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a b s t r a c t 

In this work, the issue of depth filling is addressed using a self-supervised feature learning model that 

predicts missing depth pixel values based on the context and structure of the scene. A fully-convolutional 

generative model is conditioned on the available depth information and full RGB colour information from 

the scene and trained in an adversarial fashion to complete scene depth. Since ground truth depth is not 

readily available, synthetic data is instead used with a separate model developed to predict where holes 

would appear in a sensed (non-synthetic) depth image based on the contents of the RGB image. The 

resulting synthetic data with realistic holes is utilized in training the depth filling model which makes 

joint use of a reconstruction loss which employs the Discrete Cosine Transform for more realistic out- 

puts, an adversarial loss which measures the distribution distances via the Wasserstein metric and a 

bottleneck feature loss that aids in better contextual feature execration. Additionally, the model is adver- 

sarially adapted to perform well on naturally-obtained data with no available ground truth. Qualitative 

and quantitative evaluations demonstrate the efficacy of the approach compared to contemporary depth 

filling techniques. The strength of the feature learning capabilities of the resulting deep network model 

is also demonstrated by performing the task of monocular depth estimation using our pre-trained depth 

hole filling model as the initialization for subsequent transfer learning. 

© 2019 Elsevier Ltd. All rights reserved. 
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1. Introduction 

The world is visually diverse, irregular and contrastingly struc-

tured at the same time. Three-dimensional scenes containing

depth information are highly applicable within visual systems such

as autonomous driving, augmented reality, environment modelling

and alike. Moreover, recent achievements in depth capture tech-

nologies, including time-of-flight cameras, stereo correspondence

and structured light devices, have made depth accessible in any

scene understanding process. However, complete (hole-free) scene

depth cannot be acquired facilely using commercial devices and

even high-performance depth sensing solutions suffer from a range

of environmental noise issues that preclude the recovery of hole-

free scene depth under all conditions. This work is an exploration

into whether a state-of-the-art learning based approach is capable

of understanding the structures and intricacies of a scene, just as

humans are, to predict the missing parts of scene depth as a stan-

dalone real-time portion of any visual system. 
∗ Corresponding author. 
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Image completion is considered challenging as it is inherently

ll-posed. RGB completion approaches can achieve plausible results,

sing either local or non-local information [1–5] . However, due to

he differences between depth and colour images (e.g., absence of

ranular texture, object separation, and in-scene transferability of

arying depth sub-regions), conventional colour image inpainting

s considerably less effective within the depth modality [6] . 

Some depth filling techniques leverage classic image inpainting

pproaches to complete depth [7] . There have also been attempts

o fill a target region in one of a set of multi-view photographs

8] , to fill depth using exemplar-based image completion [9] , and a

yriad of approaches utilizing filters [10] , temporal-based methods

11] , reconstruction-based methods [12] , and others [13–15] . 

Deep neural networks have recently been successfully utilized

or image stylization [16,17] , super-resolution [18–20] , and col-

rization [21] . In the realm of image completion, Pathak et al.

22] propose a context encoder which can predict missing regions

n a colour image using an adversarial [23] and a reconstruction

oss ( � 2 ). Although the model produces promising results, the ab-

ence of fine texture and the existence of visible artefacts near

he boundaries of the target region point to flaws in the learning

echanism within the framework. 

https://doi.org/10.1016/j.patcog.2019.02.010
http://www.ScienceDirect.com
http://www.elsevier.com/locate/patcog
http://crossmark.crossref.org/dialog/?doi=10.1016/j.patcog.2019.02.010&domain=pdf
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In a related work, Yeh et al. [24] utilize an analogous framework

ith similar loss functions to map the input image with missing

r corrupted regions to a latent vector, which in turn is passed

hrough their generator that recovers the target content. Despite

he large amount of corruption applied to the input, the model

enerates perceptually plausible outputs. Nevertheless, blurring ef-

ects and unwanted artefacts persist in spite of the low resolution

f the images. 

Yang et al. [25] propose a joint optimization framework com-

osed of two separate networks, a content encoder, based on [22] ,

hich is tasked to preserve contextual structures within the im-

ge, and a texture network, which enforces similarity of the fine

exture within and without the target region using neural patches

26] . The model is capable of completing higher resolution images

han its two earlier counterparts [22,24] but at the cost of greater

nference time since the final output is not achievable via a single

orward pass. 

Regarding depth images, advances have been made in monocu-

ar depth estimation [27–31] and depth super-resolution [32] . Here,

e utilize a generative model trained on synthetic data [33,34] to

omplete depth. Since the model is expected to synthesize large

ortions of depth, it has to adapt to learning image structures

nd semantics. In existing works on learning-based colour image

ompletion [22,24,25] , training requires large datasets. The com-

lete image is often considered as the ground truth, and the in-

ut is created by adding noise or sparse corruptions [24] , remov-

ng rectangular blocks [22,24,25] , or cutting random regions from

he image [22] . In the realm of depth filling, however, no such

arge datasets exist that contain large quantities of ground truth

hole-free) depth. Consequently, synthetic data needs to be ac-

uired from a graphically rendered virtual environment primarily

esigned for a gaming application [35] . 

Since depth holes are neither random nor manually created,

hey are predictable , in that they occur due to specific scene fea-

ures or the capture device. For instance, featureless surfaces such

s blank walls and roads, reflective objects, and depth discontinu-

ties, among others can cause depth holes. As a result of this pre-

ictability , the location of a hole occurrence can be learned via a

eparate model trained to predict where holes would be in a depth

mage based on the features present in the scene and the assump-

ion of a specific capture approach. 

