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a b s t r a c t 

The sudden outbreak and uncontrolled spread of COVID-19 disease is one of the most important global 

problems today. In a short period of time, it has led to the development of many deep neural network 

models for COVID-19 detection with modules for explainability. In this work, we carry out a system- 

atic analysis of various aspects of proposed models. Our analysis revealed numerous mistakes made at 

different stages of data acquisition, model development, and explanation construction. In this work, we 

overview the approaches proposed in the surveyed Machine Learning articles and indicate typical errors 

emerging from the lack of deep understanding of the radiography domain. We present the perspective 

of both: experts in the field - radiologists and deep learning engineers dealing with model explanations. 

The final result is a proposed checklist with the minimum conditions to be met by a reliable COVID-19 

diagnostic model. 

© 2021 The Author(s). Published by Elsevier Ltd. 

This is an open access article under the CC BY-NC-ND license 

( http://creativecommons.org/licenses/by-nc-nd/4.0/ ) 
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. Introduction 

COVID-19 is a fast spreading disease of highly contagious na- 

ure caused by the SARS-CoV-2 virus from the coronavirus group. 

t the end of January 2020, the World Health Organization (WHO) 

eclared a global health emergency and one and a half months 

ater, a pandemic. By September 25, 2020, 32,110,656 confirmed 

ases and 980,031 deaths had been documented. From a public 

ealth perspective, due to the lack of proper medicines, early de- 

ection of COVID-19 and patient isolation are crucial. Hospitals are 

rowded with the exponentially growing number of patients as 

vailable resources are limited. 

Currently, reverse transcription polymerase chain reaction (RT- 

CR) is the gold standard used to diagnose COVID-19 infection [1] . 

owever, the results of RT-PCR can be affected by sampling errors 

nd low viral load [1] . As a result, these tests suffer from high rates

f false negatives (with sensitivity of 71% [2] or 69% [3] ) and may

eed to be conducted two or more times before the results are 

nally confirmed [4] . 
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In many articles, chest imaging is considered a suitable tool 

or early COVID-19 screening [5,6] . The point is that sensitivity 

f computed tomography (CT) scan tests can reach 98%, which 

s much higher than RT-PCR tests [7] . Moreover, due to the fact 

hat on CT images ground-glass opacities are visible earlier than 

ulmonary consolidation [8] , radiologists can assess the stage 

f COVID-19. Unfortunately, CT scanners are not widely available. 

tudy [9] , indicate that distinguishing between COVID-19 and vi- 

al pneumonia is a challenging task. However, it is worth noticing 

hat the overall process of undertaking chest imaging to getting the 

rst results is much shorter than in case of RT-PCR. The screening 

akes approximately 15 s [10] (in terms of X-ray) to 21.5 [11] min- 

tes on average (for CT) to complete. Taking the sample for RT- 

CR test is a fast procedure. The difference is not the time of un- 

ertaking the test/screening but the time needed to get the first 

esults. In case of RT-PCR, it may take from several hours up to 

everal days [12] as nucleic acid amplification must happen before 

he start of samples’ analysis. The issue is important as the patient 

as to be isolated until receiving the test result. 

In addition, X-rays are cheaper, more available worldwide, 

nd less harmful than CTs because the radiation dose is smaller. 

ue to the existence of portable devices, X-ray imaging can be per- 

ormed in isolated rooms, so the risk of infection is significantly 
under the CC BY-NC-ND license 

https://doi.org/10.1016/j.patcog.2021.108035
http://www.ScienceDirect.com
http://www.elsevier.com/locate/patcog
http://crossmark.crossref.org/dialog/?doi=10.1016/j.patcog.2021.108035&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:przemyslaw.biecek@pw.edu.pl
https://doi.org/10.1016/j.patcog.2021.108035
http://creativecommons.org/licenses/by-nc-nd/4.0/


W. Hryniewska, P. Bombi ́nski, P. Szatkowski et al. Pattern Recognition 118 (2021) 108035 

d

t

o

t

e

b

r

a  

d

u

b

e

i

r

s

(

T

p

t

b  

l

m

d

a

t

d

a

f

i

n

f

a

e

a

d

W

l

a

o

2

2

T

T

f

m

t

r

g

l

t

p

O

t

g

s

i

T

b

a

o

a

ecreased [13] . Nonetheless, especially on X-ray images, it is par- 

icularly difficult to assess the severity of the pathology, and, thus, 

nly experts in radiology should interpret chest images. In general, 

his process is faster than waiting for RT-PCR test results. How- 

ver, after individual patient collection, multiple test samples can 

e examined by a laboratory assistant simultaneously. Whereas a 

adiology technician is only able to take an image of one patient 

t a time, and then such an image must still be analyzed by a ra-

iologist. 

Recent applications of machine learning (ML) have gained pop- 

larity in the medical domain [14,15] . The performance achieved 

y neural networks is becoming similar to that reached by medical 

xperts. Deep learning techniques for medical images are present 

n classification (skin lesions [16] , lung cancer [17] ), detection (ar- 

hythmia [18] , breast cancer [19] , pneumonia [20] , ADHD [21] ), 

egmentation (lung [22] , brain [17] ) and imaging reconstruction 

magnetic resonance [23] , Single Photon Emission Computerized 

omography (SPECT) [24] ). 

Considering the need for a highly accurate and fast diagnosis 

rocess, artificial intelligence (AI) can play a significant role in au- 

omating the detection of COVID-19 cases. 

AI solutions are frequently based on complex, so-called black- 

ox models [25] . For this reason, it is difficult to tell what factors

ead to a particular model prediction. Such a lack of interpretability 

ay be dangerous, as it may lead to biased results and incorrect 

ecisions in real diagnostic procedures. Recent development in the 

rea of Explainable Artificial Intelligence (XAI) shows the impor- 

ance of model explanations, which help to avoid erroneous pre- 

ictions. Nevertheless, surprisingly, in the area of COVID-19 image 

nalysis, there are still only few results concerning the use of XAI 

or lung image analysis. 

In this paper, we will summarize recent publications about lung 

maging analysis (section II-III), and show how explainable AI tech- 

iques have been used in these solutions (section IV). We will con- 

ront these approaches with the domain knowledge of radiologists 
Fig. 1. PRISMA Flow Diagram shows the flow of information through the diffe

2 
nd we will show how many of the assumptions about data, mod- 

ls or explanations made in many of the analyzed studies are not 

ppropriate. Finally, we will construct a checklist to help model 

evelopers assess whether they avoided the most common errors. 

e believe that this criticism, together with the proposed check- 

ist, will contribute to building better models not only for the di- 

gnosis of COVID-19 disease, but also for other applications based 

n lung images. 

. Methods 

.1. Literature search 

This research is based on a systematic literature review. 

he data was collected between the 1st and 14th of August 2020. 

he search was performed according to Preferred Reporting Items 

or Systematic reviews and the Meta-Analyses (PRISMA) state- 

ent [26] presented in Fig. 1 in the following academic digi- 

al databases: ArXiv, IEEE, Google Scholar, PubMed, Science Di- 

ect, Scopus, Web of Science. All studies written in English, re- 

ardless of the publication status (preprint, peer-reviewed, or pub- 

ished articles), were included in this review. Studies were iden- 

ified by the combination of keywords: (XAI COVID-19 OR ex- 

lainable artificial intelligence COVID-19 OR explainable COVID-19 

R explanations COVID-19 OR interpretable COVID-19 OR interpre- 

ations COVID-19 OR transparent COVID-19) and (X-ray OR radio- 

raphy OR CT OR computed tomography). Then, each study was 

creened for content relevance. 

From 31 collected works, during eligibility checking, 6 stud- 

es were dropped due to irrelevant scope or lack of XAI parts. 

here were 25 studies included for qualitative synthesis. The num- 

er of studies considered in the review is vast enough to cre- 

te a representative set/collection for further investigation. Some 

f the studies were published as preprints, not as camera-ready 

rticles. Due to the rapidly growing field of tools related to sup- 
rent phases of a systematic review including inclusions and exclusions. 
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Fig. 2. Taxonomy of AI applications in 25 reviewed studies. 
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orting medical practitioners in the fight against pandemics, we 

ncluded them. They will help to show a variety of considered XAI 

pproaches. 

Then, on February 26, 2021, it was verified which articles pre- 

iously available as preprints were published in peer reviewed 

ournals. The content of these articles was again reviewed for 

hanges that had been made. Articles published in journals: [27–

8] , preprints: [39–51] . 

.2. Types of COVID-19 prediction tasks 

The 25 studies identified according to our methodology con- 

ern various types of ML tasks. In Fig. 2 , we introduce a taxonomy

or these studies. In the following sections, when discussing spe- 

ific solutions, it is important to remember what kind of problems 

hey are designed for. 

The first breakdown concerns the types of tasks, such as: clas- 

ification (COVID-19 vs. other classes), severity assessment or seg- 

entation. Among classification tasks, the first group is related to 

he detection of COVID-19 cases. The goal of the second is to assess 

ow severe the changes caused by COVID-19 are. 

