CE lai).

Besides such unsupervised out-of-sample extension methods,
the method in [20] proposes a solution for the out-of-sample prob-
lem in a semi-supervised setting. Given a data set containing la-
beled and unlabeled samples, and the embeddings of the labeled
samples learnt via any supervised manifold learning algorithm, the
method in [20] first computes an RBF out-of-sample interpola-
tor that fits the learnt embedding to the labeled training data.
This RBF interpolator is then gradually refined using the unlabeled
training samples, such that the RBF interpolator and the estimated
class labels of the unlabeled samples are jointly updated in an it-
erative learning procedure.

The above out-of-sample extension strategies can be cou-
pled with several supervised and unsupervised nonlinear manifold
learning algorithms, and can be used to extend priorly learnt em-
beddings to the whole ambient space. Meanwhile, there also ex-
ist nonlinear dimensionality reduction algorithms that learn a spe-
cific embedding along with its interpolation function extending the
embedding to the whole space. The unsupervised manifold learn-
ing method [17] maps the training samples to a lower-dimensional
space with a locally linear reconstruction objective as in the LLE al-
gorithm [2]; however, under the constraint that the embedding co-
ordinates be polynomial functions of data samples. The polynomial
coefficients are thus optimized to minimize the reconstruction er-
ror of the locally linear representation. Previously unseen test data
can then be embedded into the new domain via the learnt poly-
nomials. Finally, the method in [33] can be seen as a supervised
extension of ISOMAP [1] that also addresses the problem of ex-
tension to novel samples. The training samples are first embedded
via a modified version of the ISOMAP algorithm by using a super-
vised distance function that takes the class labels into account. The
learnt embedding is then generalized to the whole space via kernel
ridge regression.

The focus of our work is essentially different from that of out-
of-sample extension algorithms such as [16,20,32], as these meth-
ods seek an extension of an already computed embedding to the
whole space, while we also address the question of what the
embedding should be. Then, compared to manifold learning al-
gorithms such as [17,33] that learn an embedding along with its
extension, the main difference of our method is that it explicitly
takes into account the performance of the generalization of the
learnt classifier to test data, by formulating a supervised learning
objective motivated by the recent theoretical generalization bounds
of supervised manifold learners.

A possible solution to get around the limitations of linear em-
beddings while avoiding the out-of-sample problem of nonlinear
embeddings is to employ kernel extensions of linear dimensional-
ity reduction methods. The kernel extensions of many well-known
dimensionality reduction methods such as PCA, LDA, ICA exist [34-
36]. The construction of continuous functions via smooth kernels
is also quite common in Reproducing Kernel Hilbert Space (RKHS)
methods [37,38]; however, these methods differ from supervised
manifold learning methods in that the learnt mapping often repre-
sents class labels of data samples rather than their coordinates in
a lower-dimensional domain of embedding as in manifold learn-
ing. The choice of the kernel type and parameters can be critical
in kernel methods. Several previous works in the semi-supervised
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learning literature have addressed the learning of kernels by com-
bining known kernels [39,40]. A two-stage multiple kernel learn-
ing method is recently proposed in [41] for supervised dimension-
ality reduction, which finds a nonlinear mapping by optimizing
between-class and within-class distances.

3. Theoretical bounds in supervised manifold learning

Nonlinear dimensionality reduction methods in the literature
that minimize objectives as in (2) often yield embeddings where
training samples from different classes are linearly separable, and
the local neighborhoods on the same manifold are preserved as
imposed by the term involving the within-class graph Laplacian.
On the other hand, most existing methods fail to consider how
well these embeddings generalize to new test data: When a test
sample of unknown class label is mapped to the low-dimensional
domain of embedding via an interpolator or an out-of-sample ex-
tension method, what is critical is how likely the test sample is to
be correctly classified. This depends both on the coordinates of the
embedding for the training samples and the interpolator used to
generalize the embedding to the whole ambient space. In the pre-
vious work [21], this problem is theoretically studied. In this sec-
tion, we overview some main results from [21], which will provide
a basis for the proposed manifold learning algorithm.

The classification problem is analyzed in [21] in a setting where
each data sample in the training set X = {xi}?’:1 is assumed to be-
long to one of the classes {1,2,..., M} and the samples of each
class m are distributed according to the probability measure v,.
Let M, denote the support of the probability measure v,,. Denot-
ing as Bg(x) an open ball of radius é around a point x

Bs(x) ={ueR": |lx—ul <4d}.

the following definition introduces the smallest possible measure
for a ball Bg(x) of radius & centered around a point in the support
My, of the m-th class.

NMm,s = Xllj}/tfm Vm (Bs (%))

Next, we recall the definition of Lipschitz continuity for a func-
tion f.

Definition 1. A function f:R" — RY is Lipschitz continuous with
constant L> 0 if for any u, v € R", the inequality ||f(u) — f(v)| <
L|lu —v| holds.

The analysis in [21] considers supervised manifold learning al-
gorithms that compute the embedding y; € R of each training
sample x; € R™. It is assumed that a test sample x of unknown class
label is mapped to R? via an interpolation function f:R" — RY.
The following main result from [21] gives a bound on the classifi-
cation error, when the estimate C(x) of the class label C(x) of x is
estimated via nearest-neighbor classification in R? as €(x) = C (*;),
where

i= argmjin lly; = FCOIl.

Theorem 1. Let X = {x,-}f’=] C R" be a set of training samples such
that each x; is drawn iid. from one of the probability measures
{Vm}%’:r with vy, denoting the probability measure of the m-th class.
Let Y = {y,v}{,"=1 be an embedding of X in R? such that there exist a
constant y >0 and a constant As depending on § > 0 satisfying

lyi =yl <As. if lIxi —x;]| <268 and C(x;) = C(x;)
lyi =yill > y. if C(x) # Clx;).
For given € >0 and § >0, let f:R" — RY be a Lipschitz-continuous

interpolation function with constant L, which maps each x; to f(x;) =
¥, such that

L3+\/E6+A5<%. (3)

R" R4
Class 1 . . ¢ e ..;
L . ) // A PCCE
m m g f o .
. l‘
Class 2 .. - v

’.vl.-IIQ(Y; f\)o:iAa

Fig. 1. lllustration of the setting considered in Theorem 1. Samples from the same
class having a distance of 2§ are embedded to points at most As apart. Samples
from different classes are separated by at least y.

Consider a test sample x randomly drawn according to the proba-
bility measure vy, of class m. For any Q> 0, if X contains at least
N, training samples from the m-th class drawn i.id. from vy such
that Nm > Q/np, s, then the probability of correctly classifying x with
nearest-neighbor classification in R? is lower bounded as

2 (Nm 1,5 — Q)?
N

Qe?
-2 dexp (_2L282> (4)

Theorem 1 considers an embedding such that nearby training
samples from the same class are mapped to nearby coordinates,
while training samples from different classes are separated by a
distance of at least y in the low-dimensional domain of embed-
ding. An illustration of the setting considered in the theorem is
given in Fig. 1. The parameter y can be considered as the separa-
tion margin of the embedding. Then for such an embedding, the
condition in (3) assumes an interpolator f that is sufficiently regu-
lar (with a sufficiently small Lipschitz constant L) compared to the
separation margin y. Finally, a probabilistic classification guaran-
tee is given for this setting in (4), which states that the misclas-
sification probability decreases exponentially with the number of
samples under these assumptions. The above result considers the
NN classifier in the final stage, which is a simple and widely used
classification strategy for which efficient algorithms exist [42]. An
extension of this result is also presented in [21] which studies the
performance of classification when a linear classifier is used in-
stead of nearest-neighbor classification in the low-dimensional do-
main. If a linear classifier is used in the domain of embedding, a
very similar condition to (3) relating the interpolator regularity to
the separation margin is obtained, which yields a similar proba-
bilistic bound on the misclassification error.

While most supervised manifold learning methods in the litera-
ture focus on achieving large separation between the training sam-
ples from different classes in the embedding, the condition (3) in
the above theoretical analysis points to a critical compromise to
seek in supervised dimensionality reduction: Achieving high sepa-
ration between different classes in the training set does not neces-
sarily mean that the classifier will generalize well to test samples.
The presence of a sufficiently regular interpolator is furthermore
needed, so that the Lipschitz constant L of the interpolator remains
below a threshold involving the separation margin y of the em-
bedding. From this perspective, depending on the data distribution,
increasing the separation too much has the risk of forcing the in-
terpolator to be too irregular, which may in turn cause condition
(3) to fail. What we propose in this work is to learn the embed-
ding {y; f’:1 together with the interpolator f in view of condition
(3), which is detailed in the next section.

