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In this paper, we propose a nonlinear feature extraction method for regression problems to reduce the
dimensionality of the input space. Previously, a feature extraction method LDATr, a regressional version
of the linear discriminant analysis, was proposed. In this paper, LDAr is generalized to a nonlinear
discriminant analysis by using the so-called kernel trick. The basic idea is to map the input space into a
high-dimensional feature space where the variables are nonlinear transformations of input variables.
Then we try to maximize the ratio of distances of samples with large differences in the target value and
those with small differences in the target value in the feature space. It is well known that the
distribution of face images, under a perceivable variation in translation, rotation, and scaling, is highly
nonlinear and the face alignment problem is a complex regression problem. We have applied the
proposed method to various regression problems including face alignment problems and achieved

Kernel trick
KDAr

better performances than those of conventional linear feature extraction methods.

© 2011 Elsevier Ltd. All rights reserved.

1. Introduction

In the statistics, machine learning and pattern recognition
societies, regression is one of the classical problems, which tries
to estimate a functional relationship between a set of sampling
points taken from a input space and target values. With classifi-
cation problems, regression problems are categorized as the
supervised learning where a dataset consists of pairs of observa-
tions which have input objects, called as the input variables, and
desired outputs, called as the target variables. On the other hand,
in unsupervised learning only input variables are given to
investigate the intrinsic data structure [1].

In many real world applications of learning process, such as
biomedical data analysis and image processing, the large number
of input variables may cause the so-called curse of dimensionality
where overfitting easily appears and the supervised learning may
be ill-posed [1]. In addition, irrelevant or redundant input vari-
ables tend to complicate the learning process, thereby resulting in
a poor generalization performance [2,3]. For these reasons, it is
desirable to reduce the number of input variables through
dimensionality reduction techniques such as feature extraction
that can improve the overall performance of the learning pro-
cess [4]. Dimensionality reduction is quite desirable not only in
the aspect of reducing the number of required data, but also in
terms of data storage and computational complexity. It also finds
applications in data visualization in unsupervised learning.
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Traditionally, linear feature extraction methods such as prin-
ciple component analysis (PCA) [5], independent component
analysis (ICA) [6], and linear discriminant analysis (LDA) [7] have
been extensively studied and successfully applied to various
problems such as face recognition, image retrieval and so on
[8-12]. Although PCA is one of the most popular and widely used
methods, which is very useful in reducing the dimension of a
feature space to a manageable size, it can still be improved for
supervised learning problems since it is an unsupervised learning
method that does not make use of the target information. Like-
wise, ICA, another unsupervised learning method, also leaves
much room for improvement to be used for supervised learning
problems.

Unlike PCA and ICA, linear discriminant analysis (LDA) [7] was
originally developed for supervised learning, especially for classi-
fication problems, to find the optimal linear discriminating
projections. There are quite a lot of variants of LDA for improving
the performance and coping with the limitation of LDA that it
cannot produce more than C—1 features, where C is the number of
classes [13-15]. Recently, instead of using only up to the second
order statistics as in LDA and its variants, ICA-FX which is an
extension of ICA that utilizes higher order statistics by maximiz-
ing the mutual information between the class and the features
has been proposed for classification problems [16].

Compared to classification problems, relatively little attention
has been taken on the feature extraction for the regression
problems in the machine learning society. On the other hand, in
statistics, several algorithms have been developed as dimension-
ality reduction techniques for regression problems among which
classical multivariate linear regression (MLR) [17] can be the
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basic. Although MLR is the optimal in the sense of least squared
error, it has the limitation that it can only produce one feature. To
overcome this limitation, a local linear dimensionality reduction
method based on the nearest neighbor scheme have been pro-
posed [18]. Sliced inverse regression (SIR) [19] and principal
hessian directions (PHD) [20] are also very popular dimension-
ality reduction techniques for regression problems in statistics.
Rasmussen et al. introduced a regressor called Gaussian process
regression (GPR) [21] and its linear version Gaussian process with
linear regression model (GPL) can be regarded as a linear feature
extraction method [22].

In our previous work, a couple of feature extraction algorithms
have been introduced for regression problems [23,22]. The first
one is the extension of ICA-FX to regression problems [23] which
produced relatively good performance. However, because ICA
based methods are basically iterative methods, the speed of
convergence may become a problem for ICA-FX. Another limita-
tion is that it has a good chance of overfitting because it utilizes
higher order statistics which requires a lot of training samples in
achieving reliable estimation of the distributions. Our second
feature extraction method for regression problems is LDAr [22]
which is a generalization of LDA to regression problems. Although
LDA is widely used for classification problems, it cannot be
directly applied for regression problems and LDAr was proposed
for regression problems which tries to maximize the ratio of
distances of samples with large differences in target value and
those with small differences in target value. Because LDAr
involves in singular value decomposition, it is relatively faster
than iterative methods such as ICA-FX.

Although the aforementioned linear subspace methods finds a
compact representation of the original data when the data form a
linear subspace, the distribution of some data such as face images,
under a perceivable variation in viewpoint, illumination or facial
expression, is highly nonlinear and complex. It is therefore
reasonable that linear subspace methods for feature extraction
fail to provide reliable and robust solutions to those with non-
linear variations. A number of nonlinear methods have been
developed to tackle these shortcomings of the linear subspace
methods and the two most attracting and popular methods are
manifold learning techniques [24-29] and kernel-based approaches
[30-35].

In the manifold learning techniques, the data are assumed to
lie on or near a low dimensional manifold. Finding this inherent
low-dimensional nonlinear embedding hidden in the original data
space is the motivation of the manifold learning. In doing so, they
view the local neighborhood of nonlinear manifold as linear
manifold whose intrinsic spatial geometric structure is preserved
by minimizing the local scatter, thus they can well preserve the
adjacency similarity structure among data points [36].

Unlike manifold learning, the basic idea of kernel-based tech-
niques is to implicitly map the observed data into potentially much
higher dimensional feature space by using the kernel trick and to
find a linear subspace of the feature space [30]. A good introduction
of the kernel trick can be found in [37,30]. In [31], the kernel PCA
(KPCA) which is an application of the kernel trick to PCA was
introduced showing good performance. In [32,33], kernel fisher
discriminant (KFD) and generalized discriminant analysis (GDA)
were presented. Both KFD and GDA can be viewed as an extension
of LDA to feature space using the kernel trick and it was shown that
KFD is equivalent to applying LDA after KPCA [38].

In this paper, we extend the recently proposed LDAr [22] to
nonlinear feature space using the kernel trick and show the
superiority of the proposed algorithm. Because it is a general-
ization of linear discriminant analysis for regression problems in
the feature space by using the kernel trick, we refer the algorithm
as the kernel discriminant analysis for regression (KDAr).

This paper is organized as follows. In the next section, we will
briefly review LDA and LDAr. In Section 3, the algorithm KDAr is
derived by extending LDAr using the kernel trick. Discussion on
the properties of KDAr as well as the relationship of KDAr with
Laplacian eigenmap [26] is made in Section 4. Experimental
results are provided in Section 5 followed by conclusions in
Section 6.