In the reviewed works, segmentation can be regarded as an 

mage preparation technique for the further classification pro- 

ess. Segmentation was not used in all studies. Lung segmenta- 

ion is present in works [31,32,34,45,50] and lesion segmentation 

n [32,38,47] . The lungs are segmented to remove the unneces- 
3 
ary background because, based on medical experience, the lesions 

aused by COVID-19 are not located outside the lungs. Lesion seg- 

entation, also called infection mask, helps to train the model to 

ecognize infected regions and can be beneficial for further model 

ssessment. Only radiologists can prepare trustworthy and high- 

uality lung lesion masks, not an automatic tool similar to those 

n the reviewed works [32,38] . However, manual mask preparation 

akes a lot of time and money and requires a high level of consis- 

ency among annotators, but, surely, it is the most valuable method 

or qualitative and quantitative XAI evaluation. 

There are not any strict guidelines on how many classes 

he classification should be conducted on. In classification prob- 

ems, the number of classification classes varies between stud- 

es. This distinction is particularly important when compar- 

ng model performance. It is worth noting that some stud- 

es have verified the performance of the model considering 

ifferent number of classes [28,33,35,48] . Binary classification 

ask detecting COVID-19 and non-COVID-19 is the most popu- 

ar [27,28,30,33,35,38,39,41,45,46,4 8,4 9] . Another frequently used 

ethod is three-class classification [28,29,33,35–37,47,48,51] : no 

nfection/no pneumonia, pneumonia (bacterial or non-COVID-19 vi- 

al infection), and COVID-19 (COVID-19 viral infection). In the four- 

lass classification problem, there are two different approaches 

o splitting images. The first one divides images into: normal, 

acterial pneumonia, non-COVID-19 viral pneumonia, and COVID- 

9 [35,44] , while the second one into: normal, bacterial pneu- 
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onia, tuberculosis (TB), and viral pneumonia. In the second ap- 

roach, study [31] refers to [52] and claims that differentiation 

etween viral pneumonia and COVID-19 is challenging, because 

imilar radiological features exist between them. In classification 

asks with the biggest number of classes (5), the authors dis- 

inguish five different classes: normal, pneumonia, virus, bacteria, 

nd COVID-19 [40] . In [42] the authors applied multi-label classifi- 

ation. For example, for an image with the lungs of a patient suf- 

ering from COVID-19, the correct classification should predict all 

hree labels: pneumonia, viral pneumonia, and COVID-19. 

In the segmentation for severity assessment, there are two dif- 

erent approaches. One rates how severe the lesions are in parts 

f the lungs. Another one assigns labels to lesions’ names that 

oint out which changes in the lungs are present in the image. 

In two studies [34,50] images or parts of images were divided 

nto classes that correspond to the severity of COVID-19 effects 

n the lungs. Tabik et al. [34] propose dividing each lung horizon- 

ally into 4 parts, and giving them a grade of 1 if it contained any

esions, such as consolidation or ground-glass opacities, or 0 oth- 

rwise. Then, the grades from all parts were summed up. Based 

n grades, the following scale was prepared: Normal-PCR+ 0 (a pa- 

ient classified by expert radiologist as Normal that has positive 

T-PCR test), Mild 1-2, Moderate 3-5, and Severe 6-8. A similar so- 

ution was introduced by Signoroni et al. [50] . In this study, each 

ung was divided horizontally into 3 parts and a 4 grade scale was 

sed for each part. The division of each lung into 3 parts (up- 

er, middle, and lower lung field) resembles natural lung structure 

nd common radiological practice. 

An example of multi-label classification is described 

n [43] where 18 outputs of neural network (such as atelecta- 

is, consolidation, infiltration, pneumothorax, edema, emphysema, 

brosis, effusion, pneumonia, pleural thickening, cardiomegaly, 

odule, mass, hernia, lung lesion, fracture, lung opacity, and en- 

arged cardiomediastinum) give information about lesions in lungs. 

ome of them are characteristic for specific illnesses. This is a very 

romising approach because with XAI visualizations it should be 

learly visible for radiologists if a model learned to recognize 

roper lesions. 

. Deep learning on lung image data 

.1. Data resources 

The COVID-19 virus is a relatively new disease, and, in several 

rticles, the lack of high-quality medical imaging databases is in- 

icated [34,47] . To verify this, we looked at the quality of the data

sed to construct the models in selected peer-reviewed research 

escriptions. The results of this analysis are presented in Table 1 . 

For medical imaging, the standard format for representing mea- 

ured and / or reconstructed data is DICOM (Digital Imaging and 

ommunications in Medicine). Significant features of this format 

re the ability to faithfully record 16-bit dynamics of data in 

rayscale (CT, radiography), control of acquisition parameters, and 

he ability to adapt to presentation conditions at diagnostic sta- 

ions. The use of full data dynamics, i.e., all information about the 

maged objects, taking into account the characteristic properties 

f the entire measurement and reconstruction process of the data 

equipment parameters, filters, parameters of the acquisition pro- 

ess, specificity of pre-processing and forms of image representa- 

ion) enables the construction of models based on complete mea- 

urement information about the examined object. Unfortunately, 

he vast majority of COVID-19 resources do not retain the source 

mage information on the diagnosed objects. The data is converted 

rom DICOM to typical multimedia image formats (mainly JPEG, 

NG, TIFF standards) with the omission of information about the 

maging process itself and often with a loss of quality and infor- 
4 
ative value of the compressed data. Data dynamics is often re- 

uced to the 8 most significant bits, quantized to simplified 8-bits 

epresentation or all image information is lossy compressed (JPEG) 

sing standard quantization tables. 

.1.1. Scarcity of publicly available COVID-19 data sources with 

mages in raw DICOM format 

It was observed that only one out of five repositories 

ith the DICOM extension presented in Table 1 contains COVID-19 

ases. Most databases regarding COVID-19 images are in 8-bit JPG 

r PNG formats. There are concerns that the quality of shared im- 

ges is degraded, which may render the trained models less ac- 

urate. The quality degradation includes: the Hounsfield unit (HU) 

alues are inaccurately converted into grayscale image data, and 

he number of bits per pixel and the resolution of images are re- 

uced. 

An extreme case is the use of digital scans of printed lung im- 

ges with no standard regarding image size, e.g., images extracted 

rom the manuscripts [49] . Comparative statistical analysis based 

n the value of systematic measurement errors for the COVID-19 

ata, including the raw data and the metadata extracted from offi- 

ial reports, showed noticeable and increasing measurement errors 

16] . This matter showed the importance of the accuracy, timeli- 

ess and completeness of COVID-19 datasets for better modeling 

nd interpretation. 

.1.2. Too few images with low and moderate severity cases 

Most studies are based on data sources publicly available 

n the Internet on a popular sharing platform, such as GitHub 

nd Kaggle. The most commonly used data source with COVID- 

9 cases was created at the beginning of the epidemic. The first 

ublicly available repository was published on January 15, 2020. 

n [34] it is stressed that available data sources contain too few 

mages with low and moderate severity cases. Most of the data 

ources have only class labels without fine-grained pixel-level an- 

otations, for example 3), 4), 8), 9), 10). 

.1.3. Relatively low number of COVID-19 images 

Image format is one problem, while the amount of available 

ata is another problem. The median number of COVID-19 im- 

ges in the considered data resources is 250. With so little data, 

t is difficult to train a deep neural network (DNN). Table 2 shows 

he number of cases in particular classes. The last row with aspect 

atio shows the proportion of the COVID cases to non-COVID cases. 

The use of imbalanced datasets requires more attention during 

he model training. Either proper data resampling [32] (oversam- 

ling [36,48] , undersampling [35] ) should be applied, or an appro- 

riate loss function should be chosen [29,44,46,47] , unless acquir- 

ng a greater amount of less common data is possible. It is also 

ossible to use micro-base metrics [42] . However, most ML algo- 

ithms do not work very well with imbalanced datasets. 

.1.4. The data sources lack descriptions 

Data resources: 4), 6), 9), 10), 12), 13), and 23) did not include 

etadata. At a minimum, the description of the dataset should in- 

lude the following factors. First of all, the total number of images 

nd the number of images in each class should be given. Addition- 

lly, the balance in terms of age and sex is another important fac- 

or because of the differences in anatomy. Information about smok- 

rs or previous lung diseases is also relevant. For analyzing model 

esponses, the information about concurrent diseases, the sever- 

ty of COVID-19, and the number of days between the exposure 

nd the acquisition of the image of the chest are also useful. 
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Table 1 

This table presents the data sources used in studies reviewed in this survey. For each data source, we list articles that use it. The JPEG quality factor (QF) for most images 

has been set to 75, other cases are indicated. In the case of COVID-Net, please note that it is not a data source, but a study collating 5 datasets. Some other studies refer to 

it instead of referring to the original source. 