P(C(x) =m) > 1—exp (—
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4. Proposed nonlinear supervised smooth embedding method

In this section, we present our proposed supervised dimension-
ality reduction method. We first formulate the manifold learning
problem and define an optimization problem based on the per-
spectives discussed in Section 3. We then describe our algorithm.

4.1. Formulation of the manifold learning problem

Given training points X = {x,-}f\’:l c R" from M classes, our pur-
pose is to learn an embedding of data Y = {y;}¥, RY together
with a continuous interpolation function f:R" — R? |, such that
f(x;) = y;. The interpolator f will then be used to classify new test
points x by mapping x to the low-dimensional domain R as f(x),
so that examining f(x) e R with respect to the embedding Y of
the training points with known class labels provides an estimate
of the class label of x.

Our method relies on the theoretical results presented in
Section 3. Recall from Theorem 1 that, a necessary condition to
obtain good generalization performance is

L8+\/56+A,; < %

In the sequel, we formulate a manifold learning problem in view of
this condition, whose purpose is to make the Lipschitz constant L
of the interpolator and the distance A5 between neighboring points
from the same class as small as possible, while making the sepa-
ration y between different classes as large as possible, in order to
increase the chances that the above condition be met.

Let f(x) =[f1(x) ... f4(x)] € RY, where f¢(x) is the k-th dimen-
sion of f(x), with f¥: R" — R. We propose to choose the function
f as a radial basis function (RBF) interpolator, as RBF interpolators
are a well-studied family of functions [43,44] with many desirable
properties such as smoothness and adjustable spread around an-
chor points. Hence, each component f* of f is of the form

N
00 =3 b (lx—xil) (5)

i=1

where ¢ : R — R* is an RBF kernel, cl’F are the coefficients, and
x; are the kernel centers. A common choice for the RBF kernel is
the Gaussian kernel ¢ (r) = e="/7* which we also adopt in this
work. Under this setting, we now examine our three entities of in-
terest, namely the regularity of the interpolator, the distance be-
tween neighboring points from the same class and the separation
between different classes.

Interpolator regularity. We begin with proposing a Lipschitz con-
stant for f in terms of the function parameters.

Proposition 1. Let Ly := x/fe*%a*1 and let C be the matrix consist-

ing of the RBF coefficients such that C;; = clj Then the RBF interpolator
f satisfies for all u,v e R" the inequality ||f(u) — f(w)|| <L|lu—v|,
where L := v/NLg||C||f.

The proof of Proposition 1 is available in the accompanying
technical report [45] where more details about our work can be
found. When learning an interpolator, we would like to mini-
mize the Lipschitz constant L = \/NL¢||C||F of f(x). From the form
(5) of the interpolator components and the fact that the interpo-
lator values at training points must correspond to the coordinates
of the embedding y; = f(x;), we get the relation WC =Y, where
W ¢ RN<N is the matrix consisting of the values of the RBF kernels
with W;; = ¢(||x; —x;[) and Y = [y; y2 ... yn]" € RN*¢ is the ma-
trix consisting of the coordinates of the embeddings of the training
samples. Then the coefficient matrix is given by C = W~-1Y, so that

— 2 _
ICIE = 1Y [lF = or(Y T =2y). (6)

In order to keep the Lipschitz constant L = WL¢ IC|| of the in-
terpolator small, we need to keep both the Lipschitz constant Ly
of the Gaussian kernel and the norm ||C||r of the coefficient ma-
trix small. Using the expression of ||C||§ in (6) and recalling that

Ly = ﬁe‘%afﬂ we thus propose to minimize the following ob-
jective for controlling the interpolator regularity

min tr(Y" W 2Y) + % 7)

where w is a weight parameter. The objective is chosen propor-
tionally to the squares of the terms |[C||r and L instead of them-
selves, due to the convenience of the analytical expression ob-
tained for ||C||2 in (6).

Distance between neighboring points from the same class. Recall
from Theorem 1 that the condition (3) required for good classifi-
cation performance enforces the term As to be sufficiently small,
where Ag is an upper bound on the distance between the embed-
dings of nearby samples; i.e, |ly; —y;ll <As whenever ||x; —x;|| <
28. It is not easy to study the distance ||y; —y;|| in relation with
the ambient space distance ||x; — x;|| for each pair of samples x;, x;.
Nevertheless, we adopt a constructive solution here and relax this
problem to the minimization of the distance between the embed-
dings of nearby points from the same class. The total distance be-
tween the embeddings of neighboring points from the same class,
weighted by the edge weights, is given by

2
Z lyi — yjll“w;; = tr(YTL,Y).
xi.Xj: C(x;)=C(x;)

Here Ly = Dy — W,y is the within-class Laplacian matrix associated
with the within-class weight matrix W,,, where Dy, is the diago-
nal degree matrix whose entries are given by (Dw); = >_;(Ww);j.
The within-class weight matrix Wy, contains the weights w;; of the
edges between each pair of neighboring samples  x; ~x; from the
same class. A common choice for assigning the edge weights is the
Gaussian kernel, in which case the matrix W, is of the form

llxi=x;12
(Wa)ij = e . Cx) =C(xj), X ~X;
0, otherwise.

Then, the objective
min tr(Y'L,Y) (8)

used in several previous works is an appropriate choice for our
purpose.

Separation between samples from different classes. The last entity
to be examined in view of the condition (3) is the separation mar-
gin y. In order to satisfy the condition (3), the separation between
the samples from different classes must be sufficiently high. Al-
though the margin y stands for a lower bound for the distance
llyi —y;ll between any pair of samples from different classes in
Theorem 1, the examination of the minimum value of ||y; — y;| for
all pairs of samples is a relatively hard problem. We propose to re-
lax this and evaluate the total distance between the embeddings of
different-class samples. Hence, in order to increase the separation
margin y, we propose to maximize

3o iyl = LY)
C(x:)#C(x;)

where W, is a between-class weight matrix given by (Wj);; =1 if
C(x;) # C(x;), and (Wj);; = 0 if C(x;) = C(x;). The diagonal between-
class degree matrix is defined as (Dyp);; = 3>°;(Wj);;, and L, = Dy —
W, is the corresponding between-class Laplacian matrix. Thus, the
maximization of the separation margin is represented by the ob-
jective function

max tr(Y'LyY). (9)
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Overall optimization problem. Now, bringing together the objec-
tive functions presented in (7)-(9), we propose to solve the fol-
lowing optimization problem in order to learn an embedding Y to-
gether with its corresponding interpolator:

min tr(YTLwY) — patr(YTLyY) + potr(YTW2Y)

+ % st Y'Y =1 (10)
Here (1, i, and w3 are positive weights that balance the differ-
ent terms in the objective function, and the normalization condi-
tion YTY = is imposed in order to prevent solutions with arbitrar-
ily small embedding coordinates that might trivially minimize the
objective.

4.2. Proposed manifold learning algorithm

The proposed objective function (10) can be made convex with
respect to Y if the weight parameters w; and p, are suitably
chosen; however, it is not jointly convex with respect to both
optimization variables Y and o. We thus propose to minimize
(10) with an alternating iterative optimization algorithm. In each
iteration, we first fix the scale parameter o and optimize the em-
bedding coordinates Y, which is then followed by fixing Y and op-
timizing o.

Optimization of Y. When the scale parameter o is fixed, the min-
imization of the objective (10) is equivalent to the following opti-
mization problem

Y* =argminy tr(YTL,Y) — pqtr(YTL,Y) + patr(YTW2Y)
st YTY =1
=argminy tr(Y"(Ly — pily + oW 2)Y) st YTY =1

(11)

The solution to this problem is given by the N x d matrix Y* whose
k-th column consists of the eigenvector of the matrix

A=Ly— Ly + W2 (12)

that corresponds to its k-th smallest eigenvalue, for k=1, ..., d.

Optimization of o. Note that the dependence of the objective
function (10) on the scale parameter o is through its third term
wotr(YTW-2Y) and fourth term us/o2. Hence, when the embed-
ding Y is fixed, the optimization of the objective is reduced to the
problem

% : Q-2 M3
0" =argmin Hotr(Y' W Y)+;. (13)

The objective in (13) is not a convex function of o in general.
Nevertheless, a useful observation is the following: As the entries
of the matrix W consist of the RBF kernel terms ¢ (||x; —x;[|) =
exp (—||x,- - xj||2/02), the matrix ¥ and its inverse W~ have poor
conditioning when o takes arbitrarily large values. Hence, the first
term tr(YTW—2Y) in (13) increases with increasing large values of
o. On the other hand, the term ¢ ~2 approaches infinity as o ap-
proaches 0. These observations imply that that there exists a pos-
itive kernel scale o* >0 that minimizes the objective (13). As the
problem (13) requires the optimization of a single parameter o,
an optimal value o* can be computed easily. In practice, we find
o* via an exhaustive search procedure, by computing the objective
(13) over a sufficiently dense sampling of the o values within a
suitably chosen interval [0 i, 0max | of typical scale parameters.
The optimal parameter o* is then taken as the o value at which
the objective is minimum.