2. Review of LDAr

In classification problems, we are given a dataset consisting of
n input and target pairs {(x;,y;)}{_ ;, where x; € R? is the i-th input
vector, and y; €{1,...,C} denotes the corresponding class label.
Here, C is the number of classes. On the other hand, in the
regression problems, the difference is that the target variables are
continuous such that y; e R', where t is the dimension of the
target vector which is typically 1.!

2.1. LDA

In LDA, the optimal projection vector ve R? is searched for
to maximize the following Fisher’s criterion J(v), which is
defined as the ratio of the between-covariance matrix S, =
(1/n)25:1nc(§c—§)(ic—§)T and the within-covariance matrix
Sw=/M) 611 iy, = o Ri—RIX—R):
VIS
viS,v’

Jw) =

M

Here, X=(1/n)Y_I'_; ; is the total mean of the samples, n is
the number of samples belonging to the class ¢, X.=(1/nc)
Zfemyj _ oXi is the mean of the samples belonging to the class c.
By successively finding m such v, we can constitute the projection
matrix V e R”™ whose k-th column is the k-th projection vector
denoted as v,. Here, m denotes the number of projection vectors
to be found.

The optimization problem in (1) is equivalent to the following
generalized eigenvalue decomposition (GED) problem,

SpVie=2uSwVk, A =A2 = = Am, 2)

where /, ke {1,...,m} is the k-th largest eigenvalue and vy is the
corresponding eigenvector.

2.2. LDAr

In LDAr, LDA is extended to regression problems [22]. Unlike
classification problems which have discrete classes, in regression
problems it is difficult to define between-class scatter and within-
class scatter matrices because target variable y; is continuous.
This problem is resolved by introducing the notion of soft class,
which is summarized as ‘the samples with small differences in the
target values can be considered as belonging to the same class and
the ones with large differences should be considered as belonging to
the different classes’. In contrast, the class information in classifica-
tion problems can be viewed as the hard class. The followings are
the modified within-class and between-class scatter matrices for
LDAr:

1
Swr=—= > fy)E-2)x-x)", (€
W (i) € Aw
1
Sbr= - > oy @i—x)E—x)". “)
(ij) € Ap

! From now on, we will assume t=1 and instead of the vector form y, the
scalar form y will be used without notification.
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Here, A,, and A, are the membership sets of close- and far-
sample pairs respectively which are defined by the radius ¢ as

AWZ{(lv]) |y17y]| <€ l,_]E{],,n}, l?é]}v

Ap={()): |yi—y| > € ije{l,....n}, i#]j}, (5)

where the variables n,, and n;, are the size of the set A,, and A,
respectively, i.e., n, = |Aw| and n, = |Ap|, where | - | denotes the
cardinality of a set. The function f(.,-) is a non-negative weight
function.

Using this modified scatter matrices, the Fisher’s criterion can
be rewritten for regression problems as

VIS, v
VIS, v’

Jwv =

(6)

As stated earlier, maximizing the above Fisher’s criterion is
equivalent to solving the GED problem

SorVik=ASwirVk, A=Ay > - > A, (7)

which is again equivalent to the following eigenvalue decomposi-
tion (ED) problem:

—1 q q
SurSeVik= Vi, A1 =A==, €))

where v; is the most important component, v, is the second
and so on.

Note that the threshold parameter ¢ plays an important role in
setting the boundary. If ¢ is small, n,, becomes small while n,
becomes large and vise versa. In the limit, if ¢ =0, LDAr becomes
identical to LDA with n classes which utilizes a hard boundary.
The threshold ¢ can be represented as a multiple of the standard
deviation oy of target variable y such that e=agy. In [22], xe
[0.1,1.0] was recommended.

Three versions of weight function f(.,-) were used in [22],

ie, faby=1, f(aby=|la-b|—¢|, and f(a,b)=
respectively.

|la—b|—¢

3. Kernel discriminant analysis for regression problems
(KDAr)

The idea of KDAr is to extend LDAr to a nonlinear version by
using the so-called kernel trick [30]. Assume that we have
training data consisting of n input and target pairs {(x;,y;)}_,
where x; e RY and y; € R. Also assume a nonlinear mapping ¢(-)
that maps a point in a d-dimensional input space into a
f-dimensional feature space, i.e.,

¢ RISR. 9)

Here, the dimension of the feature space f can either be finite
or infinite. Suppose for the moment, that the mapping is
centered, i.e., SI'_; ¢(x;)=0. This assumption will be removed
in Section 3.3.

In the following subsection, the modified Fisher’s criterion
which was used in LDAr is extended to a high dimensional
feature space.

3.1. Fisher’s criterion

By replacing x in (3) with ¢(x), we obtain a new within
covariance matrix in the feature space as follows:

1
Swr=r= > SONP@)—@EP@E) P

W (i) € Awr

-l n n
= DD [p@)—pENIwidE) —d())']

i—1j=1

2 non n n
e [Z 2 prwpx)' = > qb(xi)wfj(ﬁ(xj)T}

i=1j=1 i—1j=1

i=1j=1

) % [i P (il Wij) ol i i ¢(xi)wij¢(xj)T}
i= j=

2
- PX)Dw—Wyw)p(X)"

2
= = pXLupX)", (10)

w
where X=[x;,....%:,]e R”" is an input matrix, dX) =
[p&1), ..., px)] e R is a feature matrix, Wy, = [wyle R™" is a
symmetric matrix whose (ij) element is

Wi — f(.yivyj) if (l']) € Awr,
710 otherwise,

Dy, =diag(dY,...,dy) is a diagonal matrix with its i-th diagonal
element being d' = 3°/_; w;, and Ly2Dy—W, is a Laplacian
matrix whose row and column sums equal zero.

Likewise, a new between class covariance matrix in the feature
space becomes

2 2
Shr= o PX)(Dp—Wp)pX)" = o PXOLypX)T, (11)

where W), = [b] e R™" is a symmetric matrix whose (i,j) element
is

b Foyy if (1)) € Apr,
710 otherwise,

Db:diag(db,...,dg) is a diagonal matrix with its i-th diagonal
element being df’ =>/_1by and L, £Dp—W,,.

The matrices W,, and W, can be regarded as edge matrices that
represent the local similarity and the local dissimilarity of the
samples, respectively.?

By replacing S,,, and S, in (6) with S and S{. respectively, we
obtain the Fisher’s criterion in the feature space as follows:

TP
=varv

TGP 4°

VIS, v

Jw) (12)
Here,ve R is a projection vector in the feature space.

However, direct calculation of v by solving the corresponding
GED problem of (12) is difficult because the dimension of v is not
known and furthermore it could be infinite. To resolve this
problem, an alternative way of using the kernel trick to obtain a
projection of a sample in the feature space is derived in the next
subsection.

3.2. Projection in the feature space

We know that the projection vector v is a linear combination
of the training samples in the feature space, i.e.,

n
V=) 2p®)=pX) (13)
i=1
for some a=[oy,...,0]" € R".