When high-quality ground truth exists, a model can be naively

rained based on a simplistic reconstruction loss ( � 1 or � 2 ). How-

ver, due to the multi-modality of image completion, a model

rained in this way tends to generate the average of the multi-

le possible modes in the predictions, which results in an out-

ut containing blurring effects. This is why the techniques in

22,24,25] and other generative models [36,37] leverage adversar-

al training [23] as this assists with mode selection to generate

ealistic results. However, approaches using Generative Adversarial

etworks (GAN) [22–25] suffer from certain flaws such as unsta-

le training, difficulties in reaching an equilibrium, and vanishing

radients due to premature discriminator optimality and other is-

ues [38–40] . Here, we utilize an improved adversarial framework

39] that avoids such issues. 

t  

ig. 1. A demonstration of how the DCT makes the absolute deviations loss more susce

omain is higher and therefore a great tool to identify blurring. 
Even though an adversarial loss can help diffuse blurring ef-

ects, the goal of the adversary should be generating a more re-

listic image across the board and blurring artefacts still occasion-

lly make their way to the output. This is because the generator

eels safer averaging than selecting values. To ease the burden of

e-blurring on the adversary, we propose the addition of a loss

erm based on the Discrete Cosine Transform (DCT) in addition

o the conventional � 1 loss. The DCT preserves an accurate repre-

entation of the image structure in its spatial frequency content,

hich is why it has long been used in de-blurring [41] , compres-

ion [42] and alike. We utilize the absolute deviations loss ( � 1 ) in

he frequency domain, as this error is far more obvious when the

CT is applied to a blurry averaged image. As seen in Fig. 1 , the � 1 
istance between the original image and the blurry image, both in

he spatial domain, is not very large, but when the same images

re transformed into the frequency domain using the DCT, the � 1 
rror is much larger and therefore a better indicator of blurring

ffects. 

The task of our generator consists of two stages: reducing the

nput into a compact representation of itself in the feature space

encoding) and reconstructing the image from these compact

eatures (decoding). Up-convolutions, of any kind, are fraught

ith intrinsic unpredictability and can lead to bad salient edges

nd absence of fine texture. As a result, ensuring that the recon-

truction starts from a correct and viable feature representation

s paramount. We use the feature representations produced in

he generator bottleneck in our loss to make sure the scene

epresentation is correctly captured before reconstruction. While

he sole use of this as a loss function is inadvisable and can lead

o high-frequency artefacts, it is a helpful complement to the

econstruction and adversarial losses. 

Our approach is meant to fill holes in depth images acquired

ia commercially and computationally inexpensive tools (a stereo

amera and established stereo correspondence approaches such

s [43,44] ) and not in pixel-perfect synthetic depth images only.

herefore, as part of our training procedure, it is vital to guide

he model toward capturing the distribution of the natural data.

ith this in mind, a domain transfer network is trained within

he framework to rectify the model such that real-world images

an be viable inputs during inference. In short, the contributions

f our work are as follows: 

• Novelty - no comparable approach utilizes a generative model

using the Earth Mover’s distance to complete depth via the Dis-

crete Cosine Transform based on a synthetic training corpus

with predicted holes. 
• Accuracy - the approach is far more efficient and accurate

than comparators (conventional image completion techniques) 

within a side-by-side comparison framework ( Tables 2 and 3 ;

Figs. 10 and 11 ). 
• Representation Learning - our model is capable of learning bet-

ter semantics and context as illustrated by superior sharp and

artefact-free qualitative outputs when performing monocular 

depth estimation ( Figs. 12 and 13 ). 

In the following section, we present an overview of the litera-

ure relevant to this work. Section 3 provides a discussion on the
ptible to blurring. Note that the � 1 distance between the images in the frequency 
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data preparation process and Section 4 contains a detailed out-

line of the proposed hole filling approach. Results are evaluated in

Section 5 and the work is finally concluded in Section 6 . 

2. Related work 

There have recently been remarkable strides made in complex

learning-based computer vision problems such as image classifi-

cation [45–50] , semantic segmentation [51–53] , and image genera-

tion [23,36,38,39,54–56] . Inspired by the capabilities of recent gen-

erative models [22,23,36,38,39] , we attempt to complete depth im-

ages by learning the details of a scene. 

Generative Adversarial Networks (GAN) have revolutionized the

field and are capable of producing semantically sound samples by

creating a competition between a generator ( G ), which endeav-

ours to capture the data distribution, and a discriminator ( Dis ),

which judges the generator output and penalizes unrealistic im-

ages. Both networks are trained simultaneously to achieve an equi-

librium. More formally put, this competition follows the minimax

objective [23] : 

min 

G 
max 

Dis 
E 

x ∼P r 

[ log(Dis (x ))] + E 

˜ x ∼P g 

[ log(1 − Dis ( ̃  x ))] , (1)

where P r is the data distribution, P g is the model distribution de-

fined by ˜ x = G (z) , z ∼ p(z) , with z being the random noise vector

used as the generator input. 

Training a GAN is rife with instability and potential issues [40] ,

one of which is that the discriminator can rapidly reach optimal-

ity and easily distinguish between generator outputs and samples

from the real distribution, and hence, will not produce meaning-

ful gradients for training. In [38] , the Earth Mover’s distance (EM)

or Wasserstein-1 metric is used to measure the distance between

two distributions. The EM distance, EM ( p, q ), is the minimum cost

of moving distribution elements (earth mass) to transform a distri-

bution q to distribution p (cost = mass × transport distance) and

the Wasserstein GAN [38] has an aptly named “critic” ( C ) instead

of the conventional discriminator since it is no longer a classifier.