These steps for the alternating optimization of Y and o are ap-
plied successively until the stabilization of the objective function.
Note that if w; is chosen sufficiently small to make the matrix A
in (12) positive semi definite, the overall objective function (10) is

positive. In this case, since both of the alternating optimization
steps in (11) and (13) bring updates that cannot increase the ob-
jective function in each iteration, being bounded from below, the
objective function is guaranteed to converge.

Once the embedding Y of the training points and the kernel
scale o are computed in this way, the interpolator f is simply ob-
tained as in (5) by computing the coefficients as C = W~1y. We
call the proposed method Nonlinear Supervised Smooth Embed-
ding (NSSE) and give its description in Algorithm 1.

Algorithm 1 Nonlinear supervised smooth embedding (NSSE).
1: Input:
X = {x,-}f’: ; C R™: Training samples with known class labels
d: Embedding dimension
U1, Mo, 3 Weight parameters
2: Initialization: Set kernel scale o* to a typical positive value.
3: repeat
4 Fix o=0* and optimize Y by solvingY* =
argminy tr(YT (L — piLy + poW=2)Y) st YTY =1
5: Fix Y=Y* and optimize o by solvingo* =
argming potr(YTW=2Y) + 302
6: until Objective function in (10) is stabilized
7. Compute interpolator coefficients as C = w-1y.
8: Output:
Y = {y;}}, ¢ R%: Embedding of training samples
f:R" - RY: Interpolation function

4.3. Complexity of the proposed algorithm

We now analyze the computational complexity of the proposed
NSSE method. The algorithm is composed of three main stages,
which are the initialization stage (calculation of the Ly, and L, ma-
trices), the main loop between steps 3 and 6 of Algorithm 1, and
the finalization stage in step 7.

In the initialization step, the complexity of the computation of
Ly and L, is mainly determined by the complexity of computing
the within-class and between-class weight matrices Wy, and W,
which is of O(nN?).

We next consider the main loop of the algorithm. The ma-
trix W in step 4 can be calculated with complexity O(nN?) and
it is inverted with complexity O(N3) to obtain W~1. As a result,
the computation of W2 is of complexity O(nN2?) + O(N3). In or-
der to find Y* in step 4, the eigenvectors of Ly — uqLy + W2
should be found, which is of complexity O(N3). Then, the total
complexity of step 4 is O(nN2) + O(N3). In step 5, the expression
watr(YTW=2Y) + 130 ~2 must be computed repeatedly to find o*,
which is of complexity O(N3). Hence, the complexity of the main
loop is found as O(nN?) + O(N3).

In step 7, the complexity of the calculation of ¥~ is O(N3), and
the matrix product W'Y is of complexity O(dN?). We may assume
d < N, which then gives the complexity of step 7 as of O(N3). Com-
bining this with the previous stages, the overall complexity of the
algorithm is found as O(nN?) + O(N3).

5. Experimental results

In this section, we evaluate the performance of the proposed
NSSE method on six real data sets. We first describe the data
sets, then study the iterative optimization procedure employed in
the proposed method, and then compare the performance of NSSE
with that of other supervised manifold learning algorithms and
traditional classifiers.
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(a) Yale database

illlmj

(d) FEI database

(b) COIL-20 database

) ROBOTICS-CSIE database (f) MIT-CBCL database

Fig. 2. Sample images from one class of the used databases.

5.1. Data sets and experimentation setting

We experiment on the data sets listed below. Some sample im-
ages from one class of each data set are presented in Fig. 2.

Yale Face Database. The data set consists of 2242 greyscale face
images of 38 different subjects, where each subject has 59 images
[46]. All images are taken from a single viewpoint with variations
in the lighting angles and rates.

COIL-20 Database. The Columbia Object Image Library database
consists of 1440 grayscale images of 20 different objects, where
each object has 72 images captured by rotation increments of 5
degrees [47].

ORL Database. The database consists of a total of 400 images,
with 10 images of each one of the 40 subjects taken in an upright,
frontal position [48]. The images contain variations in the lighting,
facial expressions and facial details such as glasses.

FEI Database. The FEI database is a face database containing a
total of 2800 images, with 14 images for each one of the 200 sub-
jects taken in an upright frontal position with profile rotation of
up to about 180 degrees and scale variation of about 10% [49]. We
experiment on 50 classes from this database.

ROBOTICS-CSIE Database. The database contains a total of 3330
face images of 90 subjects, with 37 images for each subject cap-
tured under rotation increments of 5 degrees [50]|. We experiment
on 40 classes from this database.

MIT-CBCL Database. The database contains face images of 10
subjects [51]. We experiment on a total of 5240 images, with 524
images per subject captured under rotations of up to 30 degrees
and varying illumination conditions.

We experiment on greyscale versions of the images resized to
around 25 x 25 pixels. All experiments are conducted in a super-
vised setup, by randomly separating the images into a training
set and a test set in each repetition of the experiment. In all ex-
periments, the proposed NSSE algorithm is evaluated in a setting
where the training images are used to learn a continuous em-
bedding into a low-dimensional domain. The test images are then
mapped to the domain of embedding via the learnt interpolator
and their class labels are estimated via nearest neighbor classifica-
tion in the low-dimensional domain. The graph edge weights are
set with a Gaussian kernel. In all experiments, the weight param-
eters [q, Uy, and w3 of NSSE are set with cross-validation. The
weight parameters are set sequentially, by first initializing them
with some typical values and then optimizing one of them at a
time via cross validation where the others are kept fixed. When
optimizing one weight parameter, the training samples are divided
randomly into two sets as training and validation, the algorithm is
trained on the training set, and the classification error is measured
on the validation set for different values of the weight parameter.
We repeat this several times by randomly assigning the training
and the validation set, and then finally select the parameter value
that gives the smallest average classification error on the valida-
tion set. In practice, we have observed that the typical ranges of
appropriate (1, (o, and 3 values do not usually vary dramati-

cally between different data sets and setting these parameters to
values within the intervals p; €[100, 1000], wu, €[0.0001, 0.001],
and w3 €[1, 5] often yields satisfactory performance.

5.2. Study of the iterative optimization procedure

In this first experiment, we study the iterative optimization
procedure employed in the proposed method. As discussed in
Section 4.2, the NSSE algorithm follows an alternating optimiza-
tion scheme by minimizing the objective function in (10) first with
respect to the embedding Y of the training samples, and then the
scale parameter o of the RBF kernels.

The results given in Fig. 3 are obtained on the FEI face data set,
where an embedding into a d = 10 dimensional domain is com-
puted using a total of 100 training samples. Fig. 3(a) shows the
variation of the objective function in (10) throughout the iterations.
Although the proposed alternating optimization procedure is not
theoretically guaranteed to find the global optimum of the objec-
tive, it is observed from the figure that the proposed scheme can
effectively minimize the objective function, which converges in a
small number of iterations. The misclassification rates of the test
images in percentage are reported in Fig. 3(b) obtained with the
embeddings and interpolators computed in each iteration. The re-
sults show that the progressive update of the continuous embed-
ding throughout the iterations improves the classification perfor-
mance. The comparison of the plots in Figs. 3(a) and (b) reveals
that the variations of the objective function and the misclassifi-
cation rate throughout the iterations are quite similar. This sug-
gests that the choice of the objective function in (10), motivated
by theoretical bounds, indeed matches the actual classification er-
ror. Fig. 3(c) shows the evolution of the RBF kernel scale parame-
ter o throughout the iterations. The RBF kernel scale o is deliber-
ately initialized with a too high value in this experiment in order
to study the effect of the initial conditions on the algorithm per-
formance. Despite the initialization of o with a too large value,
the iterative minimization of the objective gradually pulls the ker-
nel scale towards a favorable value that improves the classification
performance.