No. Institution Link to dataset Used in article 

Dynamic 

range of 

images Data processing Prepared for scientific experiments 

1) University 

of Waterloo 

github.com/ 

lindawangg/ 

COVID-Net 

[37,47,48,50] 

1a) University 

of Waterloo 

github.com/ 

agchung/Figure1- 

COVID-chestxray- 

dataset 

[29,48] 8 bits, 48 

cases 

JPG, PNG X-ray database for research purposes only, continuously 

growing; Metadata: offset, sex, age. finding, survival 

temperature, pO2, saturation, view, modality, 

artifacts/distortion, notes; Categories: covid, pneumonia, 

no finding 

1b) University 

of Waterloo 

github. 

com/agchung/ 

Actualmed-COVID- 

chestxray-dataset 

8 bits, 237 

cases 

PNG, BMP X-ray database for research purposes only, continuously 

growing; Metadata: finding, view, modality, notes; 

Categories: covid, no finding 

1c) Qatar & 

Bangladesh 

Universities 

kaggle.com/ 

tawsifurrahman/ 

covid19-radiography 

-database 

[29] 8 bits, 21165 

cases 

PNG, resized X-ray database; No metadata; Categories: COVID-19 

positive cases (3616), normal (10,192), lung opacity 

(Non-COVID lung infection - 6,012), viral pneumonia 

(1,345) 

1d) University 

of Montreal 

github.com/ 

ieee8023/ 

covid-chestxray 

-dataset 

[27,29–

31,33,35,36,40,42–

44,46,48,50,51] 

8 bits, 951 

cases 

JPG, PNG, resized X-ray database; Metadata: covid severity scores, sex,age, 

finding, RT_PCR_positive, survival, intubated, 

intubation_present, went_icu, in_icu, 

needed_supplemental_O2, extubated, temperature, 

pO2_saturation, leukocyte_count, neutrophil_count, 

lymphocyte_count, clinical_notes, other_notes; 

Categories: covid, viral, bacterial, fungal, lipoid, 

aspiration, unknown 

1f) National 

Institutes 

of Health 

kaggle.com/ 

c/rsna-pneumonia- 

detection-challenge 

[29,43,48,50] 8 bits, 30227 

(training) + 3000 

(test) cases 

DICOM, resized X-ray database of Pneumonia Detection Challenge; No 

metadata; Categories: normal. lung opacity, no lung 

opacity/not normal 

7) National 

Institutes 

of Health 

nihcc.app. 

box.com/v/ 

ChestXray-NIHCC 

[33,43,48] 8 bits, 

112120 

cases 

PNG, resized X-ray database of Common Thorax Disease; Metadata: 

finding ROI; Categories: no findings and 14 disease 

categories (Atelectasis, Cardiomegaly, Effusion, 

Infiltration, Mass, Nodule, Pneumonia, Pneumothorax, 

Consolidation, Edema, Emphysema, Fibrosis, 

Pleural_Thickening, Hernia) 

8) National 

Institutes 

of Health 

kaggle.com/ 

nih-chest- 

xrays/sample 

[27] 8 bits, 

Random 

sample of 

5606 from 

112,120 

images of 

30,805 

unique 

patients 

PNG, resized X-ray database; Metadata: finding labels, follow-up, age, 

gender, view; Categories: Atelectasis, Cardiomegaly, 

Effusion, Infiltration, Mass, Nodule, Pneumonia, 

Pleural_Thickening, Hernia, Pneumothorax, Consolidation, 

Edema, Emphysema, Fibrosis 

9) University 

of Montreal 

kaggle.com/ 

praveengovi/ 

coronahack-chest 

-xraydataset 

[31,40] 8 bits, 5910 

cases 

(normal- 

1576, covid 

58, SARS-4, 

virus-1493, 

bacteria 

2777, 

ARDS-2) 

JPG,PNG-resized Collection Chest X Ray (anterior-posterior) of Healthy vs 

Pneumonia (Corona) affected patients infected patients 

along with few other categories such as SARS (Severe 

Acute Respiratory Syndrome), Streptococcus & ARDS 

(Acute Respiratory Distress Syndrome); No metadata 

10) University 

of California 

San Diego 

kaggle.com/ 

paultimothymooney/ 

chest-xray- 

pneumonia 

[31,35,42,44,51] 8 bits, 5863 

cases 

JPG Chest X-ray images (anterior-posterior) were selected 

from retrospective cohorts of pediatric patients of one to 

five years old from Guangzhou Women and Childrens 

Medical Center, Guangzhou. All chest X-ray imaging was 

performed as part of patients routine clinical care.; 

Categories: normal and pneumonia; No metadata 

11) University 

of California 

San Diego 

github.com/ 

UCSD-AI4H/ 

COVID-CT 

[30,39,41,46] 8 bits, 349 

cases 

Images collected 

(scanned) from 

covid-related and 

medical papers 

in PNG (covid) or 

JPG (normal) 

This dataset has 349 CT images containing clinical 

findings of COVID-19 from 216 patients; Categories: covid 

and noncovid cases; Metadata: age, gender, location, 

medical history (unfortunately modest), time after the 

onset of illness, severity, other diseases 

12) University 

of California 

San Diego 

data.mendeley. 

com/datasets/ 

rscbjbr9sj/2 

[36] 8 bits, 5233 

cases 

JPG (QF = 95 for 

normal and 

QF = 75 for 

pneumonia) 

Collection Chest X Ray; Categories: normal (1349 cases) 

vs pneumonia (3884 cases) including subcategories of 

bacteria and virus; No metadata 

13) Elazig in 

Turkey 

github.com/ 

muhammedtalo/ 

COVID-19 

[27,29] 8 bits, 1125 

cases 

JPG (QF = 90, 

subsampling2x2), 

PNG (resized) 

X-Ray Images collection; No metadata; Categories: covid 

(125 cases), no findings (500 cases), pneumonia (500 

cases) 

( continued on next page ) 

5 
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Table 1 ( continued ) 

14) National 

Library 

of Medicine 

openi.nlm. 

nih.gov/ 

gridquery?it 

= xg&coll = cxr 

&m = 1&n = 100 

[31,43] 8 bits or full 

bits, 7470 

cases 

PNG (resized), 

Full DICOM 

Chest X-rays collection with 3,955 radiology reports; 

Categories: 14 pulmonary categories; Metadata: time 

after the onset of illness, severity, other diseases, captions 

of symptoms as unstructured symptom description 

15) Stanford 

University 

School 

of Medicine 

stanfordmlgroup. 

github.io/ 

competitions/ 

chexpert 

[43,50] 8 bits, 

224,316 

chest 

radiographs 

of 65,240 

patients 

JPG Large dataset of chest X-rays which features uncertainty 

labels and radiologist-labeled reference standard 

evaluation sets; Categories: each report was labeled for 

the presence of 14 observations (no finding, enlarged 

cardiom., cardiomegaly, lesion, opacity, edema, 

consolidation, pneumonia, atelectasis, pneumothorax, 

pleural effusion, pleural other, fracture, support devices) 

as positive, negative, or uncertain; Metadata: related to 

above categories (blank for unmentioned, 0 for negative, 

-1 for uncertain, and 1 for positive) 

16) Hospital San 

Juan de 

Alicante - 

University 

of Alicante 

bimcv. 

cipf.es/ 

bimcv-projects/ 

padchest 

[43] 8 bits, more 

than 160,000 

images from 

67,000 

patients 

PNG PadChest: A large chest x-ray image dataset with 

multi-label annotated reports; the reports were labeled 

with 174 different radiographic findings, 19 differential 

diagnoses, and 104 anatomic locations; a 27% of the 

reports were manually annotated by trained physicians; 

Metadata: age, sex 

17) Hospital 

Universitario 

San Cecilio 

github.com/ 

ari-dasci/ 

OD-covidgr 

[34] 8 bits, 852 

images 

JPEG (QF = 90) X-ray images: 426 positive covid cases and 426 negative 

cases; only the posterior-anterior view is considered; 

Categories: covid severity - normal-PCR + (76), mild 

(100), moderate (171), severe (79); General metadata: 

positive images correspond to patients who have been 

tested positive with RT-PCR within a time span of at 

most 24h between the X-ray image and the test; every 

image has been taken using the same type of equipment 

and with the same format 

18) Beth Israel 

Deaconess 

Medical 

Center 

in Boston 

physionet. 

org/content/ 

mimic-cxr/2.0.0 

[43] full bits, 

227,835 

imaging 

studies for 

65,379 

patients 

full DICOM Chest radiographs with metadata: electronic health 

record data, dicom metadata, free-text radiology reports 

Categories: 14 pulmonary observations with an additional 

uncertain category 

19) Societ 

Italiana di 

Radiologia 

Medica e In- 

terventistica 

sirm.org/ 

category/senza- 

categoria/covid-19 

[49] 8 bits mostly JPG 

(QF = 95, 

subsampling2x2) 

Chest radiographs with free-text radiology and clinical 

reports, covid confirmation; Metadata includes selected 

information from electronic health record (e.g. symptoms, 

lab exams, ARDS, ventilatory assistance, previous exams); 

Categories: covid confirmation or no with 14 pulmonary 

observations 

20) National 

Cancer 

Institute 

wiki. 

cancerimagingarchive. 