Considering that the projection of a sample x in the feature
space is obtained by the inner product of the projection vector v
and the sample ¢(x), the projection of the entire training data is
obtained by

VIpX) =a’ g p(X) = 'K, (14)

2 Note that W,, can be treated the same way as the edge matrix for the
Laplacian-eigenmap [26] except that the element w;; is determined by the target
value.
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where K2 $X) ¢(X) is a centerized kernel matrix whose (i)
element is k(x;,X;) = d)(xi)Tqb(xj). Then it is easy to show that the
numerator and denominator of (12) are

vishy= ni a'K(Dp—Wp)Ke,
b

visdv= nl o K(Dyw—Wy)Ka, (15)
w

respectively, because K is symmetric.
Let S¥ = K(D,—Wp)K and Sf, = K(Dw—W,,)K. Then, the modi-

fied Fisher’s criterion (12) becomes a function of a as follows:

a’SKa

TGK o
alSya

Jy= (16)
The optimal «'s can be obtained by solving the following GED
problem:

Koy =S8, A =lp= - = 17)

After the computation of e, k=1,...,m, an m-dimensional
nonlinear feature vectors Z e R™" of the training data is obtained
by the inner product of the matrix A&[ay,...,un] € R™™ and the
kernel matrix K, i.e., Z=A"K.

Now let us consider how an arbitrary sample in the input
space is mapped to the feature space. When a new sample x e R?
is presented, it is firstly mapped to the feature space by ¢(x) and
then projected in the feature space by the projection vector v, i.e.,

- px) >V P(X). (18)
Since v = ¢(X)a, it becomes
V@) = ol pX)" p(x) = a [kxX1), . .. k(®x,x0)]" = a"k(X), (19)

where  kx)=[kx,x1), ..., kxx,)]" € R". Aggregating m such
projections, a nonlinear feature vector ze R™ is obtained by
z=ATk(x).

Note that in the computation of a's, the exact form of the
nonlinear mapping ¢(-) is not needed. Instead, ¢(-) always appears
in the form of a kernel function k(-,-) which is defined as the inner
product of ¢(.) to itself. Therefore, we only need to define an
appropriate kernel function k(-,-) to obtain & and consequently the
projection of a sample in the feature space v’ ¢(x)( = a”k(x)). Note
also that once the kernel function k(-,-) is defined, the exact form
of the mapping ¢(-) cannot be derived from it in most cases.

3.3. Centerization

Until now, we have assumed that the nonlinear mapping is
centered, i.e, >7_; ¢(*;)=0. However, for an arbitrary kernel
function k(-,-), it is not guaranteed that the samples in the feature
spaces ¢(X) have zero mean. Therefore, the centerization process
which is described below is essential in KDATr.

To distinguish from the centerized version of the mapping ¢(.),
we denote the uncenterized mapping as ¢(:). Likewise, the
uncenterized kernel is denoted as k(-,-) in contrast to the center-
ized kernel k(-,-). Furthermore, it is assumed that x(x,y)=
P® Q).

Because the projection v in the feature space should be
performed on the centered data, ¢(X) is shifted to ¢(X) by
subtracting its mean @ =(1/n)YJ_; o&)=(1/meX)e,, ie.,
dX) = pX)—pel = p(X)(I,—(1/n)eel), where e, =[1,...,1]" e R".

If we define 1,2 (1/n)eqel, i.e, all the elements of 1, being 1/n,
then

dX) = eX)In—1n). (20

Consider that the kernel functions and the nonlinear mappings
have the relationship x(x,y)= @) @) and kx,y) = dX) p¥),

respectively. Then, the kernel matrices
K =[K(x;,%))] have their relationship as follows:

K =¢X) pX)
= [0 Un—1)]" X)) (In—1p)]
= (In—1)K(In—1p). @21

K =[k(x;,x))] and

Likewise for an arbitrary sample x, the centerization can be
obtained by

k@) = $00" p®)
1
= =109 | 000~ 0 000es

1
=(n—1n) [q)(quJ(x)— a <p(X>T<p(X)en]

:(In—ln)

K(X)— %Ken} , 22)

where 1(X) = [K(X,X1), ..., KXxp)]" € R".

3.4. Algorithm: KDAr

Summarizing the previous subsections, the overall KDAr
algorithm is as follows:

e Training:

(1) Generate an uncentered kernel matrix K € R™" from the
training samples.

(2) Center the kernel matrix by K = K-1,K-K1,+1,K1,.

(3) Generate the edge matrices W,,,W, and the corresponding
diagonal matrices D,,D, by using the weight function
Fuyp). Set Ly = Dyw—Wy, and Ly = Dy—W,,

(4) Set SK =KIL,K and S¥, = KL,K.

(5) Apply GED for (S,SX) to find the eigenvector matrix
A=[aq,...,%n] whose k-th column, a, is the eigenvector
corresponding to the k-th largest eigenvalue.

(6) Obtain a nonlinear feature matrix Z of the training data by
Z=A"K.

e Test:

(1) For a test sample x, generate an uncentered kernel vector
K(x) e R".

(2) Center the kernel vector by k(x) = (I,—1,)[k(x)—(1/n)Kex].

(3) Obtain a nonlinear feature vector z of the test sample by
z=ATk().

In KDAr, the kernel function x(-,-) plays an important role and
the essential property of the kernel function is that it should be
decomposed into an inner product of a mapping ¢(:) to itself, i.e.,
K(x.y) = @(X)T @(y). However, it is obvious that not all the func-
tions meet this property. To be a proper kernel function, a
function should meet the so-called Mercer’s condition [30] and
the two most popular kernels are the (inhomogeneous) polynomial
kernel x(x.y)=xTy+c)? and the Gaussian RBF kernel k(x,y)=
exp(—llx—ylI> /) [30] in which ¢, d, and ¢ are the kernel
parameters.

In the training of KDAr, the most time consuming step is
Step 5 where the GED problem should be solved. Because the
matrices S§ and S¥, are R™", the computational complexity of
KDAr is normally O(n?). From this, we can see that the computa-
tional complexity of KDAr does not depend much on the dimen-
sion of the input space d. On the other hand, the computational
complexity of linear methods such as LDA and LDAr highly
depends on d. In the next section, more detailed discussion on
KDAr is made.
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4. Discussion on KDAr

In this section, we investigate the properties of KDAr by
solving the solution of (16) in an alternative way and the
relationship between KDAr and Laplacian Eigenmap [26] is made.
In addition, different methods of choosing neighborhood of a
sample such as ¢-neighborhood and k-nearest neighborhood are
discussed.

4.1. An alternative solution

The solution of the optimization problem (16) can be obtained
in an alternative way. Let £ Ka. Then the optimization problem
(16) becomes

B'LypB

JB)= (23)
B'Lup

and the corresponding GED problem becomes

Ly = ALwpB. (24)

If we take m eigenvectors B[, ...,B,] € R™™ corresponding
to the m largest eigenvalue of (24), it is easy to show that the
nonlinear projection Z of the training data X is Z=B". It is
important to note that the projection Z is independent of the
kernel matrix K. Whatever the kernel function x(-,-) may be, the
training samples are mapped to fixed positions in the feature
space. Furthermore, the projection does not depend on the input
space either, which only depends on the choice of the edge
matrices W,, and W,,.