Using the EM distance, the critic will not solely judge whether a

sample is fake or real as a discrete binary decision, but how real or

how fake the generated sample is as a continuous regressive out-

put. The critic will converge to a linear function with ever-present

meaningful gradients and cannot saturate. The loss in the Wasser-

stein GAN is created via the Kantorovich-Rubinstein duality [38] :

min 

G 
max 
C∈F E 

x ∼P r 

[ C(x )] − E 

˜ x ∼P g 

[ C( ̃  x )] , (2)
Fig. 2. A demonstration of modelling two separate data domain distributions via doma

capture the target data distribution (red) using domain adaptation. (For interpretation o

version of this article.) 
here F is the set of 1-Lipschitz functions, P r the true distribu-

ion, P g the model distribution defined by ˜ x = G (z) , z ∼ p(z) , and z

andom noise. If C is optimal, minimizing the value function with

espect to G minimizes EM(P r , P g ) . 

The Wasserstein GAN does not suffer from vanishing gradients

nd is immune to mode collapse. However, to guarantee continu-

ty, a Lipschitz constraint must be enforced, which is achieved in

38] by clamping the weights. This creates a new clamping hyper-

arameter, which needs to be carefully tuned to the distribution.

 gradient norm penalty with respect to the critic input is pro-

osed in [39] to replace clamping. Since a differentiable function

s 1-Lipschitz if and only if its gradient norm is no more than 1

verywhere, Gulrajani et al. [39] limits the critic gradient norm by

enalizing the function on the gradient norm for samples ˆ x ∼ P ˆ x ,

here ˆ x = εx + (1 − ε) ̃ x , 0 < ε < 1 . The new loss is therefore as

ollows [39] : 

in 

G 
max 

C 
E 

˜ x ∼P g 

[ C( ̃  x )] − E 

x ∼P r 

[ C(x )] + λ E 

ˆ x ∼P ˆ x 

[(|| � ˆ x C( ̂  x ) || 2 − 1) 2 ] , (3)

here P g is the model distribution defined by ˜ x = G (z) , z ∼ p(z) ,

ith z being the random noise vector, P r is the true data dis-

ribution, and P ˆ x is implicitly defined to sample uniformly along

traight lines between pairs of points sampled from P r and P g [39] .

ere, we use the same critic for our adversarial loss. 

In this work, our model is trained on a synthetic dataset of

GB-D images to perform depth filling. However, due to dataset

ias [57] , a model trained using data from a specific domain does

ot necessarily generalize to other data domains. In other words,

 model trained on synthetic data may not perform well on real-

orld data. Therefore, our model may not succeed with naturally

btained depth images, which would make it utterly useless from

 practical standpoint. 

While the typical solution to this problem is to fine-tune the

etwork on the novel data, fitting the large number of parameters

n a deep network to a new dataset requires a large amount of

ata, which can be very time-consuming, expensive, or intractable

o obtain. This is often the reason why synthetic data is used in

he first place, as it is in our case. One strategy often to solve the

roblem is to minimize the distance between the source and tar-

et feature distributions [58,59] . Fig. 2 demonstrates how domain

daptation can aid in modelling the distribution of both the source

omain (represented in blue), used for training the model, and the

arget domain (represented in red), which is the focus of the fi-

al objective. Using domain transfer, both distributions can be cap-

ured within the model even if the model is only trained on one

f them. 
in transfer. A model only trained on samples from the source domain (blue) can 

f the references to colour in this figure legend, the reader is referred to the web 
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Table 1 

Statistical accuracy of hole prediction over an unseen test set of 50 0 0 exam- 

ples images. 

Model Class label Overall performance 

Hole Non-hole Class average Global average 

Hole prediction 90.31 92.88 91.55 91.83 
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Some approaches have taken advantage of MMD (maximum

ean discrepancy) which calculates the norm of the distance be-

ween the domains to reduce the discrepancy [60] , whereas oth-

rs have taken to using adversarial training which leads to a rep-

esentation that minimizes the domain discrepancy while able to

iscriminate the source labels easily [59] . Although most of the

bove-mentioned techniques focus on discriminative models, re-

earch concentrating on generative tasks has also utilized domain

daptation [61] . 

We propose a domain critic network, which uses the Wasser-

tein metric to measure the distance between the source (synthetic

ata) and the target (real-world data) and minimizes this differ-

nce by comparing the generator outputs when synthetic and real-

orld images are used as the input, while the generator is simulta-

eously trained to fill synthetic holes using synthetic ground truth.

urther details of the inner-workings of the proposed approach are

xplained in Section 4 . 

. Data preparation 

In a supervised learning approach, ground truth labels are re-

uired during training. Since the objective here is to fill depth

oles, ground truth hole-free depth is required. However, obtain-

ng complete depth from the real world is not practically possible.

onsequently, we use synthetic data acquired from a graphically

endered gaming environment focusing on driving scenarios, akin

o [35] . 

Necessary steps were taken to avoid dataset bias. Co-registered

olour and depth images are captured from a camera view set in

ront of a virtual car as it automatically drives. An image is cap-

ured every 60 frames as the height and field of view of the cam-

ra are randomly changed after every capture. The process is car-

ied out in numerous weather and lighting conditions at different

imes of day to avoid any possible model over-fitting. A total of

30,0 0 0 images were captured with 10 0,0 0 0 used for training and

0,0 0 0 set aside for testing. 