net/display/ 

Public/LIDC-IDRI 

[45] full bits, 

1308 cases 

full DICOM The Lung Image Database consists of diagnostic and lung 

cancer screening thoracic CT scans with marked-up 

annotated lesions (XML); it includes three categories 

(”nodule > = 3 mm”, ”nodule < 3 mm”, and 

”non-nodule > = mm”); 

21) University of 

Brescia 

brixia.github. 

io#dataset 

[50] full bits, 

4,707 cases 

full DICOM COVID-19 subjects, acquired with both CR and DX 

modalities, in AP or PA projection with highly expressive 

multi-zone COVID-19 severity score, fully annotated; 

Metadata: the multi-region 6-valued Brixia-score defined 

for six zones, sex, age 

22) open-edit 

radiology 

resource 

radiopaedia. 

org 

[49] 8 bits, a 

significant 

number of 

cases, 

constantly 

updated 

JPG with 

different QF, 

resized 

Database of general radiological purposes; in selected 

cases free-text radiology and clinical reports, selected; 

generally, quantitatively and qualitatively differentiated 

case reports 

23) generated 

using data 

augmenta- 

tion 

kaggle.com/ 

nabeelsajid917/ 

covid-19-x-ray- 

10000-images 

[29] 8 bits, 104 

cases 

JPEG with 

different QF, 

resized 

Corona Virus X-ray Dataset; Categories: covid and 

normal; No metadata 

24) offline database or from hospital [28,32,38,45] 
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.1.5. Mix of CT and X-ray images 

The problem that we found in these datasets is the data purity. 

f we look closer at the images presented in study [46] , it appears

hat CT and X-ray images are mixed in the X-ray dataset. These two 

echniques are so different that networks for CT and X-ray images 

hould be trained separately. 

.1.6. Inappropriate CT windows 

For COVID-related lung analysis, it is essential to have 

ounsfield Units equivalent for lung window (width: 1,500, level: 

600). Otherwise, the lung structures are obscured or not visible 
6 
t all, such as some examples in studies [28,39,41] . This is a ba- 

ic, but key, issue because we do not want to assess soft tissues 

r bones. Photos taken in other windows do not have any real di- 

gnostic value. 

.1.7. Children are not small adults 

When we go back to the databases, it appears that, in some 

ases, e.g. 7), 8), 9) the X-rays of children and adults are mixed. 

he next problem is related to the mixture of images of patients 

f different ages. There are crucial differences between the X-rays 

f children’s and adults’ chests: technical (hands are often located 
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7 
bove the head), anatomical (different shape of the heart and me- 

iastinum, as well as bone structures), and pathological (different 

athologies). This will also include a different course of infectious 

iseases, with the most vivid example of round pneumonia mim- 

cking tumors [53] . It is important to mark the age of patients in

ata resources, and to separate children from adults when prepar- 

ng data for training. 

.1.8. CT and X-rays images are not in color. 

Despite that fact, some databases, e.g. 5) and 11), include im- 

ges in RGB color space. It introduces redundant information, be- 

ause values in all channel are the same (R = G = B). This situation

eads to increasing the number of input neurons in the neural net- 

ork by three times. Due to that fact, the number of parameters 

ill also rise, and the training may require more data and time, 

owever, it lacks extra information. 

.1.9. Incorrect categorization of pathologies 

We have noticed that some images are incorrectly categorized - 

nto normal or pathologic, e.g. in database 10), 13), and also within 

he class of pathology, e.g. in database 14). An additional prob- 

em is that, from a medical point of view, some images should be 

ulti-categorized. This means that there is more than one pathol- 

gy in one image. For instance, pneumonia (main class) can man- 

fest itself as lung consolidations, which, however, can also ap- 

ear with pleural effusion or atelectasis (two additional classes). 

n the other hand, atelectasis itself, with a mediastinal shift, can 

e a sign of a different pathology, such as a lung tumor. Thus, 

atabases should be verified by experienced radiologists for proper 

ategorization and maybe a rejection of multi-class images. This, 

owever, would be time-consuming and - what is more important 

 very difficult or impossible with low-quality images or images 

ithout appropriate descriptions. 

.1.10. Lack of information about chest projection for X-ray imaging 

This problem is present, for example in 2), 4), 9). There are 

wo main chest projections, see Fig. 3 , Posterior-Anterior (PA) 

nd Anterior-Posterior (AP). The first one is acquired while the pa- 

ient is standing. The X-ray beam comes through the patient’s 

hest from its back (posterior) to front (anterior) - i.e., PA projec- 

ion. The second one is the opposite - the beam enters through 

he front (anterior) of the chest and exits out of the back (pos- 

erior) - i.e., AP projection. This type of examination is mostly 

onducted in more severe cases, with lying patients, with co- 

orbidities, often in Intensive Care Units. As the X-ray beam is 

one-shaped, both projections have one very important difference, 

hich is the size of the heart. In PA projection, the heart is close 

o the detector, resulting in a similar heart size on the X-ray as 

n reality. In AP projection, the heart is away from the detector, 

esulting in a larger heart size on the X-ray, which can be con- 

used with cardiomegaly. In databases, AP and PA images are often 

ixed, which can cause bias because AP projections are performed 

n severely ill patients [34] . From a medical point of view, it is im-

ossible to perform chest X-rays in only one projection as this de- 

ends on patients condition. However, projection should be speci- 

ed for every X-ray in dataset, and possible bias in model classifi- 

ation should be evaluated. 

To sum up, this section shows that data sources have several 

eaknesses. First of all, images available for COVID-19 in public 

atabases are in not the most dedicated image format because 

ICOM images are still rarely available for this disease. Secondly, 

n the data sources, there is missing data (i.e., chest projection) 

r poor quality data (i.e., poor image quality, not grayscale images, 

nappropriate CT window, mixed CT and X-ray images, or incorrect 

athology categorization). Lastly, during data preparation, it should 
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Fig. 3. Differences between AP and PA chest projections. 

Table 3 

Image preprocessing techniques in the reviewed studies. 

Preprocessing technique Reference 

Resize to the same size [29–32,35,36,40–44,46,49,51] 

Normalize pixel intensity [29,35,42–44,49,50] 

Eliminate noise [29,30,34,50] 

Use Perona-Malik filter [29] 

Limit image intensity [42,50] 

Equalize histogram [29,31,40,50] 

Perform image enhancement [29–32] 

Cast data type [29,31,50] 

Change color space [36,46,49] 

Crop image [34,40,42] 

Zoom image / augmentation [41,49] 

Add pixels [34] 

Feature encoding [51] 

Rotate image [41] 

Use 2D wavelet transform [30] 

Feature extraction [47,51] 

Lack of preprocessing or description [27,28,33,37–39,45,47,48] 
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e taken into account that DNNs work better when the class bal- 

nce is maintained. 

.2. Image preprocessing methods 

The aim of preprocessing is to make the images from dif- 

erent data resources look homogeneous and coherent. This pro- 

ess reduces the possibility of bias via eliminating some artifacts 

rom images, such as captions, annotations, which may deceive 

he model. The model should learn how to differentiate labels 

y focusing on image features, not by recognizing from which 

atabase the image comes from. During preprocessing, irrelevant 

mage features that are easier to learn are removed. This is be- 

ause in some databases there are no cases of people suffering 

rom COVID-19, while in others there are, for example, only seri- 

us cases. These differences, which are insignificant from a human 

erspective, must be eliminated. For machines, even the informa- 

ion that images from one data resource are relatively darker might 

e relevant. 

However, due to a large amount of data, automation of prepro- 

essing is necessary. Preprocessing cannot introduce any changes 

n an image which will add or remove some relevant informa- 

ion. Its purpose is to make it impossible to identify the machine 

r characteristic machine’s calibration parameters, e.g., the dose 

f exposure. 

Table 3 lists preprocessing techniques used in the reviewed 

tudies. The most common was resizing an image to the same size. 

t is the most basic operation needed to train DNN when images 

ave different sizes. Other techniques applied frequently to images 
8 
ere: normalizing pixel intensity, changing color space, eliminat- 

ng noise, equalizing histogram, and performing image enhance- 

ent. Unfortunately, in 9 out of 25 studies there was no infor- 

ation about preprocessing steps provided. [54] also stressed that 

any studies do not contain sufficient information about prepro- 

essing, such as cropping of images. 

Cropping, changing color space, proportionally resizing, 

r zooming can be helpful to adjust images for training on specific 

etwork architecture, or the easiest way to remove some descrip- 

ions from the edges of images. If not required, resizing ought to 

e omitted. Normalizing pixel intensity or equalizing histograms 

re required to eliminate strong correlations with specific machine 

ettings. Spot changes, such as noise removal, are not desirable. 

hese techniques can be used only very carefully in order not to 

emove important features, such as lesions or parts of them. 

To sum up, preprocessing is an important step preceding model 

raining. It should reduce the possibility of bias and guarantee 

ore homogeneous images without the elimination of any med- 

cally significant features. 

.3. Data augmentation 

Data augmentation for ML is a technique that artificially mul- 

iplies the number of images through cropping and transforming 

xisting images or creating new synthetic images thanks to gen- 

rative adversarial networks. This procedure may help to reduce 

odel overfitting and the problem of class imbalance. It helps 

n achieving a larger training dataset and more robust models. 