The same experiment is also repeated by initializing the RBF
kernel scale this time with a small value, whose results are given
in the lower row of Fig. 3. It is observed in Fig. 3(f) that the
RBF scale o is effectively optimized throughout the iterations to-
wards a larger value, which gradually decreases the objective func-
tion and improves the classification accuracy in Figs. 3(d) and 3(e).
These results suggest that the algorithm performance is not af-
fected much by the initialization of the RBF kernel scale. We have
obtained similar results on the other data sets and under different
choices of the parameters such as the number of training samples,
which we skip here for brevity.
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Fig. 3. Algorithm performance throughout iterations. Results in the upper and lower row are respectively obtained by initializing the algorithm with a high and a low RBF

kernel scale.

5.3. Variation of the classification performance with the embedding
dimension

We now study the classification performance of the proposed
algorithm in relation with the dimension d of the embedding. The
proposed NSSE method is compared to some other dimensionality
reduction algorithms listed below.

e The Supervised Laplacian Eigenmaps (SUPLAP) method pro-
posed in [15] computes a nonlinear low-dimensional embed-
ding of the training samples by minimizing the objective in (2).
We extend the embedding of the training samples given by the
SUPLAP method to the whole space via an RBF interpolator of
the same form as in NSSE. We then embed the test samples
into the low-dimensional domain with this interpolation func-
tion.

The Local Fisher Discriminant Analysis (LFDA) method proposed
in [7] is a supervised manifold learning algorithm computing a
linear embedding with a Fisher-type cost with additional local-
ity preservation objectives.

The Local Discriminant Embedding method (LDE) [22] is a man-
ifold learning method that optimizes a similar objective as in
the SUPLAP method; however, learns a linear projection.

Linear Discriminant Analysis (LDA) is a classical dimensionality
reduction technique that maximizes the between-class scatter
while minimizing the within-class scatter.

The dimensionality reduction methods are applied on training
samples to compute a d-dimensional embedding, which is then
used to classify test samples via nearest neighbor classification in
the domain of embedding. The algorithms are evaluated for a range
of d values. The parameters of the other methods in comparison
are adjusted to attain their best performance.

The variation of the misclassification rates of test samples in
percentage with the dimension d of the embedding is presented
in Figs. 4 and 5. The results are the average of 20 random realiza-
tions of the experiments with different training and test sets, with
10, 10, 2, 2, 7, and 10 training images per class (chosen proportion-
ally to the total number of samples) respectively for the Yale, COIL-
20, ORL, FEI, ROBOTICS-CSIE and the MIT-CBCL databases. Most of
the tested methods are based on solving a generalized eigenvalue
problem and the rank of the involved matrices may be different for
each method depending on the number of training samples and

the number of classes. Hence, the maximum possible dimension
of the embedding may vary between different methods, as well as
the best range of dimensions where the methods perform well. For
this reason, the results on each data set are presented in two fig-
ures with different d ranges for better visual clarity.

The results in Figs. 4 and 5 show that the classification accu-
racy of the proposed NSSE algorithm compares quite favorably to
those of the other methods, as NSSE often yields the smallest mis-
classification rate at the optimal dimension. The misclassification
rate of LDA is observed to decrease monotonically with the dimen-
sion d and its best performance is attained when d reaches the
number of classes. The LDE and LFDA algorithms exhibit their best
performances at much higher dimensions compared to the other
algorithms. The error rates of these algorithms usually decrease as
the embedding dimension increases; however, in some datasets a
local optimum for d can also be observed.

Among all methods, the nonlinear NSSE and SUPLAP methods
often perform better than the linear LDA, LFDA, and LDE methods.
This shows that the flexibility of nonlinear methods when learning
an embedding is likely to bring an advantage in computing better
representations for data. It is then interesting to compare the per-
formances of the two nonlinear methods; NSSE and SUPLAP. The
SUPLAP algorithm attains its best performance when the dimen-
sion d of the embedding is close to the number of classes, while
the optimum value of d for the proposed NSSE algorithm is smaller
in most data sets. Interestingly, the optimal dimension of NSSE is
much smaller than that of SUPLAP in data sets with a low intrin-
sic dimension such as COIL-20, FEI, and ROBOTICS-CSIE, which are
generated by the variation of only one or two camera angle pa-
rameters. Similarly, in data sets of larger intrinsic dimension such
as MIT-CBCL due to several pose and lighting parameters, the op-
timal dimension of NSSE is higher and closer to that of SUPLAP.
This may suggest that the embedding computed with NSSE tries to
capture the intrinsic geometry of data and provides a better repre-
sentation when the embedding dimension is chosen proportionally
to the intrinsic dimension of data.

The reduction of the embedding dimension is desirable espe-
cially regarding the complexity of the classification of test samples
in a practical application. Another advantage of NSSE over SUPLAP
is that NSSE is less sensitive to the choice of the dimension, as
the misclassification performance is less affected for non-optimal
values of d. Such benefits of the proposed NSSE algorithm mainly
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Fig. 6. Visual comparison of the embeddings given by the NSSE and SUPLAP algorithms.

result from the fact that the Lipschitz continuity of the interpola-
tor is imposed in the learning objective. Consequently, the training
samples are embedded more evenly in the low-dimensional space
so as to allow the construction of a regular interpolator, which in
return reduces the required number of dimensions or the sensitiv-
ity to the non-optimal choice of d.

In fact, Fig. 6 provides a visual comparison of the embeddings
obtained with the NSSE and the SUPLAP algorithms. Panels (a) and
(b) show the two-dimensional embeddings of 70 training samples
from 10 classes of the ROBOTICS-CSIE data set, respectively with
NSSE and SUPLAP. The embeddings of training samples look similar
between the two methods, although different classes are more reg-
ularly spaced in NSSE. The performance difference between these

two methods becomes much clearer when the embeddings of the
test samples in panels (c) and (d) are observed. Even at this very
small embedding dimension of 2, NSSE separates test samples from
different classes much more successfully than SUPLAP, which is
due to the inclusion of the interpolator parameters in the learn-
ing objective in order to attain good generalization performance.

5.4. Overall comparison with several classification methods

We now provide an overall comparison of the proposed NSSE
method with baseline classifiers and other manifold learning
methods. In addition to the supervised manifold learning algo-
rithms used in the experiments of Section 5.3, we compare NSSE

63
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Table 1
Misclassification rates (%) of compared methods on Yale database.
#Tr  NSSE SUPLAP  SVM NN LFDA LDA LDE NYS SPE [soKRR  MReg
6 22.09 2310 2943 6348 2689 3586 20.05 1947 63.81 22.58 19.89
10 1260 1292 15.17 52.89 4063 6397 2179 11.88 53.19 12.58 12.36
15 7.52 7.95 9.09 43,57 10.78  57.87 7.95 7.84 43.41 7.11 6.90
20 5.02 5.60 6.14 37.51 7.42 52.80 5.6 6.43 38.31 461 450
30 2.56 2.57 2.99 30.13 3.22 4643  3.04 4.63 3246 238 2.35
Table 2
Misclassification rates (%) of compared methods on COIL-20 database.
#Tr NSSE SUPLAP SVM NN LFDA LDA LDE NYS SPE IsoKRR MReg
7 8.09 10.97 1038 13.90 17.93 11.84 2086 13.87 1390 1117 8.49
10 4.97 6.81 6.93 1022 1359 768 16.84  9.38 1022 707 5.44
15 2.79 3.85 4.60 6.88 11.32 4.22 14.01 5.70 6.88 3.96 3.05
20 1.25 2.04 3.23 4,51 9.53 2.29 1264 334 4,54 2.00 1.31
30 0.53 0.80 2.27 2.31 7.08 0.99 13.28 1.56 2.44 0.79 0.73
Table 3
Misclassification rates (%) of compared methods on ORL database.
#Tr NSSE  SUPLAP  SVM NN LFDA  LDA LDE NYS SPE [soKRR  MReg
2 1411 16.04 19.74 19.34 27.70 2118 24.92 17.03 19.34 14.81 14.85
3 8.00 9.49 10.70 1296 1489 1313 1274 11.06 1296 8.63 8.38
5 3.90 5.32 435 6.92 8.10 7.74 7.05 6.90 6.92 423 413
Table 4
Misclassification rates (%) of compared methods on FEI database.
#Tr  NSSE SUPLAP  SVM NN LFDA LDA LDE NYS SPE IsoKRR  MReg
2 2086 27.07 3538 3213 29.83 3093 3005 3191 3213 2642 25.03
4 8.05 12.46 1285 1945 1290 1256 10.80 1920 1945 1106 10.77
7 5.00 6.42 9.09 10.86 9.74 5.40 777 11.53 11.23 5.03 5.40
Table 5
Misclassification rates (%) of compared methods on ROBOTICS-CSIE database.
#Tr  NSSE SUPLAP  SVM NN LFDA LDA LDE NYS SPE IsoKRR  MReg
7 1356 27.23 2397 3446 2487 2943 2513 3487 3453 2429 20.32
14 4.38 11.74 8.78 17.80 11.97 14.15 9.74 17.36 17.84 9.04 5.86
21 2.83 6.52 4.77 10.09  6.99 10.57  5.88 9.85 9.76 4.81 3.08
Table 6
Misclassification rates (%) of compared methods on MIT-CBCL database.
#Tr NSSE SUPLAP SVM NN LFDA LDA LDE NYS SPE IsoKRR MReg
10 6.48 731 9.91 1443 1232 1844 969 1503 1443 6.53 6.55
20 249 3.38 418 5.65 8.36 8.38 6.02  6.06 5.66 2.50 2.85
40 0.77 122 1.52 146 5.29 3.18 297 184 2.05 0.71 0.97