During training, depth images are used as ground truth but cor-

upted depth images (with holes) of the same scenes are required

s inputs. Rather than randomly cutting out sections of the im-

ge, we opt for creating realistic holes with the characteristics of

hose found in real-world depth images, which occur in stereo cor-

espondence due to the existence of featureless or shiny surfaces,

nclear object separation and distant objects, among others [6] . To

roduce these semantically meaningful holes, a separate model is

eeded to predict depth holes by means of pixel-wise classifica-

ion, e.g., [51,62] . The objective is to produce a hole mask, which

epresents regions in the depth image likely to contain holes. Since

ithin our synthetic dataset, only complete pixel-perfect depth is

vailable, simulating corrupted depth, similar to what is naturally

ensed in the real world, is important. The details of our “hole pre-

iction” stage is explained in the following. 

h

Fig. 3. An overview of the network architectur
.1. Hole prediction 

Our hole prediction model is a fully convolutional encoder-

ecoder network inspired by [45,51] with nine convolutional layers

n both the encoder and the decoder. No fully-connected layers

re used to maintain a smaller number of network parameters and

herefore, easier and faster training and inference. Every decoder

ayer corresponds to an encoder layer, with the last decoder layer

onnecting to a soft-max classifier. Each convolutional layer is

ollowed by batch normalization [63] and a ReLU. Max-pooling is

sed in the sub-sampling to produce features that are invariant

o small translational shifts in the input. In the decoder, max-

npooling [51] (which uses the recorded locations of maxima

ithin the region of each max-pooling operation) is applied to

reserve the feature structure and boundary information. The

etwork architecture is seen in Fig. 3 . 

A number of stereo images (40,0 0 0) from the KITTI dataset

64] was used to train the network by estimating the disparity

ia Semi-Global Matching (SGM) [43] and generating a hole mask

 M ) which indicates which pixels are holes i.e. regions for which

isparity was not recovered (with a value of zero) and which are

on-holes (with a value of one). Although SGM is used, this is in-

erchangeable with any depth via disparity or active depth capture

pproach. The left RGB images are used as inputs with the gen-

rated masks as ground truths. Cross-entropy is used as the loss

unction with the network weights randomly initialized. 

Our hole prediction process is self-supervised, meaning no hu-

an annotation or intervention is necessary at any point, with

he ground truth calculated using a disparity estimation approach

43] . Although this makes the ground truth for hole prediction

nreliable, consequently making any accurate quantitative analy-

es meaningless, it suits the purposes of this endeavour. However,

hen tested on a set of 50 0 0 previously-unseen images, the sta-

istical correlation to the ground truth occurrence of holes within

he image is shown to be accurate (see Table 1 ). 

Qualitative evaluations reveal that holes are predicted where

xpected. From Fig. 4 , we see that in regions where camera over-

ap is absent or featureless surfaces, sparse shrubbery, unclear ob-

ect boundaries, and very distant objects are present, such pixels

re correctly classified as holes. This model is subsequently used

o infer where the holes would be in the hole-free ground truth

ynthetic RGB-D images (discussed earlier) needed for training the

ole filling model. 
e used during the hole prediction stage. 
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Fig. 4. Examples of the hole prediction model applied to a test set of 50 0 0 images ( RGB ) from [64] . Note that featureless surfaces and sky are correctly identified as holes 

in the outputs ( Holes ). 
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4. Hole filling 

Taking advantage of the adversarial training procedures present

within the literature [38,39] , our process involves three networks:

a generator ( G ) which follows an encoder-decoder pipeline and is

tasked with generating the completed depth, an image critic ( C )

which judges the generator output in an adversarial fashion and

a domain transfer network ( D ) which provides the possibility of

applying the model (trained on synthetic data) to natural images

without ground truth depth. The interactions between all the net-

works are demonstrated in Fig. 5 . In this section, details regarding

the hole filling process are briefly outlined. 

4.1. Missing depth prediction 

Depth filling is performed by a generator with an encoder-

decoder pipeline (the only network used during inference). A syn-

thetic 4-channel RGB-D image containing holes (predicted by the

model discussed in Section 3.1 ) is used as the encoder input, which

creates a compact set of feature representations. This set of feature

representations is then passed through the decoder, creating a sin-

gle channel depth image with the missing regions filled if neces-

sary (exceptions being very distant objects and sky, for which no

valid depth should or does exist). 
Fig. 5. The general framework of the entire model. The pipeline contains a generator (the

ensure the high fidelity of the generated depth ( Section 4.2.2 ) and a domain critic to enfo

flows are shown for all components. 
For the sake of consistency, the same architecture ( Fig. 6 ) is

sed for both the hole prediction network ( Section 3.1 ) and the

enerator. Since the goal is to test the learning capabilities of the

odel, the weights are randomly initialized and training procedure

ommences from scratch. The network is fully-convolutional with

ine convolutional layers, batch normalization and max-pooling

perations ( Fig. 6 ). A large feature map of 78 × 24 × 256 is pro-

uced in the bottleneck. Many past works [22,24,25] advocate sub-

ampling the image down to a small feature map passed through

 fully-connected layer to allow for “entire image context reasoning

or each unit” [22] . We experimented with fully-connected layers

ut other than a significant increase in the number of parameters,

raining difficulty and inference time, no noticeable difference in

he quality of the results was observed. This means direct connec-

ions between different regions of a single feature map is not nec-

ssary for this task. 

During inference, after the generator outputs the completed

epth image, the regions filled by the network are blended using

he approach in [65] into the hole regions within the original hole-

idden input image to create the final results. 