Before we further check this property more closely by a simple
toy example, let us focus on the solution of the GED problem. In
(24), both L,, and L, are Laplacian matrices and it is easy to show
that all the Laplacian matrices have a trivial eigenvector f,=e,
corresponding to the eigenvalue of 0. With B = B,, the Fisher’s
criterion J(B) is of the form $ and 2 in (24) can take any value,
which makes the problem ill-posed. Therefore, it is necessary to
remove this trivial solution from the eigenvector matrix B.

One way of doing this is to avoid O from the denominator
of J(B) as follows. Let r(<n) be the rank of L,.> Then, by the

eigenvalue decomposition, it becomes L, = UAUT, where
U=[uy,... u;]e R™' and A=diag(lq, ...,/r) e R™". Let
U =[uy/\/71,....u:/\/4;] and let us introduce a new variable '

such that p=U'p. Then U'L,U =1, and maximizing (23) is
equivalent to maximizing

/Ty pT / R/
, U L, U
Jjpy= B LUF
BB
which is again equivalent to maximizing
JB)=PB"L,p subject to IfI=1, 25)

where L,=UTL,U". The solution ' of the above optimization
problem is just the eigenvector corresponding to the largest
eigenvalue of L. By this technique, we can successfully avoid
the ill-posed condition of .

Revisiting the original solution «, the rank of S¥, does not
exceed that of L, because S’&,:KLWK. Furthermore, oy =K 'e,
becomes a trivial generalized eigenvector for (SX ,S"fv). To remove
oo from the eigenvector matrix A, the same technique can also be
applied in solving the GED problem for (SX,S¥,).

Although the kernel function does not have any influence on
the projection of the training data, it plays its role for the
projection of the unseen test data x. Because f = Ka, it becomes
a=K~!p, if K is nonsingular. Therefore, replacing o with K~!f in

3 In most cases, r will be r=n—1.

(19), the projection of the test data can be obtained as
z=B"K k(x). However, this alternative approach of solving f
instead of a is not preferable in practice because taking the
inverse of K is a time consuming job especially when the number
of training samples is large.

4.2. Different type of membership sets

Now, let us more closely look at the property of KDAr that the
nonlinear projection Z of the training data X only depends on the
choice of the edge matrices W,, and W,, by using a toy example
shown below. From now on, we assume that the data
X =[x1,...,X;] is sorted according to their target values y’s in
ascending order, ie., if i<j then y; <y; for all i,je{1,...,n}. In
addition, to simplify the problem, let the ¢-neighborhood mem-
bership sets (5) are modified as the k-nearest neighborhood type
membership sets as follows:

Aw={(j): |i—j] <7, ijefl,....n}},

Ap=1{(ij): |i—j| >, ije(l,...,n} (26)

and let the weight function be constant, i.e., f(a,b) =1.
Now consider five training samples X =[xy, ...,Xs] are given.
If we set T=1 in (26), then the edge matrices become

11000 00111
11100 00011
Wy=|0 1 1 1 0|, Wy=|1 0 0 0 1],
00111 11000
0 0011 11100
and the corresponding Laplacian matrices become
1 -1 0 0 O 3 0 -1 -1 -1
-1 2 -1 0 0 0 2 0o -1 -1
Ly={0 -1 2 -1 0], Ly=|(-1 0 2 0o -1
0 o -1 2 -1 -1 -1 0 2 0
0O 0 0 -1 1 -1 -1 -1 0 3

Solving the GED problem (25), the largest eigenvalue is 1; = 12.09
and the corresponding eigenvector becomes ;=
[-0.97,—0.60,0.00,0.60,0.97]". This result shows that regardless
of the input data X, the nonlinear mapping maps the training
sample x; with smallest target value to —0.97, x,, with the
second smallest target value to —0.60 and so on. Note that as
the target value increases, the projection value also increases. The
four eigenvectors f;,i=1,...,4 are plotted in Fig. 1 with their
corresponding eigenvalues. In the figure, we can see that as the
index i of the eigenvector increases, the frequency of f; becomes
higher.

4.3. Relationship with Laplacian eigenmap

From now on, let us further focus on the optimization function
(23). As in the previous toy example, if we use a constant weight
function f(a,b)=1, it becomes L, +L,=nl,—1, because
Ww+Wp,, =1, and Dy, +D;, = nl,. From this, (23) becomes

B (I —1n—Lw)B _ n—(ep? _

D= p FTLuB

1 27)

if 1B =1.

Considering that e, is a trivial eigenvector of L, all the other
eigenvectors of L,, can be made to be orthogonal to e,. Therefore,
el =0 if B is a non-trivial eigenvector of L,,. Then, we can clearly
see that maximizing J(f) in (27) is equivalent to minimizing
the denominator 'L, B of (27) excluding the trivial solution of
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Fig. 1. Projection of the training samples (B=[;,..., p4]) for the toy problem. (a) f; (41 =12.09), (b) B, (12 =2.62), (c) f3 (43=0.91), (d) B4 (14 =0.38).

Po=en, ie.,

B=argminp’L,B subject to Il =1, Bok e,.
B

This is an ED problem of L,, and the formulation is almost the
same as the Laplacian eigenmap which tries to solve the following
GED [26]:

B=argminp’L,p subject to D, p=1,80Le,.
B

Note that especially when the number of training samples n is
big, D,, approaches I, in which case, the form of the above
Laplacian eigenmap problem becomes exactly the same as that
of KDAr. The main difference between Laplacian eigenmap and
KDAr lies in that the Laplacian matrix L, is generated based on
the target value y in KDAr, while it is from the neighborhood
information of the input data X in Laplacian eigenmap. Again,
note that although L, is independent of the neighborhood
information of the input data X, X play its role through the kernel
matrix K by =K' and consequently in the projection of the
unseen test data x.

4.4. Choice of the edge matrices

In KDAr, the edge matrices W,, and W, which are from the
membership sets A,, and A, play a key role. Therefore, the choice
of membership sets are very important in the success of KDAr.
Previously in this paper, two versions of membership sets have
been introduced, i.e., c-neighborhood (5) and k-nearest neighbor-
hood (26). In this subsection, the conditions to be good member-
ship sets are discussed.

Let each sample of the training data {(x;,y;)}{_; be denoted as a
node of a size n adjacency graph G, which is indexed by an integer
ie{1,...,n}. In addition, assume that a pair of nodes (i,j) are linked
if the pair is an element of A,,. A graph is said to be connected in
the sense of a topological space, if there is a path from any node to
any other node in the graph [36] and in our case, the connectivity
of G is absolutely determined by the edge matrix W,,. Remind that
we assume that the data are sorted in the ascending order of the
target value.