In Table 4 , we summarized data augmentation techniques 

rom the reviewed studies. The most popular augmentation tech- 

iques in the reviewed studies are affine transformations, such 

s rotation, scaling or zooming, flip, and shifting or translation. 

n the contrary, splitting a radiological image into overlapping 

atches, or generating new content via a type of Generative Ad- 

ersarial Network are rarely used. 

However, not all of them are appropriate from a medical point 

f view. Before an augmentation, it is recommended to con- 

ider the ’safety’ for the chosen domain. For example, the rota- 

ion should be done carefully, because some parts of the lungs, 

uch as costophrenic recesses, may be placed outside the im- 

ge. Also, change of brightness or contrast should be performed 

nly in a limited manner, as greater manipulation may obscure 

ung structure. Moreover, in predicting COVID-19, it is acceptable 

o crop or proportionally scale/zoom an image to such an extent 

hat it displays only the lungs without a background or other parts 

f the body. 

It is also worth noting, that in the case of CT and X-ray images, 

he augmentation based on rotation or flipping generate photos 
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Table 4 

Data augmentation techniques used in studies. Some techniques are parametrizable, so the table indicates the tech- 

niques and parameters used. An indentation is used to show the subtypes of the method. 

Data augmentation technique Values and studies 

Affine transformations [28] : 

Rotation [35,37,45,48] , 5 ◦ [40] , 15 ◦ [27,29,49] , 20 ◦ [44] , 25 ◦ [50] 

Scaling / Zooming [37,44,48] , 10% [40,46,50] , 20% [35] 

Flip [44,46,47] 

Horizontal [37,38,40,45,48] 

Vertical 

Shifting / Translation [37,44,48] , height 5% [40] , 10% [50] 

Shearing [35,36,44] 

Brightness change [28,37,48] + /-30 [36] , 10% [40] 

Crop [38,45] 

Contrast change [28] 

Gaussian noise [36] 

ZCA whitening transformation [44] 

Elastic transformation α= 60, σ= 12 [50] 

Grid distortion steps = 5, limit = 0.3 [50] 

Optical distortion distort = 0.2, shift = 0.05 [50] 

Warping 10% [46] 

Multiple patches from each image [31] 

Class-inherent transformations Network ∗ [34] 

Augmentation used but parameters are not specified [41] 

No augmentation used [30,32,33,39,42,43,51] 

∗ Inspired by generative adversarial networks. 
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hat cannot naturally appear in real datasets, because the process 

f taking the photo itself is standardized. Horizontal flips should 

e done carefully, with some specific limitations. Most pathologies 

ill be present similarly on the left or right lung, except for the 

hange in shape of the heart (like in dextrocardia) or pathologies 

ffecting specific lobes, due to different lung anatomy (like lobar 

neumonia or lobar atelectasis). These limitations should be taken 

nto consideration in model design. 

In general, all augmentation methods should be consulted with 

adiologists, as domain knowledge is crucial. In every project, it 

s important to know the field of research to avoid a situation 

n which instead of solving the problem, bias is accidentally in- 

roduced. 

.4. Model architecture 

In the studies different approaches of modeling were applied. 

ome benefited from machine learning methods, whereas the rest 

sed deep learning. In the first case, simple classifiers or their en- 

embles were applied: AdaBoost [41] , KNN [41] , Naive Bayes [41] , 

VM [41] . 

In the reviewed studies, lung-specific model architectures (own 

odels) were relatively often used for classification, whereas 

he existing architectures were frequently fine-tuned. The fol- 

owing model architectures or their fine-tuned, modified ver- 

ions were investigated: ResNet [29] (ResNet18 [31,42,47,50] , 

esNet34 [32,42,46] , ResNet50 [30,39,40,45,46] ), DenseNet 

29,43,4 8,50] (DenseNet121 [40,4 9] , DenseNet-161 [42] , DenseNet- 

01 [39,46,49] ), VGG [29,50] (VGG-16 [27,39,49,51] ,VGG-19 

39,46,49] ), Inception [50] , InceptionV3 [35,42] , InceptionRes- 

etV2 [39,42,49] , MobileNetV2 [39,49] , NASNetMobile [39,49] , 

fficientNet-B0 [46] , Efficient TBCNN [40] , MobileNet [49] , NAS- 

etLarge [49] , Res2Net [38] , Attention-56 [49] , ResNet15V2 [39] , 

esNet50V2 [44] , ResNeXt [42] , WideResNet [42] , Xception [49] , 

wn model [28,33,34,36,37,41,46,50] . It is clearly visible that there 

re numerous types of neural networks. Different neural networks 

an catch different dependencies in the data. For solving a prob- 

em, many types of model architectures are tested to find the best 

ne for a specific task. Recommendations on how the explanations 

hould look do not depend on the neural network architecture. 
9 
For segmentation, the following architectures were used: U-net 

34,45,50] , AutoEncoder [47] , VGG-16 backbone + enhanced fea- 

ure module [38] , (FC)-DenseNet-103 [31] , Nested version of Unet 

Unet++) [50] , VB-Net [32] . During the segmentation process, it 

s important that the lungs are accurately segmented. Otherwise, 

istorted border lines can be an indication of pathology. In study 

31] , the authors were aware that their segmentation cut patho- 

ogical changes in lungs. In study [50] segmentation for non- 

omain experts appears accurate. However, radiologists noticed 

hat also other structures (i.e., bowel loops) were interpreted as 

ungs in that segmentation. 

There are multiple purposes for creating new model architec- 

ures. The most common is adjusting existing architectures for bet- 

er explainability or scalability for training on medical COVID-19 

maging [28,41] . For example, in studies [37,46] , the authors con- 

ucted tests and chose the advantages of many architectures while 

reating their own. The proposed architectures are usually smaller 

nd require a lower number of trainable parameters than in well- 

nown DNN architectures [34,36] . 

Six studies published their code on GitHub: [31,35,37,40,43,48] . 

ther studies did not include any reference to their code or model. 

Often the prediction from multiple models is combined 

o improve the overall performance. However, surprisingly, 

n the reviewed studies, there were not many ensemble models: 

29,32,42,50] . 

.5. Transfer learning 

Transfer learning is an ML technique about reusing gained 

nowledge from one problem to a new one. In the reviewed stud- 

es, it is commonly used when the neural network has a large 

umber of parameters or the number of collected samples is too 

mall for a specific task. In such a case, fewer training epochs are 

eeded to adjust the model to a particular task. There are several 

opular image databases: ImageNet and, NoisyStudent for which 

arious architectures of pre-trained neural networks are available. 

ransfer learning on ImageNet database was utilized in the follow- 

ng studies: [27,31,34–37,39–41,46,49,51] . Twelve out of 25 studies 

ecided to use a neural network pre-trained on ImageNet for trans- 

er learning. Therefore, it can be said that this is a very common 

rocedure. 
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However, as [55] shows, it is not clear whether using ImageNet 

or transfer learning in medical imaging is the best strategy. 

mageNet consists of natural images. Meanwhile, medicine is 

n entirely different field and is completely unrelated. [56] also 

tressed the fact that the features which are extracted by models 

re-trained on ImageNet can introduce bias. 

Only in three of the reviewed studies was transfer learning 

onducted on lung images. The chosen datasets included 112,120 

n [48] , 88,079 in [43] , and 951 in [50] non-COVID-19 lung images.

he study [29] did not perform any transfer learning because lung 

mages lack colorful patterns, specific geometrical forms, or similar 

hapes. The amount of redundant information introduced by a net- 

ork pre-trained with color images may seriously affect the learn- 

ng process on gray level images. In study [40] , the authors dis- 

overed that the model has better performance when pre-trained 

n ImageNet than without it. However, the authors found out that 

heir models pre-trained on ImageNet were using irrelevant mark- 

rs on lung images while making a prediction. 

Especially when the model is trained on a small amount 

f data, the usage of completely irrelevant features from another 

re-trained model may increase model accuracy/result. For this 

eason, it is crucial to find a large database with images simi- 

ar in domain and appearance to limit the possibility of irrelevant 

arkers that take part in a prediction. It is recommended to train 

 neural network on this database and then use transfer learning 

o adjust it to the target task. 

For transfer learning, it is recommended to take into consider- 

tion the following X-ray data sources with DICOM images (con- 

ider the fact that, in some of them, children and adults lungs 

re mixed): U.S. National Library of Medicine 1 (7,470 images), 

adiological Society of North America 2 (29,684 images), Society 

or Imaging Informatics in Medicine 3 (3,209 images), Medical In- 

ormation Mart for Intensive Care 4 (377,110 images). For trans- 

er learning on CT, the following data sources are available: The 

eference Image Database to Evaluate Therapy Response 5 (15,419 

mages), A Large-Scale CT and PET/CT Dataset for Lung Cancer 

iagnosis 6 (260,826 images), The National Lung Screening Trial 7 

21,082,502 images). 

.6. Training parameters 

The selection of hyperparameters has a large impact on model 

esults. Nevertheless, the process of tuning parameters is empirical 

nd depends on the model architecture. For this reason, it is diffi- 

ult to present a set of parameters adequate for every model archi- 

ecture. However, there are several tips which can be used for most 

odels. 