with the SVM classifier in the original domain, the nearest neigh-
bor (NN) classifier in the original domain, the out-of-sample gener-
alization of the Laplacian eigenmaps embedding with the Nystrom
method (NYS) [16], the out-of-sample generalization of Laplacian
eigenmaps with sparse coding (SPE) [32], the IsoKRR method pro-
posed in [33] which computes a supervised nonlinear embedding
and generalizes it with kernel ridge regression, and the supervised
manifold regularization algorithm (MReg) proposed in [37] based
on Reproducing Kernel Hilbert Spaces. The embedding dimensions
and other algorithm parameters of the manifold learning methods
are set to their optimal values. The classification errors over test
samples are studied by varying the training/test ratio and the re-
sults are averaged over 20 realizations of the experiments under
different random choices of the training and test sets.

The misclassification rates of test samples in percentage are
presented for the compared methods for different training data
sizes in Tables 1-6 for the tested data sets. The leftmost columns

of the tables show the number of training samples per class. Exper-
iments are conducted over a suitable range of number of training
samples for each data set, considering the total number of samples
in the data set. The smallest classification errors are shown in bold.

The proposed NSSE method is observed to outperform the other
methods in most data sets. In Table 1, out-of-sample generaliza-
tion with the Nystrom method NYS [16] is seen to be one of the
two best performing methods along with MReg [37], while its per-
formance is behind many others in the other data sets. The ex-
treme illumination changes in the Yale data set lead to degenera-
cies in the data manifold due to the very high local curvatures and
non-differentiability, which seems to pose a challenge for the pro-
posed NSSE method. Meanwhile, the global structure of this data
set can in fact be approximated with linear subspace models fairly
well, thanks to which an unsupervised out-of-sample extension
method such as Nystrom achieves good performance on this data.
In Tables 2-6, the proposed NSSE method is seen to yield the best
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Table 7
Running times of the NSSE algorithm observed for several data sizes on three
data sets. The data size stands for the total number of training images.

COIL-20 FEI ROBOTICS-CSIE
Data size-Running time 140-.81 sec 100-0.82sec  280-2.22sec

300-1.45 sec 200-1.52 sec 560-8.33 sec

600-5.45 sec 350-3.74 sec 840-14.99 sec

performance in most settings, and the algorithms closest in perfor-
mance to NSSE are the nonlinear and supervised SUPLAP, IsoKRR,
and the MReg methods. Among the supervised manifold learning
algorithms, the nonlinear methods seem to outperform the linear
ones in general. The linear manifold learning algorithms LFDA, LDA,
and LDE exhibit variable performance depending on the data set.
As the performances of the algorithms improve with the increase
in the number of training samples, these linear manifold learning
methods may get outperformed by the baseline SVM and NN clas-
sifiers especially when the number of samples is sufficiently high.
The performance gap between NSSE and the other nonlinear and
supervised MReg, IsoKRR, and SUPLAP methods is more significant
in the FEI and ROBOTICS-CSIE datasets containing a large number
of classes, especially when the number of training samples is lim-
ited. The lack of training samples compared to the large number
of classes is likely to lead to degenerate embeddings in nonlinear
methods computing a pointwise embedding as in SUPLAP, while
the regularization term enforcing the regularity of the interpolator
in NSSE proves effective for the prevention of such degeneracies
and ensuring the preservation of the overall geometric structure
of data in the embedding. For the particular case of initially few
labeled samples, the extension of our study to an active learning
framework [52] remains as a potential future direction.

Note that, unlike complex classifiers involving rich models with
many parameters to learn, the classifiers obtained with the pro-
posed method consist of a relatively simpler model with fewer pa-
rameters to learn. Based on models particularly fit to the priors
on the data geometry and dimensionality, the proposed method
attains satisfactory classification accuracy on data sets conform-
ing to such low-dimensional models, even when the number of
training samples is very limited. The accuracy of the proposed
method would inevitably degrade if applied directly to data col-
lections registered under highly uncontrolled settings violating the
low-dimensional manifold assumption, e.g., data sets of complex
backgrounds, with many different and dissimilar objects belonging
to the same class, etc. Nevertheless, the learning of representations
that extract the useful and essential information from such data
sets registered under challenging conditions is still an open prob-
lem. Referring the reader to [53] for a recent comparison of sev-
eral feature descriptors, we note that the proposed method can po-
tentially be coupled with progressing representation learning tech-
niques that can capture the data geometry invariantly to acquire-
ment conditions.

Finally, we report the observed computation times for jointly
learning an embedding and an interpolator with the proposed
NSSE algorithm. The running times obtained for a single run of
the NSSE algorithm with a non-optimized MATLAB implementa-
tion on a laptop computer are given in Table 7 for three data sets,
for different data sizes. The observed running times seem to be
consistent with the complexity analysis of the method provided in
Section 4.3.

6. Conclusion
We have proposed a nonlinear supervised manifold learning

method that learns an embedding of the training data jointly with
a smooth RBF interpolation function extending the embedding to

the whole space. The embedding and the interpolator parameters
are jointly optimized with the purpose of good generalization to
initially unavailable data, based on recent theoretical results on the
performance of supervised manifold learning methods. In particu-
lar, the embedding and the RBF paramaters are learnt such that the
interpolator has sufficiently good Lipschitz regularity while differ-
ent classes are separated as much as possible. Experiments have
shown that the proposed method often yields better classification
performance while requiring a smaller number of dimensions in
comparison with other approaches. Thanks to the priors on the
Lipschitz regularity of the interpolator, the proposed method can
learn efficient representations even under limited availability of
training samples, and is relatively robust to conditions such as the
non-optimal choice of the embedding dimension and unfavorable
initialization. The proposed method can find use in a variety of
applications concerning the classification and analysis of data, es-
pecially conforming to low dimensional models. The extensions of
our study to multi-view or active learning settings remain as pos-
sible future directions.

References

[1] J.B. Tenenbaum, V. de Silva, J.C. Langford, A global geometric framework for
nonlinear dimensionality reduction., Science 290 (5500) (2000) 2319-2323.

[2] S.T. Roweis, LK. Saul, Nonlinear dimensionality reduction by locally linear em-
bedding, Science 290 (2000) 2323-2326.

[3] M. Belkin, P. Niyogi, Laplacian eigenmaps for dimensionality reduction and
data representation, Neural Comput. 15 (6) (2003) 1373-1396.

[4] X. He, P. Niyogi, Locality preserving projections, Advances in Neural Informa-
tion Processing Systems 16, MIT Press, Cambridge, MA, 2004.

[5] D.L. Donoho, C. Grimes, Hessian eigenmaps: locally linear embedding tech-
niques for high-dimensional data, Proc. Natl. Acad. Sci. U.S.A. 100 (10) (2003)
5591-5596.

[6] Z. Zhang, H. Zha, Principal manifolds and nonlinear dimension reduction via
local tangent space alignment, SIAM J. Sci. Comput. 26 (2005) 313-338.

[7] M. Sugiyama, Dimensionality reduction of multimodal labeled data by local
fisher discriminant analysis, J. Mach. Learn. Res. 8 (2007) 1027-1061.

[8] Q. Hua, L. Bai, X. Wang, Y. Liu, Local similarity and diversity preserving dis-
criminant projection for face and handwriting digits recognition., Neurocom-
puting 86 (2012) 150-157.

[9] W. Yang, C. Sun, L. Zhang, A multi-manifold discriminant analysis method for
image feature extraction, Pattern Recognit. 44 (8) (2011) 1649-1657.