Now, consider G can be divided into two non-empty connected
sub-graph G;={1,...,k} and G, ={k+1,...,n} where all the
nodes in G; have no link with the nodes in G,. In this case, the
similarity edge matrix W,, can be divided into two parts

Wi 0
WWZ[ 0 sz]'

where W,,; e RF* and Wy, e R® %K consequently, the cor-
responding Laplacian matrix L,, can also be divided into two parts

Ly = [LW] 0 }
0 Ly

Note that like L,,, the sub-matrices L,; and L,, are also
Laplacian matrices. Therefore, L,,; and L,,, have their correspond-
ing trivial eigenvectors of e, and e,_,, respectively. Combining
these two, the rank of L, will be at most n—2 and the two
orthogonal eigenvectors corresponding to zero eigenvalue are
Bos =1e}.0]_,1" and B, =[0f.e! _,]", where 0; is the i-dimensional
zero vector. Any combination ﬂ0=C1ﬂ0!1+C2ﬂ0,2 (c1,c2 e R) of

these two orthogonal eigenvectors also makes L, ° = 0. However,
B°(0X en) does not make L,f° =0 in general.
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Table 1

RMS errors for the simple linear dataset. Averages of 10-fold CV. Numbers in the parentheses are the standard deviations.

No. of features (m) 1 2 3 4 5
(a) 5NN
Original - - - - 1.09 (0.07)
PCA 3.03 (0.70) 2.46 (0.63) 2.31 (0.69) 1.66 (0.71) 1.09 (0.07)
MLR 0.16 (0.08) - - - -
GPL 0.36 (0.03) - - - -
SIR 0.16 (0.07) 0.43 (0.07) 0.69 (0.06) 0.90 (0.05) 1.11 (0.04)
PHD 3.01 (0.87) 2.67 (0.80) 2.05 (0.62) 1.69 (0.57) 1.11 (0.04)
WPCA 0.18 (0.06) 0.44 (0.07) 0.70 (0.06) 0.92 (0.05) 1.11 (0.04)
LDAr 0.15 (0.08) 0.17 (0.07) 0.18 (0.07) 0.20 (0.06) 0.20 (0.06)
KDAr (¢ = 10°) 0.16 (0.04) 0.16 (0.04) 0.16 (0.04) 0.16 (0.04) 0.16 (0.04)
(b) SVR
Original - - - - 0.14 (0.02)
PCA 2.75 (0.18) 2.59 (0.24) 2.57 (0.24) 2.58 (0.29) 0.14 (0.02)
MLR 0.11 (0.01) - - - -
GPL 0.32 (0.05) - - - -
SIR 0.11 (0.01) 0.12 (0.01) 0.13 (0.02) 0.13 (0.02) 0.14 (0.02)
PHD 2.63 (0.34) 2.55(0.32) 2.15 (0.57) 1.10 (0.86) 0.14 (0.02)
WPCA 0.12 (0.01) 0.12 (0.01) 0.13 (0.01) 0.13 (0.01) 0.14 (0.02)
LDAr 0.12 (0.01) 0.13 (0.02) 0.12 (0.01) 0.13 (0.02) 0.14 (0.02)
KDAr (o = 10°) 0.11 (0.01) 0.11 (0.01) 0.11 (0.01) 0.11 (0.01) 0.11 (0.01)
(c) GPR
Original - - - - 0.10 (0.01)
PCA 2.74 (0.29) 2.59 (0.24) 2.57 (0.23) 2.55(0.28) 0.10 (0.01)
MLR 0.10 (0.01) - - - -
GPL 0.32 (0.05) - - - -
SIR 0.11 (0.01) 0.11 (0.01) 0.10 (0.01) 0.10 (0.01) 0.10 (0.01)
PHD 2.63 (0.34) 2.55 (0.33) 2.14 (0.58) 1.10 (0.87) 0.10 (0.01)
WPCA 0.11 (0.01) 0.11 (0.01) 0.10 (0.01) 0.10 (0.01) 0.10 (0.01)
LDAr 0.10 (0.01) 0.10 (0.01) 0.10 (0.01) 0.10 (0.01) 0.10 (0.01)
KDAr (¢ = 10°) 0.10 (0.01) 0.10 (0.01) 0.10 (0.01) 0.10 (0.01) 0.10 (0.01)

Therefore, with g=g°, the generalized eigenvalue 1 in (24)
will be positive infinite and g° becomes the optimal solution of
(23). However, considering that input data X are projected to g7,

we can see that g% is not a good choice. With g° all the data in G;,
i.e.,, {¥q,...,X}, are projected to the same point and likewise, the
ones in G, ({X;.1,...,X,}) are also projected to a single point.

Although this problem can be resolved by the technique
described in Section 4.1 which avoids 0 from the denominator
of J(B), there remains another problem. Remind that finding f is
equivalent to finding the eigenvector of L,, corresponding to the
smallest non-trivial eigenvalue, if the constant weight function
f@a,b)y=1 is used. If we assume L,, can be separated into two
disjoint sub-matrices Ly; € R®* and L, e R0 then the
eigenvectors of L, are also divided into two sets {f:f=
w7,07_,1"}y and {B: B=[Of,u"]"}, where v's and u’s are the eigen-
vectors of L,,; and L, respectively. In this case, any eigenvector
contains a group of zeros, which indicates that many training
samples are projected to a single point 0.

From the above discussion, it is desirable that L, is not
separated into sub-matrices which is possible by making a
connected graph G. If we use the e-neighborhood membership
sets (5), then the connectivity depends on the difference of the
target values of two consecutive nodes i and i+1. That is, if
Yi+1—Yi > 7, the two consecutive nodes are not linked, making the
adjacency graph G disconnected. Therefore, to ensure G be
connected, for all the ie{1,...,n—1}, y;, 1—y; should not exceed
¢. As a consequence, in case of large variation of y; , ;—y; values,
the performance of e-neighborhood membership sets (5) is
expected to be poor.

On the other hand, if we adopt k-nearest neighborhood type
membership sets (26), then for all the 7 > 0, the connectivity of G

is guaranteed. Therefore, in all the experiments of the next
section, we use (26) for the membership sets.

5. Experimental results

In this section, the proposed algorithm KDAr is applied to
several regression problems and the performance of KDAr is
compared with those of conventional linear feature extraction
methods such as PCA, MLR, GPL [21], SIR, PHD, WPCA [22], LDAr.
Note that among these, PCA can be categorized as unsupervised
feature extraction methods, while the others are classified as
supervised feature extraction methods which utilizes the target
information.

Throughout the paper, the following experimental settings
were used:

e Regressor: As in [22], the weighted five nearest neighborhood
(5NN) regression [39] was used as a regression system. This
regressor was chosen because of its simplicity. For some
experiments, support vector regressor (SVR) [30,40] and Gaus-
sian process regressor (GPR) [21] were also used for compar-
ison.

In the 5NN regressor, the estimation of the target variable £(z)
with input variables z is obtained as follows:

@=Ltz

(28)

Here, N(2) is the set of indices of five nearest neighbors of z
in the training set and q(z,z;) is a weight function which was

set q(z,z;)) =1/(1++/llz—zll).
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Table 2

RMS errors for the nonlinear dataset. Averages of 10-fold CV. Numbers in the parentheses are the standard deviations.