Often the learning rate is decreased during the training pro- 

ess. Sometimes callback functions are used to halt training, when 

he result of a model is optimum, and during the training process, 

o save and store the best model and its parameters. The most 

ypically used optimizer is Adam. The batch size of images during 

odel training is between 2 and 81 with the most common value 

. 

The whole image dataset is typically divided into 3 or 2 sets, 

ost commonly into: training set 80%, validation set 10% and test- 

ng set 10% [34,36,48,51] . Proportion 80% to 20% was the most fre- 
1 pubmed.ncbi.nlm.nih.gov/25525580 
2 kaggle.com/c/rsna-pneumonia-detection-challenge 
3 kaggle.com/c/siim-acr-pneumothorax-segmentation 
4 physionet.org/content/mimic-cxr/2.0.0 
5 wiki.cancerimagingarchive.net/display/Public/RIDER+Lung+CT 
6 wiki.cancerimagingarchive.net/pages/viewpage.action?pageId = 70224216 
7 wiki.cancerimagingarchive.net/display/NLST 
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10 
uently used among divisions into training and testing set respec- 

ively [39,44] . 

In study [39] , the recommendation to conduct external val- 

dation is indicated, meaning an evaluation on an independent 

atabase. Another public dataset will be the best choice for cross- 

atabase validation [31] . However, in the reviewed studies cross- 

alidation is the most frequently used. It is a common choice 

or training on a small amount of data resources. The problem 

hich may occur during cross-validation is overfitting to the data. 

or this reason, validation on an external resource is the most 

rustworthy method. 

.7. Model performance 

Evaluation metrics are commonly used to compare different 

odels. For DNN image classification, there are many metrics fre- 

uently used for model quality assessment. In the reviewed stud- 

es, we discovered a large variability in the number of reported 

etrics. It is a common situation due to the fact that there are no 

etailed recommendations as to which performance metric should 

e used. We recommend the instructions presented in [57] , but, 

nfortunately, in almost all the reviewed studies, at least one met- 

ic out of these recommendations was missing. 

Based on the rules described in study [57] , there are six eval- 

ation criteria for binary classification: accuracy, precision, recall 

sensitivity), F score, specificity, AUC. For multi-class classification, 

here are eight criteria: average accuracy, error rate, precision μ, re- 

all μ, F score μ, precision M 

, Recall M 

, F score M 

, and for multi-label

lassification four criteria: exact match ratio, labeling F score, re- 

rieval F score, Hamming loss. 

There is another important factor which indicates why more 

han one evaluation metric should be used. It provides the oppor- 

unity to compare model architectures and then choose the best 

ne for a given problem. Nevertheless, the models were not trained 

n the same images. Some databases contained only severe cases 

hich were easier to classify [34] . Even if studies refer to the same 

ata resources, it is possible that the amount of data has increased 

ver time. For this reason, it is rather difficult to make a reliable 

omparison. The most trustworthy way to compare different model 

rchitectures is to look at studies which tested many of them, i.e. 

34,39,41,46,49,50] . 

. Explainable artificial intelligence 

.1. The importance of model explainability 

When designing predictive models for healthcare, or any other 

igh-stakes decisions, the explainability of the model is a key part 

f the solution. The empirical performance of the model is very 

mportant, but there can be no responsible modeling if the issue 

f explainability is not addressed properly for each stakeholder 

f the system. For physicians, the lack of explainability drastically 

educes the confidence in the system. For model developers, it 

akes it difficult to detect flaws in model behavior and obstructs 

ebugging [58,59] . 

For predictive models, two general approaches to explainabil- 

ty are either by using classes of interpretable-by-design mod- 

ls or using post-hoc explanations. Despite the obvious advan- 

ages of interpretable-by-design models, their construction re- 

uires more domain knowledge linked to the construction of inter- 

retable features. The advantage of post-hoc explanations is that 

hey are constructed after the model has been trained. Thus, the 

eveloper can focus on model performance by pouring large vol- 

mes of data into a neural network and then deal with model ex- 

lanations afterwards. In the analyzed studies, the authors used 

nly post-hoc methods which are prevalent in computer vision 
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Fig. 4. Examples of explanations for COVID-related models from studies: [34,36,39,42–44] . The following explanations are used: a) Grad-CAM, b) CAM, c) saliency, d) guided 

backpropagation, e) integrated gradients, f) LIME. Such explanations can be divided into 4 types: heat maps (image a) - c)), contour lines (d)), points (e)), and image pieces 

(f)). 
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asks [60] . Examples of post-hoc explanations are presented in 

ig. 4 . 

Due to the mode of operation, also post-hoc explanation meth- 

ds can be divided into two groups. The first group consists of in- 

ut perturbation methods such as Locally Interpretable Model Ex- 

lanations (LIME), or Occlusion Sensitivity. These methods are 

ased on the analysis of the change of the model response af- 

er obscuring, removing, or perturbing some part of the image. 

he advantage of this class of methods is that they are insensi- 

ive to the internal structure of the model. Such so-called model- 

gnostic approaches assume nothing about the internal structure 

f the model. By analyzing how a series of input perturbations af- 

ect the final prediction, it determines which part of the input is 

mportant. 

The second group are methods based on the analysis of sig- 

al propagation through the network, i.e. model-specific methods. 

his group of methods uses detailed information about the net- 

ork architecture and the design of subsequent layers to deter- 

ine the key regions of input for the final prediction. The advan- 

age of such approaches is that usually, one pass through the struc- 

ure of the network is sufficient to generate explanations. Model 

pecific methods for explanations of CNNs can be organized into a 

pectrum of solutions, from gradient-based methods to activation 

ap-based methods. 

For gradient-based methods, the gradient dy 
dx 

between the out- 

ut model class y and the input image x is used to calculate 

aliency maps. For large networks, such as most of those shown in 

able 5 , the gradient information is very noisy, so there have been 

any modifications to this method that reduce noise by smoothing 

r thresholding or rescaling. This class of models includes Guided 

ackpropagation, Layer-wise relevance propagation, and Smooth- 

rad. 

Methods based on activation maps, such as Class Activation 

apping (CAM) or DeepLIFT, focus on visualizing the relationship 
11 
etween the layer with the feature map (in most cases the penul- 

imate layer of the network) and the model output. Assuming that 

he feature map stores information about the spatial relevance 

f features, one can explore what elements of the feature map are 

ost relevant for the final prediction. Such methods often have an 

ssumption about the structure of the network, such as global av- 

rage pooling before the softmax layer. 

In our analysis, the most popular solution turned out to be the 

ne that combines both mentioned above approaches, tracing the 

radient between the model prediction and the feature map and 

hen analyzing the spatial information of a specific part of the fea- 

ure map. This group of methods includes the most popular expla- 

ation method Grad-CAM and its modifications Guided Backprop- 

gation, Guided Grad-CAM, Grad-CAM++. Using gradient tracking 

etween the feature map and network output is also a more flex- 

ble approach in terms of network architecture without enforcing 

lobal pooling. 

.2. XAI methods used in the reviewed studies 

The area of model explanations and the number of meth- 

ds that can be used for this purpose are increasing rapidly 

59] . Such methods differ in properties; they work either 

or a single image (so-called instance level methods) or glob- 

lly for the whole dataset. Some of them are based on gradients, 

thers on interpretable features, some are intrinsic or post-hoc, 

odel-specific (class-discriminative, high-resolution, multi-layer) 

r model-agnostic. 

Table 6 shows which approach to model explanation was used 

n each study. The most popular in the reviewed studies was Grad- 

AM. Its popularity may be related to the fact that colorful heat 

aps are easy to implement and seem to be readable. An example 

f an implementation for Grad-CAM is available online, and its use 

n melanoma images shows great results. 
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Table 5 

The depth, number of parameters and type of layers for neural networks in considered papers. For large networks gradient based explanations are 

noisy. Some explanation techniques assume specific types of layers. 