.2. Loss function 

Our resulting model performs depth filling by regressing to

he ground truth depth content of the unknown regions. Using
 only network used during inference, as explained in Section 4.1 ), an image critic to 

rce generalization over real-world data ( Section 4.2.4 ). Loss functions and gradient 
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Fig. 6. Network architectures (generator, image critic and domain critic) used in the training. 
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 reconstruction loss, we ensure the filled regions are contextu-

lly sound, coherent and in accordance with the known regions.

he addition of an adversarial loss [39] results in plausible out-

uts since the adversarial framework will enforce mode selection.

o ensure robust contextual feature extraction and better encoder

raining, the distance is measured between the feature maps pro-

uced in the generator bottleneck when the depth channel of the

nput contains holes and when the ground depth is used as the in-

ut. The generator is then trained to minimize this distance. This

uarantees correct and balanced training of the encoder and the

ecoder within the generator. 

Additionally, even with perfect training, a network trained on

ynthetic data cannot be expected to perform equally well on nat-

rally sensed depth images. A domain transfer loss is consequently

sed to ensure that our approach can complete naturally sensed

epth images. A joint loss function is thus formulated consisting

f four components:- reconstruction loss ( Section 4.2.1 ), adversarial

oss ( Section 4.2.2 ), bottleneck feature loss ( Section 4.2.3 ) and do-

ain transfer loss ( Section 4.2.4 ) - each of which are subsequently

etailed. 

.2.1. Reconstruction loss 

To maintain structural continuity and semantic coherence in the

utput, a reconstruction error against the ground truth is needed.

owever, to achieve sharper and more crisp results and to ease the

urden on the adversarial image critic to enforce realism, we uti-

ize a two-term reconstruction loss. Given a ground truth depth y ,

ur generator ( G ) takes an input x , which itself is created based

n y and generates G ( x ). In this context, our hole prediction model

 Section 3.1 ) has produced a binary hole mask, M , in which 0 de-

otes an unknown region (hole) and 1 a known depth region. The

enerator input, x , is obtained as follows: 

 = y � M, (4) 

here � is the element-wise product operation. We use a masked

 1 distance as part of our reconstruction loss: 

 rec−� 1 = || (1 − M) � G (x ) − (1 − M) � y || 1 (5)

Experiments with � 2 loss returned the same results. With the

nown issues of a reconstruction loss, blurry images are often pro-

uced, which is why the use of adversarial losses is prevalent.

owever, here we add another term to our loss to partly allevi-

te the issue of blurring. Since the Discrete Cosine Transform (DCT)

an be used to encode a unique embedding of spatial image struc-

ure, avoiding the limitations of � 1 pixel space embedding ( Fig. 1 ),

he entire (unmasked) generated output G ( x ) and the ground truth

epth y both undergo the transform and the distance is measured

ithin the projected DCT space: 

 rec−dct = || DCT (G (x )) − DCT (y ) || 1 (6)

The final reconstruction loss used in this work is therefore: 

 rec = L rec−� 1 + L rec−dct (7)

Although the addition of the L rec−dct reduces blurring, the over-

ll quality of the output is still subject to issues due to the gener-

lity of the � 1 distance, ensuring an adversarial component is sub-

equently needed. 
.2.2. Adversarial loss 

Unlike most generative models, our network is conditioned on

he known regions of the depth and the entire RGB and is tasked

ith generating the full depth. Our generator approximates a func-

ion which maps samples from the noisy distribution x to the true

ata distribution y, G : x �→ y . No noise or drop-out is used and the

mage critic is not conditioned like the generator, and sees the en-

ire generator output, such that it cannot take advantage of struc-

ural discontinuities or possible differences in the overall intensi-

ies within the depth in its judgement. Therefore, it improves the

hole generator output and not just the missing regions. The ob-

ective of the image critic is hence measuring the difference (us-

ng the EM metric) between real data samples and generated ones.

iven that ˜ y = G (x ) , the objective function of the critic is: 

in 

G 
max 

C 
E 

˜ y ∼P g 

[ C( ̃  y )] − E 

y ∼P r 

[ C(y )] + λ E 

ˆ x ∼P ˆ x 

[(|| � ˆ x C( ̂  x ) || 2 − 1) 2 ] , (8)

here P g is the model distribution defined by ˜ y = G (x ) , with x be-

ng the generator input sampled from the noisy distribution, P r 

s the true data distribution, and P ˆ x is implicitly defined to sam-

le uniformly along straight lines between pairs of points sampled

rom P r and P g [39] . The generator objective is to fool the image

ritic by creating increasingly more realistic outputs and getting

loser to the true data distribution. The adversarial loss is thus as

ollows: 

 adv = max 
C 

− E 

˜ y ∼P g 

[ C( ̃  y )] , (9)

here once again, P g is the model distribution defined by ˜ y = G (x ) ,

ith x being the generator input sampled from the noisy distri-

ution. The generator and the image critic are trained iteratively

hile the critic is kept optimal at all times (in each epoch, it

s trained 25 times per each generator training iteration for the

rst 100 generator iterations and 5 times per each generator it-

ration for the rest of the training process). The critic is a fully-

onvolutional network with no batch normalization. An overview

f its architecture is seen in Fig. 6 (image critic). 

.2.3. Bottleneck feature loss 

In a typical convolutional encoder-decoder pipeline [22,51] , the

onvolutional layers in the encoder and the decoder learn inde-

endently. This can be advantageous as it provides a wide learning

omain for the network. However, convergence to optimality can

e slow and difficult. 