No. of features (m) 1 2 3 4 5
(a) 5NN
Original - - - - 0.46 (0.02)
SVR (6=1) - - - - 0.27 (0.02)
PCA 0.77 (0.02) 0.76 (0.05) 0.61 (0.16) 0.51 (0.14) 0.46 (0.02)
MLR 0.52 (0.07) - - - -
GPL 0.54 (0.06) - - - -
SIR 0.56 (0.09) 0.50 (0.08) 0.48 (0.09) 0.44 (0.06) 0.46 (0.01)
PHD 0.72 (0.14) 0.66 (0.19) 0.59 (0.20) 0.54 (0.15) 0.46 (0.01)
WPCA 0.48 (0.07) 0.48 (0.08) 0.45 (0.08) 0.43 (0.05) 0.46 (0.01)
LDAr 0.47 (0.10) 0.44 (0.11) 0.37 (0.07) 0.38 (0.03) 0.44 (0.02)
KDAr (0 =5) 0.24 (0.04) 0.24 (0.04) 0.24 (0.04) 0.23 (0.04) 0.23 (0.03)
(b) SVR
Original - - - - 0.24 (0.02)
PCA 0.70 (0.02) 0.80 (0.11) 1.11 (0.27) 1.39 (0.31) 0.24 (0.02)
MLR 0.55 (0.06) - - - -
GPL 0.64 (0.07) - - - -
SIR 0.50 (0.07) 0.50 (0.07) 0.78 (0.20) 0.86 (0.31) 0.24 (0.02)
PHD 0.71 (0.03) 0.82 (0.14) 1.04 (0.16) 1.18 (0.39) 0.24 (0.02)
WPCA 0.60 (0.06) 0.64 (0.14) 0.69 (0.08) 1.18 (0.25) 0.24 (0.02)
LDAr 0.59 (0.05) 0.64 (0.08) 0.70 (0.20) 0.88 (0.19) 0.25 (0.02)
KDAr (0 =5) 0.22 (0.03) 0.21 (0.02) 0.21 (0.02) 0.21 (0.03) 0.20 (0.02)
(c) GPR
Original - - - - 0.10 (0.01)
PCA 0.70 (0.01) 0.70 (0.01) 0.68 (0.03) 0.57 (0.07) 0.13 (0.02)
MLR 0.54 (0.05) - - - -
GPL 0.54 (0.05) - - - -
SIR 0.48 (0.06) 0.46 (0.06) 0.45 (0.09) 0.38 (0.12) 0.10 (0.01)
PHD 0.69 (0.02) 0.67 (0.02) 0.65 (0.03) 0.53 (0.15) 0.16 (0.03)
WPCA 0.58 (0.05) 0.53 (0.06) 0.49 (0.07) 0.48 (0.08) 0.10 (0.02)
LDAr 0.58 (0.04) 0.56 (0.05) 0.42 (0.09) 0.33 (0.11) 0.10 (0.01)
KDAr (0 =5) 0.18 (0.02) 0.16 (0.02) 0.16 (0.02) 0.15 (0.02) 0.10 (0.01)

e Edge matrices: For KDAr, the (ij)-th elements of the similarity
edge matrix W,, and the dissimilarity edge matrix W), were set
to

T—|i—j
o= {1

and

if [i—j] <7,
otherwise

b min(|i—j|-,7) if |i—j] =7,
i=Yo otherwise,
respectively where t was set to n/10.

e Kernel function: As a kernel function, Gaussian RBF kernel of
the form x(x,y) = exp(—lx—yI? /do) is used with various values
of ¢. Here, in the denominator of the exponential, the dimen-
sionality of input space d is multiplied as a normalizing factor.
The o that resulted the best performance on the test data is
reported in this paper.

All the experimental settings of the conventional methods are
the same as in [22].

5.1. Artificial problems

5.1.1. Linear case

Suppose we have five independent input features x;—xs which
have Gaussian distribution with zero mean and variance of 1. Also
suppose that the target output variable t has the following
relationship with the input x:

t=2x1+3x3.

For this problem, 1000 samples were generated and the perfor-
mance of KDAr was compared with those of conventional feature
extraction methods. As a regressor, not only 5NN regressor
described above, but also SVR and GPR were used. Ten-fold
cross-validation was applied and root mean square (rms) errors
on the test data with various numbers of extracted features
(m=1,...,5) are shown in Table 1. The numbers in the parenth-
eses are the standard deviations. For KDAr, the optimal ¢ value is
also reported in the table. Note that MLR and GPL can extract only
one feature.

From the table, regardless of the type of regressor, we can see
that when the number of extracted features is 1 (m=1), all the
feature extraction methods except PCA, GPL and PHD performed
well and resulted almost the same rms error. GPL was better than
PCA and PHD, but it resulted in poorer performance than the
other methods. Because this problem is linear and the distribution
is Gaussian, MLR is optimal in the least square sense and other
linear methods such as SIR, WPCA and LDAr performed almost the
same as MLR when m=1. Regardless of the type of regressor,
KDAr which extracts nonlinear features performed equally well
for this linear problem.

When 5NN regressor was used, as the number of extracted
features increases, the performances of other conventional linear
feature extraction methods become worse, while the rms error of
KDAr remains unchanged. On the other hand, when other non-
linear regressors such as SVR and GPR were used, the perfor-
mances were almost constant regardless of the number of
extracted features. The reason why 5NN regressor performs
poorer with additional features is that the additional features
act as noise in calculating the Euclidian distance in (28) while the
nonlinear regressors, SVR and GPR, efficiently reduce the effect of
the additional features.
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Table 3
RMS errors for the Housing dataset with 5NN. Averages of 10 experiments. Numbers in the parentheses are the standard deviations.
No. of features (m) 1 3 5 7 9 11 13
Original - - - - - - 4.02 (0.48)
PCA 7.98 (0.82) 4.44 (0.63) 4.10 (0.55) 4.03 (0.50) 3.98 (0.57) 3.90 (0.50) 4.02 (0.48)
MLR 4.04 (0.50) - - - - - -
GPL 6.82 (1.24) - - - - - -
SIR 4.26 (0.56) 4.15 (0.48) 3.66 (0.53) 3.77 (0.58) 3.98 (0.67) 4.01 (0.60) 4.17 (0.66)
PHD 8.25 (0.81) 5.16 (0.77) 4.57 (0.39) 4.32 (0.72) 4.23 (0.61) 4.19 (0.60) 4.17 (0.66)
WPCA 468 (0.51) 4.18 (0.66) 3.89 (0.59) 3.78 (0.70) 4.06 (0.60) 408 (0.59) 4.17 (0.66)
LDAr 4.19 (0.64) 3.98 (0.61) 3.60 (0.73) 3.55 (0.60) 3.48 (0.67) 3.49 (0.66) 3.52 (0.67)
KDAT (¢ = 10%) 3.10 (0.42) 2.73 (0.51) 2.65 (0.44) 2.77 (0.43) 2.81 (0.43) 2.85 (0.46) 2.84 (0.47)
5.1.2. Nonlinear case Table 4
Suppose we have five independent input features x;-xs which One tailed t-test for the Housing dataset.
have Gaussian distribution with zero mean and variance of 1.
Furthermore, suppose that the target output variable t has the No. of features (m) 1 3 5 7 9 11 13
following nonlinear relationship with the input x: T-value 455 497 352 334 266 252 263
f = Sin(x, -+ 2x do.f. 17 17 15 16 15 16 16
= SIN(Xz +2Xy). Togv, 257 257 260 258 260 258 258
. Tos. 174 174 175 175 175 175 175
For this problem, 1000 samples were generated. Ten-fold 95% .
N ! A A Accepted (99%) Hu Ha Ha Hx Ha Ho Hu
cross-validation was applied to this dataset and the rms errors Accepted (95%) Ha Hy Ha Ha H, Ha Ha

of various feature extraction methods on the test data are
reported in Table 2. As well as 5NN regressor, SVR and GPR were
also used. As in Table 1, the numbers in the parentheses are the
standard deviation and the optimal value of ¢ is reported
for KDAr.