[10] Z. Zhang, M. Zhao, T. Chow, Marginal semi-supervised sub-manifold projec-
tions with informative constraints for dimensionality reduction and recogni-
tion, Neural Netw. 36 (2012) 97-111.

[11] B. Li, J. Liu, Z. Zhao, W. Zhang, Locally linear representation fisher criterion, in:
The 2013 International Joint Conference on Neural Networks, 2013, pp. 1-7.

[12] Y. Cui, L. Fan, A novel supervised dimensionality reduction algorithm:
graph-based fisher analysis, Pattern Recognit. 45 (4) (2012) 1471-1481.

[13] R. Wang, X. Chen, Manifold discriminant analysis, in: CVPR, 2009, pp. 429-436.

[14] M. Yu, L. Shao, X. Zhen, X. He, Local feature discriminant projection, IEEE Trans.
Pattern Anal. Mach. Intell. 38 (9) (2016) 1908-1914.

[15] B. Raducanu, F. Dornaika, A supervised non-linear dimensionality reduction
approach for manifold learning, Pattern Recognit. 45 (6) (2012) 2432-2444.

[16] Y. Bengio, J.F. Paiement, P. Vincent, O. Delalleau, N. Le Roux, M. Ouimet, Out-
-of-sample extensions for LLE, ISOMAP, MDS, Eigenmaps, and Spectral Cluster-
ing, in: Adv. Neural Inf. Process. Syst., 2004, pp. 177-184.

[17] H. Qiao, P. Zhang, D. Wang, B. Zhang, An explicit nonlinear mapping for mani-
fold learning, IEEE T. Cybernetics 43 (1) (2013) 51-63.

[18] G.H. Chen, C. Wachinger, P. Golland, Sparse projections of medical images onto
manifolds, in: Proc. 23rd Int. Conf. Inf. Proc. Medical Imag., 2013, pp. 292-303.

[19] B. Peherstorfer, D. Pfliiger, HJ. Bungartz, A sparse-grid-based out-of-sample ex-
tension for dimensionality reduction and clustering with laplacian eigenmaps,
in: Proc. 24th Australasian Joint Conf. Advances in Artificial Intelligence, 2011,
pp. 112-121.

[20] E. Vural, C. Guillemot, Out-of-sample generalizations for supervised manifold
learning for classification, IEEE Trans. Image Process. 25 (3) (2016) 1410-1424.

[21] E. Vural, C. Guillemot, A study of the classification of low-dimensional data
with supervised manifold learning, J. Mach. Learn. Res. 18 (157) (2018) 1-55.

[22] H. Chen, H. Chang, T. Liu, Local discriminant embedding and its variants, in:
IEEE Computer Society Conf. Computer Vision and Pattern Recognition, 2005,
pp. 846-853.

[23] A. Maronidis, A. Tefas, 1. Pitas, Subclass graph embedding and a marginal fisher
analysis paradigm, Pattern Recognit 48 (12) (2015) 4024-4035.

[24] Q. Gao, J. Ma, H. Zhang, X. Gao, Y. Liu, Stable orthogonal local discriminant
embedding for linear dimensionality reduction, IEEE Trans. Image Proc. 22 (7)
(2013) 2521-2531.

[25] M. Yu, L. Shao, X. Zhen, X. He, Local feature discriminant projection, IEEE Trans.
Pattern Anal. Mach. Intell. 38 (9) (2016) 1908-1914.


http://refhub.elsevier.com/S0031-3203(18)30352-2/sbref0001
http://refhub.elsevier.com/S0031-3203(18)30352-2/sbref0001
http://refhub.elsevier.com/S0031-3203(18)30352-2/sbref0001
http://refhub.elsevier.com/S0031-3203(18)30352-2/sbref0001
http://refhub.elsevier.com/S0031-3203(18)30352-2/sbref0002
http://refhub.elsevier.com/S0031-3203(18)30352-2/sbref0002
http://refhub.elsevier.com/S0031-3203(18)30352-2/sbref0002
http://refhub.elsevier.com/S0031-3203(18)30352-2/sbref0003
http://refhub.elsevier.com/S0031-3203(18)30352-2/sbref0003
http://refhub.elsevier.com/S0031-3203(18)30352-2/sbref0003
http://refhub.elsevier.com/S0031-3203(18)30352-2/sbref0004
http://refhub.elsevier.com/S0031-3203(18)30352-2/sbref0004
http://refhub.elsevier.com/S0031-3203(18)30352-2/sbref0004
http://refhub.elsevier.com/S0031-3203(18)30352-2/sbref0005
http://refhub.elsevier.com/S0031-3203(18)30352-2/sbref0005
http://refhub.elsevier.com/S0031-3203(18)30352-2/sbref0005
http://refhub.elsevier.com/S0031-3203(18)30352-2/sbref0006
http://refhub.elsevier.com/S0031-3203(18)30352-2/sbref0006
http://refhub.elsevier.com/S0031-3203(18)30352-2/sbref0006
http://refhub.elsevier.com/S0031-3203(18)30352-2/sbref0007
http://refhub.elsevier.com/S0031-3203(18)30352-2/sbref0007
http://refhub.elsevier.com/S0031-3203(18)30352-2/sbref0008
http://refhub.elsevier.com/S0031-3203(18)30352-2/sbref0008
http://refhub.elsevier.com/S0031-3203(18)30352-2/sbref0008
http://refhub.elsevier.com/S0031-3203(18)30352-2/sbref0008
http://refhub.elsevier.com/S0031-3203(18)30352-2/sbref0008
http://refhub.elsevier.com/S0031-3203(18)30352-2/sbref0009
http://refhub.elsevier.com/S0031-3203(18)30352-2/sbref0009
http://refhub.elsevier.com/S0031-3203(18)30352-2/sbref0009
http://refhub.elsevier.com/S0031-3203(18)30352-2/sbref0009
http://refhub.elsevier.com/S0031-3203(18)30352-2/sbref0010
http://refhub.elsevier.com/S0031-3203(18)30352-2/sbref0010
http://refhub.elsevier.com/S0031-3203(18)30352-2/sbref0010
http://refhub.elsevier.com/S0031-3203(18)30352-2/sbref0010
http://refhub.elsevier.com/S0031-3203(18)30352-2/sbref0011
http://refhub.elsevier.com/S0031-3203(18)30352-2/sbref0011
http://refhub.elsevier.com/S0031-3203(18)30352-2/sbref0011
http://refhub.elsevier.com/S0031-3203(18)30352-2/sbref0011
http://refhub.elsevier.com/S0031-3203(18)30352-2/sbref0011
http://refhub.elsevier.com/S0031-3203(18)30352-2/sbref0012
http://refhub.elsevier.com/S0031-3203(18)30352-2/sbref0012
http://refhub.elsevier.com/S0031-3203(18)30352-2/sbref0012
http://refhub.elsevier.com/S0031-3203(18)30352-2/sbref0013
http://refhub.elsevier.com/S0031-3203(18)30352-2/sbref0013
http://refhub.elsevier.com/S0031-3203(18)30352-2/sbref0013
http://refhub.elsevier.com/S0031-3203(18)30352-2/sbref0014
http://refhub.elsevier.com/S0031-3203(18)30352-2/sbref0014
http://refhub.elsevier.com/S0031-3203(18)30352-2/sbref0014
http://refhub.elsevier.com/S0031-3203(18)30352-2/sbref0014
http://refhub.elsevier.com/S0031-3203(18)30352-2/sbref0014
http://refhub.elsevier.com/S0031-3203(18)30352-2/sbref0015
http://refhub.elsevier.com/S0031-3203(18)30352-2/sbref0015
http://refhub.elsevier.com/S0031-3203(18)30352-2/sbref0015
http://refhub.elsevier.com/S0031-3203(18)30352-2/sbref0016
http://refhub.elsevier.com/S0031-3203(18)30352-2/sbref0016
http://refhub.elsevier.com/S0031-3203(18)30352-2/sbref0016
http://refhub.elsevier.com/S0031-3203(18)30352-2/sbref0016
http://refhub.elsevier.com/S0031-3203(18)30352-2/sbref0016
http://refhub.elsevier.com/S0031-3203(18)30352-2/sbref0016
http://refhub.elsevier.com/S0031-3203(18)30352-2/sbref0016
http://refhub.elsevier.com/S0031-3203(18)30352-2/sbref0017
http://refhub.elsevier.com/S0031-3203(18)30352-2/sbref0017
http://refhub.elsevier.com/S0031-3203(18)30352-2/sbref0017
http://refhub.elsevier.com/S0031-3203(18)30352-2/sbref0017
http://refhub.elsevier.com/S0031-3203(18)30352-2/sbref0017
http://refhub.elsevier.com/S0031-3203(18)30352-2/sbref0018
http://refhub.elsevier.com/S0031-3203(18)30352-2/sbref0018
http://refhub.elsevier.com/S0031-3203(18)30352-2/sbref0018
http://refhub.elsevier.com/S0031-3203(18)30352-2/sbref0018
http://refhub.elsevier.com/S0031-3203(18)30352-2/sbref0019
http://refhub.elsevier.com/S0031-3203(18)30352-2/sbref0019
http://refhub.elsevier.com/S0031-3203(18)30352-2/sbref0019
http://refhub.elsevier.com/S0031-3203(18)30352-2/sbref0019
http://refhub.elsevier.com/S0031-3203(18)30352-2/sbref0020
http://refhub.elsevier.com/S0031-3203(18)30352-2/sbref0020
http://refhub.elsevier.com/S0031-3203(18)30352-2/sbref0020
http://refhub.elsevier.com/S0031-3203(18)30352-2/sbref0021a
http://refhub.elsevier.com/S0031-3203(18)30352-2/sbref0021a
http://refhub.elsevier.com/S0031-3203(18)30352-2/sbref0021a
http://refhub.elsevier.com/S0031-3203(18)30352-2/sbref0021
http://refhub.elsevier.com/S0031-3203(18)30352-2/sbref0021
http://refhub.elsevier.com/S0031-3203(18)30352-2/sbref0021
http://refhub.elsevier.com/S0031-3203(18)30352-2/sbref0021
http://refhub.elsevier.com/S0031-3203(18)30352-2/sbref0022
http://refhub.elsevier.com/S0031-3203(18)30352-2/sbref0022
http://refhub.elsevier.com/S0031-3203(18)30352-2/sbref0022
http://refhub.elsevier.com/S0031-3203(18)30352-2/sbref0022
http://refhub.elsevier.com/S0031-3203(18)30352-2/sbref0023
http://refhub.elsevier.com/S0031-3203(18)30352-2/sbref0023
http://refhub.elsevier.com/S0031-3203(18)30352-2/sbref0023
http://refhub.elsevier.com/S0031-3203(18)30352-2/sbref0023
http://refhub.elsevier.com/S0031-3203(18)30352-2/sbref0023
http://refhub.elsevier.com/S0031-3203(18)30352-2/sbref0023
http://refhub.elsevier.com/S0031-3203(18)30352-2/sbref0024
http://refhub.elsevier.com/S0031-3203(18)30352-2/sbref0024
http://refhub.elsevier.com/S0031-3203(18)30352-2/sbref0024
http://refhub.elsevier.com/S0031-3203(18)30352-2/sbref0024
http://refhub.elsevier.com/S0031-3203(18)30352-2/sbref0024