Since the generator needs to predict any missing depth based

n the RGB view and known depth regions, we can improve the

enerator training by making sure the encoder is creating the right

eature representation of the entire scene, and the decoder is, in

urn, starting from the best set of feature maps to produce the out-

ut. 

Using the ground truth depth as the input and comparing the

enerated bottleneck features with the features produced from the

egular input (depth with holes), we can guarantee the encoder

s rightly trained to capture the full information available in the

cene based on context and inferred geometry rather than local

ow-level scene features. As Fig. 7 demonstrates, the ground truth
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Fig. 7. A demonstration of how the bottleneck feature distance is calculated. Depth with holes (left) and ground truth depth (right) are used as inputs to the generator 

encoder. Minimizing the absolute difference between the feature maps extracted from the bottleneck is part of the objective. 
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depth is used as the input for the generator (right side of the fig-

ure) and the depth image with holes is also used as the input (left

side of the figure). The distance between such features extracted

from the generator bottleneck is then used as a component of the

loss. Subsequently, our loss includes the distance between the gen-

erated bottleneck features from the ground truth and the noisy in-

put: 

L f eat = || G encoder (x ) − G encoder (y ) || 1 (10)

In all previous loss terms, x as the input to the generator was a

4-channel RGB-D image with the depth channel containing holes

and y a single-channel hole-free depth image. In Eq. (10) , how-

ever, y is also a 4-channel RGB-D image, but the depth channel

is the ground truth depth (hole-free). For the sake of consistency,

the same notation is used in Eq. (10) . 

4.2.4. Domain transfer loss 

All the training data used here are synthetic images, yet for

the model to be practically viable, it has to perform on real-world

images. Since no naturally-obtained ground truth is available for

training, the generator is also trained to recognize natural data in

an adversarial fashion (similar to Section 4.2.2 ). 

Let all synthetic inputs (source domain) be denoted by x s with

synthetic ground truth y s . All naturally-obtained data (target do-

main) are denoted by x t . Note that there is no y t since our target

domain (naturally-sensed images) has no ground truth (hole-free)

depth. A domain critic network ( D ) is used to measure the differ-

ence (in EM distance) between the generator output when the in-

put is sampled from the source domain ( x s ) and when the input

is from the target domain x t . The gradients will be used to train

the generator and the generator is subsequently forced to model

the distribution of both the source and the target domains. Given

that ˜ y s = G (x s ) and ˜ y t = G (x t ) , the objective function of the do-

main critic is: 

min 

G 
max 

D 
E 

˜ y t ∼P t 

[ D ( ̃  y t )] − E 

y s ∼P s 

[ D ( ̃  y s )] + λ E 

ˆ x ∼P ˆ x 

[(|| � ˆ x D ( ̂  x ) || 2 − 1) 2 ] , 

(11)

where P t is the target model distribution defined by ˜ y t = G (x t ) ,

with x t being the generator input sampled from the natural data

distribution, P s is the source data distribution defined by ˜ y s =
G (x s ) , with x s being the generator input sampled from the syn-

thetic data distribution, and P ˆ x is implicitly defined to sample uni-

formly along straight lines between pairs of points from P t and P s 

[39] . 

The generator objective is to fool the domain critic by approx-

imating both domain distributions. The domain transfer loss is as

follows: 

L domT ran = max 
D 

− E 

˜ y t ∼P t 

[ D ( ̃  y t )] , (12)

where P t is the natural domain distribution defined by ˜ y t = G (x t ) ,

with x t being the generator input from natural data. The genera-

tor and the domain critic are trained iteratively while the domain

critic is always kept optimal, much like the critic in Section 4.2.2 .

The domain critic architecture is the same as the image critic, as
een in Fig. 6 . Weight sharing between the image critic and the do-

ain critic was attempted, but we could not achieve convergence

ith that setup. 

Synthetic ground truth y s does not come into play in domain

ransfer training and the model is trained on the source domain to

pproximate the data distribution (from which y s is sampled). The

omain transfer loss thus forces the generator to comprehend both

he natural and synthetic distributions. Additionally, over-training

he model using domain transfer leads to artefacts in the outputs.

hus, this term is only used in a quarter of the total number of

pochs (see Section 5.1 ). It is important to note that this loss com-

onent was originally used in the training objective of the hole

rediction network ( Section 3.1 ) as well, but with no evidence for

ny significant improvement in the output. 

.2.5. Joint loss 

Based on Eqs. (7) ( Section 4.2.1 ), (9) ( Section 4.2.2 ),

10) ( Section 4.2.3 ) and (12) ( Section 4.2.4 ), our overall joint

oss function is finally defined as: 

 = λrec L rec + λadv L adv + λ f eat L f eat + λdomT ran L domT ran (13)

The choice of the weights λrec , λadv , λfeat and λdomTran is empir-

cal. 

. Experiments 

A total of 30,0 0 0 synthetic images were used as part of the test

et. Moreover, a set of 50 0 0 locally-captured images consisting of

GB and registered depth containing holes were used for training

s part of domain critic training and subsequently used to test the

odel on real-world natural images. 

.1. Implementation details 

All network implementation and training is done in PyTorch

66] and Caffe [67] . The Adam optimization method [68] is used

or this problem (momentum β1 = 0 . 5 , β2 = 0 . 999 , and initial

earning rate α = 0 . 0 0 01 ), and the coefficients in the loss func-

ion are empirically chosen to be λrec = 100 , λadv = 0 . 01 , λ f eat =
 . 01 , λdomT ran = 0 . 01 based on a preliminary grid search with coef-

cients changing an order of magnitude between 0.01 and 100. The

etworks used in the hole filling model are trained for 20 epochs

ver the entire dataset with a batch-size of 7 images. The domain

ransfer loss, L domT ran , is used only every other epoch and only in

he last 10 epochs to avoid introducing undesirable effects in the

utputs. 