As can be seen from the table, for this nonlinear problem,
when 5NN was used as a regressor, KDAr performed far better
than the other linear methods because it utilizes nonlinear
feature space. Note that the performance of KDAr is almost
constant regardless of the number of extracted features m in
Table 2(a). When SVR was used, in Table 2(b), we can obtain a
slightly improved performance of KDAr compared to 5NN case. In
this case also, KDAr slightly outperformed other methods. In
Table 2(c), when GPR was used, the rms errors of MLR, SIR, WPCA,
LDAr and KDAr were almost the same regardless of the number of
extracted features.

The reason for this phenomenon can be conjectured as follows.
The conventional feature extractors have a limited power of
extracting good features because they only try to find linear
combinations of input variables. Therefore, simple regressors such
as 5NN cannot achieve good performance, while more complex
and contrived regressors such as SVR and GPR may achieve
relatively good results on these linear feature extractors. On the
other hand, because KDAr is a nonlinear feature extractor for
regression problems, its output features are good for any regres-
sor, whether it is simple or complex. From this, we can conclude
that the performance of KDAr is rather consistent regardless of
the regressor used.

5.2. Real world datasets

5.2.1. Housing—Boston

In this section, we have applied the proposed feature extrac-
tion methods to the Housing (Boston) dataset in UCI Machine
Learning Repository [41].

The dataset contains 13 input features, 12 continuous and
1 binary, and 1 continuous target variable. There are total 506
instances. We have randomly divided this dataset into 90%
training and 10% test sets 10 times and reported the average
rms error on the test data in Table 3. Weighted 5NN regressor is
used as a regression system. In the table, the numbers in the
parentheses are the standard deviation of 10 experiments.

From the table, we can see that the KDAr is better than all the
other methods especially when the number of extracted features
m is small. For m=1, the difference of rms errors between KDAr
and LDAr is more than 1.0, while it decreases to around 0.7 when
m=13. The minimum rms error 2.65 was obtained when m=5.

To show the statistical significance of the experimental results,
we have performed one tailed Welch’s t-test [42] in Table 3. The
null (Ho) and the alternative (H,) hypotheses for this statistical
test are as follows:

e Hy: For a fixed number of extracted features m, the perfor-
mances of KDAr and the best linear feature extraction method
are the same.

e Hpu: For a fixed number of extracted features m, KDAr outper-
forms all the other linear feature extraction methods.

The computed T-value, degree of freedom (d.o.f.) and the
corresponding target T values are shown in Table 4. For each m,
if the T-value is greater than Tgg., (Tose, ), the null hypothesis Hg is
rejected with 99% (95%) of confidence, thus alternative hypothesis
H, is adopted.

In the table, when the confidence level is 95%, for all the
numbers of extracted features m, the null hypothesis was
rejected, thus the alternative hypothesis was accepted. If we raise
the confidence level to 99%, for all the numbers of extracted
features except for the case of m=11, the null hypothesis was
rejected. From this, we can conclude that the KDAr outperforms
other linear feature extraction methods for Housing dataset.

5.2.2. Year prediction of million song dataset

This data, a subset of the Million Song Dataset (MSD) [43], can
be found in the UCI Machine Learning Repository [41]. This
dataset consists of total 515,345 songs, among which the first
463,715 examples are training data while the other 51,630
examples are test data. In the dataset, there are 90 input
attributes and the target value is the year of the song, ranging
from 1922 to 2011.

Because the number of training data is so huge, for computa-
tional efficiency, we randomly selected 2000 training samples 20
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Table 5

RMS errors for the year prediction MSD dataset with 5NN. The numbers in the parentheses are the standard deviations of 20 experiments.

No. of features (m) 1 3 5 10 15

PCA 11.80 (0.13) 11.49 (0.15) 11.41 (0.13) 11.16 (0.17) 11.01 (0.13)
MLR 10.44 (0.21) - - - -

GPL 11.25 (0.12) - - - -

SIR 10.44 (0.12) 10.39 (0.14) 10.33 (0.18) 10.29 (0.15) 10.28 (0.14)
PHD 11.81 (0.16) 11.73 (0.16) 11.55 (0.17) 11.33 (0.21) 11.17 (0.21)
WPCA 11.72 (0.26) 11.02 (0.41) 10.74 (0.27) 10.50 (0.12) 10.49 (0.15)
LDAr 11.37 (0.46) 10.74 (0.28) 10.60 (0.09) 10.51 (0.09) 10.49 (0.12)
KDAr 10.23 (0.34) 10.03 (0.10) 10.01 (0.10) 9.96 (0.14) 9.95 (0.11)

Table 6 Table 7

One tailed t-test for the year prediction MSD dataset.

No. of features (m) 1 3 5 10 15
T-value 1.84 6.43 491 5.09 5.86
d.o.f. 11 16 14 18 17
Togy, 2.72 2.58 2.62 2.56 2.57
Tosv, 1.77 1.75 1.76 1.73 1.74
Accepted (99%) Ho Ha Ha Ha Ha
Accepted (95%) Ha Ha Hy Hy Ha

times to extract features with various methods and report the
average rms errors in Table 5. The numbers in the parentheses are
the standard deviations of 20 experiments. In the table, we can
see that for all m, KDAr outperforms other conventional feature
extraction methods.

To show the statistical significance of this result, we also
performed one tailed Welch’s t-test [42] in Table 5. The null (Hp)
and the alternative (H,) hypotheses for this statistical test are the
same as the ones in the previous experiments on Housing dataset.
Table 6 shows that regardless of the number of extracted features
m, Hu is accepted with 95% of confidence. This is also true for 99%
confidence except when m=1 where Hy is adopted. This results
show that KDAr is better than other conventional feature extrac-
tion methods for this dataset.

5.2.3. Orange juice

Orange juice dataset was obtained from the UCL machine
learning database [44], which is to estimate the level of sacchar-
ose of an orange juice from its observed near-infrared spectrum.
It consists of 150 training and 68 test examples with 700 input
features. The target is a continuous variable which corresponds to
the level of saccharose.

As can be seen, this problem is a typical example of small
sample size (SSS) problem whose input dimension d(=700) is
much larger than the number of training examples n(= 150). To
resolve this SSS problem, for all the linear feature extraction
methods except PCA, we have preprocessed the dataset with PCA
and reduced the dimension of input space into 149(=n-1). On
the other hand, unlike the conventional linear feature extraction
methods, the preprocessing step is not applied to KDAr because
KDAr does not suffer from SSS problem.