66 C. Ornek, E. Vural/Pattern Recognition 87 (2019) 55-66

[26] S. Chen, ]. Wang, C. Liu, B. Luo, Two-dimensional discriminant locality pre-
serving projection based on l11-norm maximization, Pattern Rec. Let. 87 (2017)
147-154.

[27] S. Zhang, Enhanced supervised locally linear embedding, Pattern Recognit. Lett.
30 (13) (2009) 1208-1218.

[28] Y. Pang, A.T.B. Jin, ES. Abas, Neighbourhood preserving discriminant embed-
ding in face recognition, J. Visual Com. Image Rep. 20 (8) (2009) 532-542.

[29] X. He, D. Cai, S. Yan, H. Zhang, Neighborhood preserving embedding, in: 10th
IEEE Int. Conf. Computer Vision, 2005, pp. 1208-1213.

[30] Y. Liy, Y. Liu, K.C.C. Chan, K.A. Hua, Hybrid manifold embedding, IEEE Trans.
Neural Netw. Learning Syst. 25 (12) (2014) 2295-2302.

[31] Y. Zhou, S. Sun, Manifold partition discriminant analysis, IEEE Trans. Cybern.
47 (4) (2017) 830-840.

[32] F. Dornaika, B. Raducanu, Out-of-sample embedding for manifold learning ap-
plied to face recognition, in: [EEE Conf. Computer Vision and Pattern Recogni-
tion, CVPR Workshop, 2013, pp. 862-868.

[33] C. Orsenigo, C. Vercellis, Kernel ridge regression for out-of-sample mapping in
supervised manifold learning, Expert Syst. Appl. 39 (9) (2012) 7757-7762.

[34] B. Scholkopf, AJ. Smola, K.R. Miiller, Kernel principal component analysis, in:
7th Int. Conf. Artificial Neural Networks, 1997, pp. 583-588.

[35] G. Baudat, F. Anouar, Generalized discriminant analysis using a kernel ap-
proach, Neural Comput. 12 (10) (2000) 2385-2404.

[36] ER. Bach, M.I. I. Jordan, Kernel independent component analysis, J. Mach.
Learn. Res. 3 (2002) 1-48.

[37] M. Belkin, P. Niyogi, V. Sindhwani, Manifold regularization: a geometric frame-
work for learning from labeled and unlabeled examples, J. Mach. Lear. Res. 7
(2006) 2399-2434.

[38] N. Aronszajn, Theory of reproducing kernels, Trans. Am. Math. Soc. 68 (3)
(1950) 337-404.

[39] G. Dai, D.Y. Yeung, Kernel selection for semi-supervised kernel machines, in:
Prof. 24th Int. Conf. Machine Learning, 2007, pp. 185-192.

[40] A. Argyriou, M. Herbster, M. Pontil, Combining graph laplacians for semi-su-
pervised learning, in: Advances in Neural Information Processing Systems 18,
2005, pp. 67-74.

[41] A. Nazarpour, P. Adibi, Two-stage multiple kernel learning for supervised di-
mensionality reduction, Pattern Recognit. 48 (5) (2015) 1854-1862.

[42] S. Vajda, K.C. Santosh, A fast k-nearest neighbor classifier using unsupervised
clustering, in: Int. Conf. Recent Trends in Image Proc. and Pattern Rec., 2016,
pp. 185-193.

[43] BJ.C. Baxter, The interpolation theory of radial basis functions Ph.D. thesis,
Cambridge University, Trinity College, 1992.

[44] C. Piret, Analytical and numerical advances in radial basis functions Ph.D. the-
sis, University of Colorado, 2007.

[45] C. Ornek, E. Vural, Nonlinear supervised dimensionality reduction via smooth
regular embeddings. [Online]. Available:. arXiv:1710.07120 2018.

[46] A.S. Georghiades, P.N. Belhumeur, D.J. Kriegman, From few to many: illumina-
tion cone models for face recognition under variable lighting and pose, IEEE
Trans. Pattern Anal. Mach. Intelligence 23 (6) (2001) 643-660.

[47] S.A. Nene, S.K. Nayar, H. Murase, Columbia Object Image Library (COIL-20),
Technical Report, 1996.

[48] F. Samaria, A. Harter, Parameterisation of a stochastic model for human face
identification, in: Proc. 2nd IEEE Workshop on Appl. Comp. Vision, 1994,
pp. 138-142.

[49] CE. Thomaz, G.A. Giraldi, A new ranking method for principal components
analysis and its application to face image analysis, Image Vis. Comput. 28 (6)
(2010) 902-913.

[50] Robotics CSIE database for face detection, Available: http://robotics.csie.ncku.
edu.tw/Databases/FaceDetect_PoseEstimate.htm.

[51] MIT-CBCL face recognition database, Available:
software-datasets/heisele/facerecognition-database.html.

[52] M.R. Bouguelia, S. Nowaczyk, K.C. Santosh, A. Verikas, Agreeing to disagree:
active learning with noisy labels without crowdsourcing, Int. J. Mach. Learn.
Cybern. 9 (8) (2018) 1307-1319.

[53] S. Candemir, E. Borovikov, K.C. Santosh, S.K. Antani, G.R. Thoma, RSILC: Rota-
tion- and scale-invariant, line-based color-aware descriptor, Image Vis. Com-
put. 42 (2015) 1-12.

http://cbcl.mit.edu/

Cem Ornek got his B.S. degree in Electrical and Electronics Engineering in 2014
from Hacettepe University, Ankara, Turkey. He got his M.S. degree in Electrical and
Electronics Engineering from Middle East Technical University, Ankara, Turkey in
2018. His research areas are signal processing and machine learning.