.2. Ablation study 

A crucial part of this work was interpreting the necessity of the

omponents of our loss function. The model was trained from ran-

om initialization each time after adding a single component of

he loss function. As seen in Fig. 8 , when a simple reconstruction

oss ( � 1 ) is solely used, large holes are ubiquitously filled with av-

raged blurry content (blue boxes in Fig. 8 ). The addition of the
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Fig. 8. Hole filling results when different com ponents of the loss function are added to the joint loss function. Note that the results of the full proposed approach (with all 

four components) are substantially superior. 

Table 2 

Numerical comparison of our approach, our ablated method and other hole filling methods, such 

as Fourier-based inpainting [7] (FBI), smoothing second order inpainting [14] (SSI), exemplar-based 

inpainting [3] , fast marching method [4] (FFM), guided inpainting and filtering technique [10] (GIF). 

While disparity error values are lower for more realistic images, with Peak Signal-to-Noise Ratio 

(PNSR) and Structural Similarity index (SSIM), higher values are better. 

Method Mean � 1 error Mean � 2 error PSNR (dB) SSIM ( −1 , 1 ) 

SSI [14] 5.66 ± 1.033 2.96 ± 0.512 16.04 ± 4.819 0.772 ± 0.220 

FMM [4] 2.85 ± 0.491 0.89 ± 0.198 20.66 ± 2.030 0.780 ± 0.082 

EBI [3] 2.39 ± 0.629 0.92 ± 0.091 20.65 ± 3.122 0.787 ± 0.139 

GIF [10] 2.77 ± 0.518 0.86 ± 0.068 20.78 ± 1.910 0.764 ± 0.125 

FBI [7] 2.36 ± 0.602 0.91 ± 0.105 20.67 ± 2.891 0.788 ± 0.106 

� 1 Loss Only 2.96 ± 0.489 0.28 ± 0.038 25.99 ± 2.890 0.819 ± 0.112 

� 1 + dct Loss 2.47 ± 0.422 0.19 ± 0.047 27.98 ± 2.019 0.872 ± 0.132 

� 1 + dct + adv Loss 2.33 ± 0.405 0.17 ± 0.050 28.50 ± 1.105 0.882 ± 0.096 

CE [22] ( � 2 + adv Loss) 2.18 ± 0.391 0.18 ± 0.034 28.21 ± 1.359 0.877 ± 0.108 

Full proposed approach 1.79 ± 0.401 0.08 ± 0.011 31.89 ± 2.012 0.928 ± 0.110 
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CT helps in alleviating the issue, but blurring and unwanted arte-

acts still exist. The adversarial loss clears the image to a great ex-

ent but the use of full joint loss function (except of course the

omain transfer portion, which is only relevant to natural images)

reates a sharp and realistic image, with minimal differences with

he ground truth. The significant similarities seen between the fi-

al results and the ground truth is in part because the model is

onditioned on the RGB view, as seen in Fig. 8 ( D ) where the RGB

s not used in the training. 

Not only are the images realistic to the human eye, quantitative

esults in Table 2 demonstrate that our results are clearly supe-

ior to the prior works of [3,4,7,10,14] . As seen in Table 2 , we use

our metrics to compare the results against the ground truth (mean

bsolute difference, mean squared difference, peak signal-to-noise

atio and the structural similarity index). Overall, Table 2 shows a
 t  
ignificant reduction in prediction errors of the proposed approach

gainst ground truth with negligible standard deviation indicat-

ng consistent performance over the randomly selected test set of

0,0 0 0 synthetic images. 

.3. Evaluation using non-synthetic data 

The last component of our loss fits the model to naturally-

ensed images as well as the synthetic data. The effectiveness of

his loss term is demonstrated in Fig. 9 . Without data domain

ransfer, the network is incapable of producing valid and mean-

ngful results. The domain transfer loss is only used in a quarter

1 in 4) of all training epochs to avoid over-fitting. The adversarial

ature of our domain adaptation can result in the generator at-

empting to produce pixel-perfect depth images when a real-world
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Fig. 9. Comparing the results of our approach on natural real-world data with and without domain transfer. It is clear that with domain transfer, the hole filling model 

(trained on synthetic data) applied to non-synthetic images outperforms the model not using any form of domain adaptation. 

Table 3 

Comparing the run-time of our approach with classical hole-filling techniques. Note that only 

requiring a single forward pass, our approach is highly efficient using modern hardware. 

Method FBI [7] EBI [3] SSI [14] GIF [10] FMM [4] Our approach 

Run-time (ms) > 36 e 5 > 12 e 5 33.4 e 3 14.32 e 2 82.8 e 1 7.47 
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image is given as its input and therefore removes entire objects or

synthesizes ones that should not be in the scene. 

However, with the correct training, real-world depth images

that are of far lower quality than the synthetic ones can be filled in

a realistic and consistent manner. As Fig. 9 demonstrates, naturally-

sensed depth images are filled in a more plausible manner with

domain transfer as part of the training ( Fig. 9 - fourth column)

than with no domain adaptation ( Fig. 9 - third column). 

5.4. Comparison to contemporary approaches 

The approach is also evaluated against classical hole filling tech-

niques. We used both synthetic and natural images to test the

performance, and since ground truth depth is available for the

synthetic data, numerical analysis is possible in the evaluation. A

Fourier-based inpainting approach [7] (FBI), a smoothing second

order inpainting [14] (SSI), an exemplar-based inpainting [3] , a fast

marching method [4] (FFM) and a guided inpainting and filtering

technique [10] (GIF) are chosen for their accuracy and their capa-

bility of handling relatively large holes. 