Model architectures Depth No. of parameters Layer types 

ResNet18, ResNet34, ResNet50, ResNet15V2, ResNet50V2 - 11.7M-25.6M ZeroPadding2D, Conv2D, BatchNormalization, 

Activation, MaxPooling2D, Add, 

GlobalAveragePooling2D, Dense 

DenseNet121, DenseNet-161, DenseNet-201 121-201 8.1M-20.0M ZeroPadding2D, Conv2D, BatchNormalization, 

Activation, MaxPooling2D, Concatenate, 

AveragePooling2D, GlobalAveragePooling2D, 

Dense 

VGG-16, VGG-19 23-26 138-144 Conv2D, Dense, Flatten, InputLayer, 

MaxPooling2D 

InceptionV3 159 23.9M Conv2D, BatchNormalization, Activation, 

MaxPooling2D, AveragePooling2D, Concatenate, 

GlobalAveragePooling2D, Dense 

InceptionResNetV2 572 55.9M Conv2D, BatchNormalization, Activation, 

MaxPooling2D, AveragePooling2D, Concatenate, 

Lambda, GlobalAveragePooling2D, Dense 

MobileNet 88 4.3M Conv2D, BatchNormalization, ReLU, 

DepthwiseConv2D, ZeroPadding2D, 

GlobalAveragePooling2D, Reshape, Dropout, 

Activation 

MobileNetV2 88 3.5M Conv2D, BatchNormalization, ReLU, 

DepthwiseConv2D, ZeroPadding2D, Add, 

GlobalAveragePooling2D, Dense 

NASNetMobile, NASNetLarge - 5.3M-88.9M Conv2D, BatchNormalization, Activation, 

ZeroPadding2D, SeparableConv2D, Add, 

MaxPooling2D, AveragePooling2D, Cropping2D, 

Concatenate, GlobalAveragePooling2D, Dense 

EfficientNet-B0 - 5.3M Rescaling, Normalization, ZeroPadding2D, 

Conv2D, BatchNormalization, Activation, 

DepthwiseConv2D, GlobalAveragePooling2D, 

Reshape, Multiply, Dropout, Add, Dense 

Efficient TBCNN 0.23M Conv2D, MaxPool2D, BatchNormalization, 

GlobalAveragePooling2D, Add, Dense 

Attention-56 115 31.9M Conv2D, Lambda, MaxPool2D, UpSampling2D, 

AveragePooling2D, ZeroPadding2D, Dense, Add, 

Multiply, BatchNormalization, Dropout 

Xception 126 22.9M Conv2D, BatchNormalization, Activation, 

SeparableConv2D, MaxPooling2D, Add, 

GlobalAveragePooling2D, Dense 

Table 6 

XAI techniques used in considered papers. 

Name of the XAI technique Reference 

Grad-CAM (gradient-weighted class activation mapping) [27–35,40,48,50] 

LIME (local interpretable model-agnostic explanations) [39,46,50] 

CAM (class activation mapping) [32,36,39,44] 

Saliency (saliency map) [40,42–44] 

Guided Backpropagation [42,44] 

LRP (layer-wise relevance propagation) [29,34] 

Occlusion (occlusion sensitivity) [30,42] 

AM (activation mapping) [38] 

Attribution maps [47] 

DeepLIFT [42] 

Feature maps [49] 

Grad-CAM + [29] 

Guided Grad-CAM [44] 

GSInquire [37] 

Input X Gradient [42] 

Integrated Gradients [42] 
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Another very popular method is LIME. As clearly visible in stud- 

es [39,46] , some large superpixels include different structures (i.e., 

ung tissue and chest wall). Therefore, this method is not accurate 

nough for an interpretable representation of space due to the lack 

f semantic meaning. 

Some threads related to the application of XAI in the analyzed 

ublications are questionable. Contrary to what [29] states, ex- 

lanations of ensemble models are possible. A single best model 

oes not have to be selected for the visualization of the prediction. 
12 
here are many model-agnostic interpretation methods which do 

ot rely on model architecture and can be easily used for explana- 

ions, such as: LIME, or Anchors. In most XAI methods, it is pos- 

ible to adjust them to suit ensemble models. Moreover, ensemble 

odels usually outperform a single model in terms of accuracy. 

According to Ozturk et al. [33] , the model makes incorrect de- 

isions in poor quality X-rays. This is because the low quality 

r very low-resolution images do not show enough details even 

or the models. Such images should be removed while checking 

he database contents. 

The study [30] noticed that the region of the lesion is marked 

orrectly, but that model prediction is wrong. Unless we perform 

 quantitative and qualitative evaluation of XAI results, we will not 

ave the opportunity to assess the trustworthiness of our model. 

he model may take into greater consideration other image fea- 

ures than it should. To explore this kind of a model mistake, other 

AI methods ought to be used to obtain a better comparison pos- 

ibility. 

.3. Domain experts’ evaluation of XAI methods 

In most of the reviewed studies, the application of XAI comes 

own to the series of colorful images without any assessment 

bout how valid these explanations are. Colored explanations ob- 

cure the original image, which makes it even more difficult to 

ssess their correctness. In images with XAI heat maps, it is of- 

en hard or impossible to see pathologies and guess if the model 

orks well. Raw lung images shall be put next to explanations. 

lso the explanations should be interpreted or validated by radi- 
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Fig. 5. Examples of biased model explanations: a) [36] , b) [27] , c) [40] , d) [47] . Red arrows in the image b) are marked by a radiologist to help locate the lesions. They were 

not present in the training set. 
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logists. Otherwise, they are redundant and contribute nothing to 

he trustworthiness of the model. 

Together with the radiologists, we analyzed the explanations 

rom the discussed works. In the following paragraphs, we discuss 

he most common mistakes or inappropriate explanations. 

In the first example, in Fig. 5 a), the model focuses on clavicles, 

capulas, and soft tissues, which are outside the lungs. Very likely, 

he model predicts illness based on an improper part of the im- 

ge. Location of the areas marked by explanation should be in- 

ide the chest on the lung tissue because COVID-19 lesions are 

ot located on, e.g., lymph nodes. Moreover, there are some el- 

ments that cannot be considered as decision factors like imag- 

ng artifacts (cables, breathing tubes, image compression) or em- 

edded markup symbols [37] . To prevent the model from focusing 

n irrelevant features, in some studies, the lungs were segmented, 

nd their background was removed [31,32,34,45,50] . However, it 

ay not help when some imaging artifacts are present in the area 

f the lungs. 

The second example, in Fig. 5 b) shows that the model does 

ot take the lesions into account. The model states that parts 

f the lungs other than the ones marked by the radiologist are 

elevant for model prediction. Explanations that roughly indicate 

he infection location [32] are not acceptable for the robust model. 

he model should do this with the accuracy of the pixel marked 

y radiologists as relevant. 

The third example, in Fig. 5 c), visualization is not clear. 

he study describes a different XAI method than the one present 

n the image. Moreover, this visualization highlights the whole 

mage, and it is not possible to guess which features took part 

n the prediction. It is important to point out that some explana- 

ion methods can give clearer results for a specific type of DNN 

nd for a specific domain. 
c

13 
The last example, in Fig. 5 d) is blurred. The image of the lungs 

s improperly taken, and the process should be repeated. The cur- 

ent image is useless for the accurate diagnosis process. Such im- 

ges should be removed during data resource verification before 

odel training. 

If the lung lesions are well described, it will be possible to 

repare quantity and quality XAI assessment to score the trust- 

orthiness of the specific model. One possible option would be 

o create measures for the evaluation of XAI image models based 

n the measures quoted in study [61] : Intersection-Over-Union 

nd token-level, which presents measures for the evaluation of text 

odels. 

Evaluation of explanation methods is crucial for confirmation 

f model trustworthiness. First of all, radiologists should validate 

 specific model with the help of XAI. They should assess loca- 

ion, size, and shape of marked regions by explanation methods. 

heir interpretations should contain clear references to structures 

nd lesions in the lungs, such as posterior basal segment, ground- 

lass opacity, consolidation, frosted glass shadows, etc. The exam- 

le of a well-prepared XAI interpretation can be found in the study 

30] . 

. The checklist for responsible analysis of lung images with 

eep learning models 

In this work, we have shown that development of a model 

hich analyzes lung images is a complex process. Therefore, we 

repared the checklist based on the analyzed studies and the er- 

ors we found in them. In [62] , it is shown that well-prepared 

hecklists significantly improve the quality of the modeling pro- 

ess. They help to avoid, or quickly detect and fix, errors. 
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Table 7 

Summary showing which points from the checklist are fulfilled by the reviewed data resources. 

Checklist / Data resource 2) 3) 4) 5) 6) 7) 8) 9) 10) 11) 12) 13) 14) 17) 23) 

[D] Does the data and its associated 

information provide sufficient 

diagnostic quality? 

Y? N? N N? N? N N? N N? N N N Y N? N 

[R] Are the low quality images 

rejected? 

N N N N N N N N N n/a Y N N Y? N 

[D] Is the dataset balanced in terms 

of sex and age? 

Y? ? ? Y? Y? Y Y ? N N ? ? ? Y? ? 

[R] Does the dataset contain one type 

of images (CT or X-ray or the same 

projection)? 

Y Y Y N Y Y N N Y Y Y Y N Y N 

[R] Are the lung structures visible 

(lung window) on CT images? 

n/a n/a n/a n/a n/a n/a n/a n/a n/a N n/a n/a n/a n/a n/a 

[D] Are images of children and of 

adults labeled as such within the 

dataset? 

not all N N Y? Y Y Y N Y not all N N N N N 

[R] Are images correctly categorized 

in relation to class of pathology? 

N N Y N N N N N Y N Y N Y N? N 

[D] Are AP/PA projections described 

for every X-ray image? 

N Y N Y Y Y Y N Y n/a N N Y Y N 
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In the list below, the letter R indicates that the point should be 

onsulted with a field expert / radiologist, and the letter D indi- 

ates that the point should be consulted with a model developer. 

The points in the checklist below are grouped according to 

he sections’ names discussed in this study. This should as- 

ist in finding a detailed description of the problem stated 

n the checkpoint list in the corresponding section. 