Elif Vural got her B.S. degrees in Electrical and Electronics Engineering and in
Mathematics in 2006, and her M.S. degree in 2008 from Middle East Technical
University (METU) in Turkey. She got her Ph.D. degree from Ecole Polytechnique
Fédérale de Lausanne in Switzerland in 2013, after which she worked as a post-
doctoral researcher at INRIA Rennes, France until 2015. She has been an assistant
professor at METU since 2015. Her research lies in the intersection of signal pro-
cessing and machine learning, and mainly focuses on the analysis of data with low-
dimensional models.


http://refhub.elsevier.com/S0031-3203(18)30352-2/sbref0025
http://refhub.elsevier.com/S0031-3203(18)30352-2/sbref0025
http://refhub.elsevier.com/S0031-3203(18)30352-2/sbref0025
http://refhub.elsevier.com/S0031-3203(18)30352-2/sbref0025
http://refhub.elsevier.com/S0031-3203(18)30352-2/sbref0025
http://refhub.elsevier.com/S0031-3203(18)30352-2/sbref0026
http://refhub.elsevier.com/S0031-3203(18)30352-2/sbref0026
http://refhub.elsevier.com/S0031-3203(18)30352-2/sbref0027
http://refhub.elsevier.com/S0031-3203(18)30352-2/sbref0027
http://refhub.elsevier.com/S0031-3203(18)30352-2/sbref0027
http://refhub.elsevier.com/S0031-3203(18)30352-2/sbref0027
http://refhub.elsevier.com/S0031-3203(18)30352-2/sbref0028
http://refhub.elsevier.com/S0031-3203(18)30352-2/sbref0028
http://refhub.elsevier.com/S0031-3203(18)30352-2/sbref0028
http://refhub.elsevier.com/S0031-3203(18)30352-2/sbref0028
http://refhub.elsevier.com/S0031-3203(18)30352-2/sbref0028
http://refhub.elsevier.com/S0031-3203(18)30352-2/sbref0029
http://refhub.elsevier.com/S0031-3203(18)30352-2/sbref0029
http://refhub.elsevier.com/S0031-3203(18)30352-2/sbref0029
http://refhub.elsevier.com/S0031-3203(18)30352-2/sbref0029
http://refhub.elsevier.com/S0031-3203(18)30352-2/sbref0029
http://refhub.elsevier.com/S0031-3203(18)30352-2/sbref0030
http://refhub.elsevier.com/S0031-3203(18)30352-2/sbref0030
http://refhub.elsevier.com/S0031-3203(18)30352-2/sbref0030
http://refhub.elsevier.com/S0031-3203(18)30352-2/sbref0031
http://refhub.elsevier.com/S0031-3203(18)30352-2/sbref0031
http://refhub.elsevier.com/S0031-3203(18)30352-2/sbref0031
http://refhub.elsevier.com/S0031-3203(18)30352-2/sbref0032
http://refhub.elsevier.com/S0031-3203(18)30352-2/sbref0032
http://refhub.elsevier.com/S0031-3203(18)30352-2/sbref0032
http://refhub.elsevier.com/S0031-3203(18)30352-2/sbref0033
http://refhub.elsevier.com/S0031-3203(18)30352-2/sbref0033
http://refhub.elsevier.com/S0031-3203(18)30352-2/sbref0033
http://refhub.elsevier.com/S0031-3203(18)30352-2/sbref0033
http://refhub.elsevier.com/S0031-3203(18)30352-2/sbref0034
http://refhub.elsevier.com/S0031-3203(18)30352-2/sbref0034
http://refhub.elsevier.com/S0031-3203(18)30352-2/sbref0034
http://refhub.elsevier.com/S0031-3203(18)30352-2/sbref0035
http://refhub.elsevier.com/S0031-3203(18)30352-2/sbref0035
http://refhub.elsevier.com/S0031-3203(18)30352-2/sbref0035
http://refhub.elsevier.com/S0031-3203(18)30352-2/sbref0036
http://refhub.elsevier.com/S0031-3203(18)30352-2/sbref0036
http://refhub.elsevier.com/S0031-3203(18)30352-2/sbref0036
http://refhub.elsevier.com/S0031-3203(18)30352-2/sbref0036
http://refhub.elsevier.com/S0031-3203(18)30352-2/sbref0037
http://refhub.elsevier.com/S0031-3203(18)30352-2/sbref0037
http://refhub.elsevier.com/S0031-3203(18)30352-2/sbref0038
http://refhub.elsevier.com/S0031-3203(18)30352-2/sbref0038
http://refhub.elsevier.com/S0031-3203(18)30352-2/sbref0038
http://refhub.elsevier.com/S0031-3203(18)30352-2/sbref0039
http://refhub.elsevier.com/S0031-3203(18)30352-2/sbref0039
http://refhub.elsevier.com/S0031-3203(18)30352-2/sbref0039
http://refhub.elsevier.com/S0031-3203(18)30352-2/sbref0039
http://refhub.elsevier.com/S0031-3203(18)30352-2/sbref0040
http://refhub.elsevier.com/S0031-3203(18)30352-2/sbref0040
http://refhub.elsevier.com/S0031-3203(18)30352-2/sbref0040
http://refhub.elsevier.com/S0031-3203(18)30352-2/sbref0041
http://refhub.elsevier.com/S0031-3203(18)30352-2/sbref0041
http://refhub.elsevier.com/S0031-3203(18)30352-2/sbref0041
http://refhub.elsevier.com/S0031-3203(18)30352-2/sbref0042
http://refhub.elsevier.com/S0031-3203(18)30352-2/sbref0042
http://refhub.elsevier.com/S0031-3203(18)30352-2/sbref0043
http://refhub.elsevier.com/S0031-3203(18)30352-2/sbref0043
http://arxiv.org/abs/1710.07120
http://refhub.elsevier.com/S0031-3203(18)30352-2/sbref0044
http://refhub.elsevier.com/S0031-3203(18)30352-2/sbref0044
http://refhub.elsevier.com/S0031-3203(18)30352-2/sbref0044
http://refhub.elsevier.com/S0031-3203(18)30352-2/sbref0044
http://refhub.elsevier.com/S0031-3203(18)30352-2/sbref0045
http://refhub.elsevier.com/S0031-3203(18)30352-2/sbref0045
http://refhub.elsevier.com/S0031-3203(18)30352-2/sbref0045
http://refhub.elsevier.com/S0031-3203(18)30352-2/sbref0045
http://refhub.elsevier.com/S0031-3203(18)30352-2/sbref0046
http://refhub.elsevier.com/S0031-3203(18)30352-2/sbref0046
http://refhub.elsevier.com/S0031-3203(18)30352-2/sbref0046
http://refhub.elsevier.com/S0031-3203(18)30352-2/sbref0047
http://refhub.elsevier.com/S0031-3203(18)30352-2/sbref0047
http://refhub.elsevier.com/S0031-3203(18)30352-2/sbref0047
http://robotics.csie.ncku.edu.tw/Databases/FaceDetect_PoseEstimate.htm
http://cbcl.mit.edu/software-datasets/heisele/facerecognition-database.html
http://refhub.elsevier.com/S0031-3203(18)30352-2/sbref0048
http://refhub.elsevier.com/S0031-3203(18)30352-2/sbref0048
http://refhub.elsevier.com/S0031-3203(18)30352-2/sbref0048
http://refhub.elsevier.com/S0031-3203(18)30352-2/sbref0048
http://refhub.elsevier.com/S0031-3203(18)30352-2/sbref0048
http://refhub.elsevier.com/S0031-3203(18)30352-2/sbref0049
http://refhub.elsevier.com/S0031-3203(18)30352-2/sbref0049
http://refhub.elsevier.com/S0031-3203(18)30352-2/sbref0049
http://refhub.elsevier.com/S0031-3203(18)30352-2/sbref0049
http://refhub.elsevier.com/S0031-3203(18)30352-2/sbref0049
http://refhub.elsevier.com/S0031-3203(18)30352-2/sbref0049

	Nonlinear supervised dimensionality reduction via smooth regular embeddings
	1 Introduction
	2 Related work
	2.1 Unsupervised manifold learning
	2.2 Supervised manifold learning
	2.3 Continuous embeddings via nonlinear functions

	3 Theoretical bounds in supervised manifold learning
	4 Proposed nonlinear supervised smooth embedding method
	4.1 Formulation of the manifold learning problem
	4.2 Proposed manifold learning algorithm
	4.3 Complexity of the proposed algorithm

	5 Experimental results
	5.1 Data sets and experimentation setting
	5.2 Study of the iterative optimization procedure
	5.3 Variation of the classification performance with the embedding dimension
	5.4 Overall comparison with several classification methods

	6 Conclusion
	 References