As indicated in Table 2 , our approach outperforms the compara-

tors by a large margin, even if the loss is stripped down to a sim-

ple reconstruction loss. Since the synthetic images are of extremely

high quality (pixel-perfect dense depth information with granular

texture and accurate object boundaries), they should be prime can-

didates for traditional hole filling methods. However, since learn-

ing the semantics, structures and the context of a scene plays a

vital role in predicting its contents, our approach produces more

realistic results with almost no anomalies, blurring or any undesir-

able artefacts, as seen in Fig. 10 . Based on Fig. 11 , similar conclu-

sions can be drawn when it comes to natural real-world images,

where the depth is of significantly lower quality compared to syn-

thetic data. The capabilities of our approach over real-world data
re owed to the domain transfer component of our loss function

 Section 5.3 ). 

Regarding efficiency, the runtime of our approach heavily de-

ends on the hardware. All training and inference were done using

n NVIDIA GeForce GTX 1080 Ti GPU and our mean inference time

requiring a single forward pass) is 7.47 ms based on processing a

92 × 640 image (4 channel, RGB-D). Table 3 provides a compara-

ive analysis of our approach and the comparators. 

.5. Feature learning 

Our model is shown to be capable of learning scene context and

ontent in its attempt to produce a complete hole-free depth im-

ge. Since our technique does not utilize off-the-shelf classic net-

ork architectures, quantifying the feature strength within the net-

ork weights used as a pre-training stage for tasks such as classi-

cation and detection would not be possible. However, we could

valuate our features in a task somewhat similar to depth filling,

amely monocular depth estimation, despite the differences be-

ween the two problems, e.g. the different low and high level cues

hat need to be learned by the network. We re-purpose our model

o estimate scene depth based on a single RGB view by initializing

he network with the pre-trained weights from the depth com-

letion model (excluding the depth channel of the first convolu-

ional layer). Fine-tuning is only performed over a single epoch of

he dataset without any layer freezing. The results are compared

ith state-of-the-art approaches [27–29] . Qualitative results based

n synthetic images used as inputs are seen in Fig. 12 . 

No domain adaptation to our real-world set was performed dur-

ng this experiment but the models are evaluated using our real-

orld test images, nonetheless. As seen in Fig. 13 , even though

ur network has never seen a real-world image and data domain

as not been transferred, we can see that our approach produces
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Fig. 10. Comparing our approach with hole filling methods in [3,4,7,10,14] (synthetic data). 

Fig. 11. Comparing the results of our approach against other hole filling methods [3,4,7,10,14] with natural real-world data. 
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Fig. 12. The results of our approach re-purposed to estimate depth from an RGB image compared against [27] and [28] with synthetic data. 

Fig. 13. The results of our approach re-purposed to estimate depth from an RGB image compared against [27] and [28] with natural real-world data. 

Table 4 

Our pre-trained model tasked with monocular depth estimation compared to [27–

29] . More realistic images have lower error values, but with PNSR and SSIM, higher 

values are better. 

Method Mean � 1 error Mean � 2 error PSNR (dB) SSIM ( −1 , 1 ) 

Result of [28] 28.61 13.68 10.15 0.374 

Result of [27] 14.46 3.93 14.22 0.565 

Result of [29] 4.22 0.79 24.18 0.793 

Our result 4.97 0.88 22.35 0.778 
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sharper and more crisp depth information despite the anomalies

that persist due to domain bias issues. Quantitative analysis using

synthetic ground truth images is presented in Table 4 . While our

approach cannot outperform directly-supervised models trained on

similar synthetic data [29] , we can see it has succeeded in a task

it is not primarily designed for due to its strength in scene feature

learning. 

6. Conclusion 

We have approached the problem of hole filling in depth

images from a learning perspective by employ an adversarially

trained self-supervised encoder/decoder architecture. It is expected

that if enough is learned about the contents and semantics of a

scene, missing regions of a depth image can be inferred given the

known regions and the full RGB view. Our training is fully self-
 t
upervised, i.e. at no point is annotation or human intervention

ecessary. The ground truth depth used for training is acquired

rom a graphical environment developed for gaming and a sepa-

ate model is trained to infer where holes would be if the data

ere obtained via stereo correspondence. The model objective is to

inimize a loss consisting of four loss components: reconstruction,

dversarial, bottleneck feature and domain transfer loss, which re-

ults in filling depth holes, not only in synthetic depth images but

lso in real-world data with no ground truth. 

Even though the approach utilizes synthetic images for train-

ng and requires a complicated mixture of parameters with their

wn weighting coefficients, qualitative and quantitative evalua-

ions demonstrate how it can outperform competing contemporary

epth filling techniques. Moreover, the robust feature learning ca-

abilities of our approach are clearly seen when it is used to esti-

ate depth based on a single RGB image, a task it is not primarily

esigned or trained to perform. 

Currently, the proposed approach only uses the local spatial in-

ormation within the known regions of the depth and the complete

GB image to infer the missing regions of the depth. However, as

art of possible future work, the use of temporal information avail-

ble within a video sequence can greatly improve the quality of

epth completion results since features extracted from one frame

an be used to infer valuable information about the next. Addition-

lly, using sparse or otherwise irregular convolutions, naturally-

ensed depth images can be used in the training process making

he model even more adaptable to real-world applications. 
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