• Data resources 

D Does the data and its associated information provide suffi- 

cient diagnostic quality? If images are in DICOM, does the 

header provide the needed information? If not, is it pro- 

vided in any other way? 

R Are the low quality images (i.e., blurred, too dark, or too 

bright) rejected? 

D Is the dataset balanced in terms of sex and age? 

R Does the dataset contain one type of images (CT or X-ray)? 

R Are the lung structures visible (lung window) on CT images? 

D Are images of children and of adults labeled as such within 

the dataset? 

R Are images correctly categorized in relation to class 

of pathology? 

D Are AP/PA projections described for every X-ray image? 
• Image preprocessing 

D Is the data preprocessing described? 

D Are artifacts (such as captions) removed? 
• Data augmentation (if needed) 

D Are the lungs fully present after transformations? 

R Are lung structures visible after brightness or contrast trans- 

formations? 

D Are only sensible transformations applied? 
• Transfer learning (if used) 

D Is the transfer learning procedure described? 

D Is the applied transfer learning appropriate for this case (i.e.: 

images of same type and content have been used to train 

the original model)? 
• Model performance 

D Are at least a few metrics of those proposed in [57] used? 

D Is the model validated on a different database than the one 

used for training? 
• Domain quality of model explanations 

R Are other structures (i.e., bowel loops) misinterpreted as 

lungs in segmentation? 

R All the areas marked as highly explanatory are located in- 

side the lungs? 
14 
R Are artifacts (cables, breathing tubes, image compression, 

embedded markup symbols) misidentified as part of the ex- 

planations? 

R Are areas indicated as explanations consistent with opinions 

of radiologists? 

R Do explanations accurately indicate lesions? 

According to the prepared checklist, in Tables 7 and 8 , we tried 

o analyze which points are fulfilled by the reviewed studies and 

he datasets used in these papers for the neural network training. 

ue to the possibility of changes in preprints, we only examined 

apers already published in journals. 

We applied the following denotements: Y, N mean yes and no 

espectively (if an answer is probable then the additional ? is 

dded), ? means there is no information provided, n/a signifies that 

he issue does not apply to a particular publication. Due to the fact 

hat we can only evaluate the information contained in the article, 

he answers given to some questions from the checklist need to be 

larified. 

The question regarding balance in the dataset ( Table 7 ) has two 

omponents. Sometimes, the dataset is balanced concerning only 

ne criterion but not in terms of the second one. In such cases, we 

ut Y? sign. We did similarly in cases where many metadata are 

issing, but there is a balance considering the existing data. 

We would like to stress that mixed projections of X-rays are 

resent in databases: 5), 8), 23), both PA and lateral. Databases 

) and 9) contain also CT exam images. Furthermore, dataset 23) 

ncludes CT scanogram described as X-ray which is inappropriate 

or medical use. It is important to note that if the datasets in 

able 7 are labeled as containing images incorrectly categorized by 

athology class, then in most cases patients should be classified 

nto more than one pathology class. Moreover, in other databases, 

-rays marked as pneumonia or other disorders have no radiologi- 

al findings. 

In Table 8 , for the papers [35,36] , the assessment of the pres-

nce of artifacts was made based on the images provided by the 

uthors. In the question regarding the visibility of lungs after data 

ugmentation, we put the value N? because there were no de- 

ails about applied random cropping. Such an answer reflects the 

act that cropping can be risky especially if the parameters are not 

arefully chosen. In case of [31] , we put Y? as the authors honestly 

ointed out that their model for segmentation sometimes improp- 

rly generates masks when there is severe opacity. In such situa- 

ions, the mask covers lungs only partially. 
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Table 8 

Summary showing which points from the checklist are fulfilled by the peer-reviewed studies. 

Checklist / Study [27] [28] [29] [30] [31] [32] [33] [34] [35] [36] [37] [38] 

Image preprocessing 

[D] Is the data preprocessing described? Y N Y Y Y Y Y Y Y Y Y Y 

[D] Are artifacts (such as captions) removed? ? ? Y Y Y n/a ? Y N N Y n/a 

Data augmentation (if needed) 

[D] Are the lungs fully present after transformations? ? ? ? n/a Y? Y n/a ? ? ? ? N? 

[R] Are lung structures visible after brightness 

or contrast transformations? 

n/a ? n/a n/a n/a Y n/a ? n/a ? ? n/a 

[D] Are only sensible transformations applied? Y ? Y n/a Y Y n/a ? ? N N N 

Transfer learning (if used) 

[D] Is the transfer learning procedure described? Y n/a n/a Y? Y n/a Y Y Y Y Y Y 

[D] Is the applied transfer learning appropriate for 

this case? 

N n/a n/a N N n/a N Y? N N N N 

Model performance 

[D] Are at least a few metrics of those proposed 

in [57] used? 

Y Y Y Y Y Y Y Y Y Y Y Y 

[D] Is the model validated on a different database 

than the one used for training? 

N N N N Y Y N N N N N N 

Domain quality of model explanations 

[R] Are other structures (i.e., bowel loops) 

misinterpreted as lungs in segmentation? 

n/a n/a n/a n/a N Y? n/a N n/a n/a n/a Y 

[R] All the areas marked as highly explanatory are 

located inside the lungs? 

Y n/a Y n/a Y Y Y? Y N Y Y 

[R] Are artifacts misidentified as part 

of the explanations? 

Y n/a N n/a n/a n/a n/a N n/a n/a n/a 

[R] Are areas indicated as explanations consistent 

with opinions of radiologists? 

N n/a n/a n/a n/a n/a n/a n/a Y n/a n/a n/a 

[R] Do explanations accurately indicate lesions? Y? n/a Y? n/a Y? Y N N N Y? N Y 
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8 https://github.com/Hryniewska/checklist 
We would like to explain the criteria for assessing data aug- 

entation and transfer learning. In the case of the former, we put 

 when horizontal flip was applied. In the latter, the main crite- 

ion was whether the authors used a model pre-trained on Ima- 

eNet dataset. Such behavior is not recommended as natural scene 

mages are significantly different from medical images. The biggest 

ifference is the fact that X-ray and CT images are in grayscale un- 

ike images in ImageNet. In the reviewed papers, there were two 

pproaches to transfer learning: the backbone weights were frozen 

nd the case where the pre-trained weights were just an initializa- 

ion and were later trained. We decided to put N in both scenarios 

s both require artificial conversion of grayscale images to RGB. 

In Table 8 , the difficulty to assess the solutions applied in the 

apers occurred also in the section requiring radiological expert 

nowledge. In the group Domain quality of model explanations, we 

ere not able to check which of these points were fulfilled by each 

f the studies, as most publications contain only few or even none 

mages, which could be radiologically evaluated. Nevertheless, al- 

hough our observations were made on such limited data, we were 

ble to identify many mistakes in the radiologic background. 

. Conclusion 

The sudden outbreak of the COVID-19 pandemic has shown us 

ow we need effective tools to support the physicians. Deep neu- 

al networks can offer much in the analysis of lung images, but re- 

ponsible modeling requires very thorough model validation. Mod- 

ls without explanations create validation debt and explanations 

ithout consultations with a radiologist are just an illusion of val- 

dation. 

This work shows a critical analysis of 25 state-of-the-art articles 

hat use deep learning models based on lung images to identify 

OVID-19. We have selected the most advanced papers in which 

he authors made extra effort to supplement the models with ex- 

lanations. But even in this sample, it turns out that only in 7 out 

f the 25 reviewed studies, the models were consulted with radi- 

logists and regarding the model explanations, they were validated 

nly in three studies [33,35,50] . 
15 
It is important to point out that, for medical examination, the 

ost valuable are large-resolution images, especially in DICOM for- 

at. Surprisingly, out of the considered datasets, DICOM COVID- 

9 cases are available only in one online dataset, and there are 

nly four datasets with DICOM images for other lung diseases. The 

otivations for explaining models are commendable. Nevertheless, 

n many works, interpretations of explanations and summaries are 

issing. The XAI method is not a conclusion in itself. The fact that 

he model provides correct explanations for a few images does not 

et show that the model works properly. It would be good to quan- 

itatively validate XAI methods. For this purpose, the help of clin- 

cians or proper annotations prepared by radiologists beforehand 

re necessary. 

The paper mentions a long list of problems in modeling, but 

his analysis is not intended to criticize any of the mentioned ar- 

icles, these are state-of-the-art papers often published in presti- 

ious journals. However, the analysis of these articles makes one 

ook critically at standards in AI for healthcare or rather the lack 

f them. We hope that this paper will initiate the process of de- 

elopment of standards for responsible AI solutions in healthcare. 

n this paper, we showed that the verification of the XAI solutions 

or medical images is not only important but it is a must. 

Following the guidelines proposed in the paper, we created an 

nline GitHub repository 8 which can be maintained by the com- 

unity working on AI models for image analysis in healthcare. This 

epository is intended to be a starting point for further develop- 

ent of the proposed checklist to meet the evolving challenges in 

esponsible modeling. We believe that if the proposed checklist is 

aken into account when building models, we will get better mod- 

ls. 
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