Table 7 shows the performances of various feature extraction
methods on the test dataset. For this problem, the best rms error
5.45 was obtained by KDAr when m=1. As m increases, the rms
error of KDAr increases up to 6.41 when m=13. Note that the
performance is somewhat unstable and LDAr performed better
than KDAr when m=9. The reason can be attributed to the fact
that 5NN regressor performs unstably when the number of
training examples is small. In fact for ¢ =2 x 10°, the rms error

RMS errors for the orange juice dataset with 5NN.

No. of features (m) 1 3 5 7 9 11 13 700
Original - - - - - - - 8.92
PCA 9.89 938 911 9.10 892 891 891 -
MLR 7.46 - - - - - - -
GPL 9.04 - - - - - - -
SIR 932 938 915 891 892 893 892 -
PHD 1038 920 936 9.05 920 893 892 -
WPCA 961 938 9.09 9.09 891 891 891 -
LDAr 639 683 685 652 6.15 641 654 -

KDAr (6 =2 x 10%) 545 623 6.11 6.29 631 636 641 -

of KDAr was 6.07 which is smaller than that of LDAr. However, for
this value of ¢ rms error was 5.95 when m=1.

5.2.4. SARCOS robot arm

The dataset is to learn the inverse dynamics of a seven
degrees-of-freedom SARCOS anthropomorphic robot arm. It con-
sists of 21 input features (seven joint positions, seven joint
velocities, seven joint accelerations) and seven output variables
(the corresponding seven joint torques). The dataset has pre-
viously been used to study regression algorithms [21,45]. There
are 48,933 input-output pairs in the dataset, of which 44,484
were used as a training set and the remaining 4449 were used as a
test set in [21,45].

In our experiment, we test various feature extraction methods
for each of the seven output variables separately. To reduce the
computational complexity, we randomly selected 1000 examples
from the 44,484 training set 20 times and report the perfor-
mances on the 4449 test data in Table 8 and Fig. 2. In the figure,
due to space limitation, only the rms errors of the first two and
last two target variables with PCA, SIR, PHD, WPCA, LDAr, and
KDAr are shown. For each feature extraction methods, 1, 3, 5,
7 and 10 features were used for the regression. The standard
deviations were also drawn for each of the points, however in
most cases, they are very small and difficult to be distinguished
in the figure. We tested various values of ¢ of Gaussian RBF
kernel for KDAr and reported best performance in the figure.
Fig. 2(a)-(d) is obtained with ¢ = 10%, 5 x 103, 2 x 102, and 2 x 10?
respectively.

In both Fig. 2(a) and (b), the performance of KDAr was better
than any other feature extraction methods. Note that among
linear feature extraction methods, LDAr performs best but KDAr
outperforms LDAr by at least 10%. This phenomenon can also be
seen in Table 8 where we show the best performances of various
feature extraction methods. The best number of extracted fea-
tures are also indicated. In the table, KDAr outperforms LDAr by
27.3% on average. For PCA, SIR, PHD, WPCA, LDAr and KDAr, we
extracted 1, 3, 5, 7 and 10 features. Note that MLR and GPL can



N. Kwak / Pattern Recognition 45 (2012) 2019-2031 2029

Table 8

RMS errors for the SARCOS Robot Arm dataset with 5NN. The numbers in the parentheses are the best number of extracted features.
Target 1 2 3 4 5 6 7
Original 9.79 (21) 5.92 (21) 3.49 (21) 4.51 (21) 0.37 (21) 0.70 (21) 0.86 (21)
PCA 10.21 (10) 6.21 (10) 3.65 (10) 5.29 (10) 0.39 (10) 0.73 (10) 1.01 (10)
MLR 6.18 (1) 523 (1) 3.36 (1) 3.42 (1) 0.40 (1) 0.94 (1) 0.72 (1)
GPL 15.28 (1) 8.65 (1) 5.14 (1) 6.58 (1) 0.59 (1) 1.20 (1) 1.29 (1)
SIR 6.55 (1) 5.01 (3) 3.22 (3) 3.50 (3) 0.37 (5) 0.69 (10) 0.71 (3)
PHD 10.20 (10) 6.33 (10) 4.13 (10) 4.55 (10) 0.40 (10) 0.81 (10) 0.84 (10)
WPCA 8.07 (5) 5.54 (5) 3.56 (5) 3.59 (5) 0.39 (10) 0.70 (10) 0.74 (3)
LDAr 5.79 (10) 4.44 (10) 2.73 (10) 2.78 (10) 0.33 (10) 0.66 (10) 0.58 (10)
KDAr 5.07 (7) 3.36 (3) 1.89 (7) 1.62 (5) 0.25 (5) 045 (5) 043 (5)
o 10* 5x10° 2x10° 5x10° 2 x10% 2x10? 2 x10%

a b

Root Mean Squared Error

Root Mean Squared Error

Root Mean Squared Error

Root Mean Squared Error

Number of extracted features

Number of extracted features

Fig. 2. RMS error for the four target variables of SARCOS Robot Arm dataset. (a) 1st torque, (b) 2nd torque, (c) 6th torque, (d) 7th torque.

extract only one feature. From the table, we can see that the best
performance of KDAr was better than other feature extraction
methods for all the seven target variables. Comparing LDAr and
KDAr, we can see that the kernel trick is effective in performance
enhancement of regression for this problem.

5.3. Face alignment

5.3.1. Yale database—rotation

In this section, we perform experimental studies on finding the
rotation angle of Yale database [9] to evaluate the performance of
the KDAr. In [9], the authors report two types of databases: a
closely cropped set and a full face set. In this paper, the full face
set whose size is 100 x 80 pixels was used. The Yale database
consists of 165 images which contains 11 images per each of 15
individuals. Original images are in gray color. In our experiment,
55 images of the first five individuals were rotated to generate

training data while those of the other 11 individuals were used for
test data.

If we rotate a rectangular face image to obtain a new
rectangular image of the same size, the corner pixels cannot be
filled as shown in Fig. 3. With this information, the rotation angle
can easily be recovered. Therefore, in our experiment, instead of
rectangular image, we used circularly cropped face images as
follows. Each image was firstly cropped circularly based on a fixed
center point of (57, 40) with a radius of 30 pixels, then rotated
with 10 random angles uniformly distributed from —30° to +30°.
As a result, 550 (5x11x10) training images and 1100
(10 x 11 x 10) test images were obtained. Fig. 4 shows examples
of circularly cropped and randomly rotated images of one
original image.

In this problem, each pixel constitutes one input variable while
the target variable is the rotation angle in degree. Using 550
training images, we extracted various numbers of features with
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different feature extraction methods and estimated the rotation
angles of the 1100 test data. Table 9 shows the rms errors on test
data with various feature extraction methods. Both 5NN and GPR
were used as a regressor and the reported rms errors are the
smaller of the two.

In the table, rms error was smallest when KDAr was used as a
feature extraction method except the case for m=1. Although the
performance of KDAr was worse than MLR and LDAr for m=1
when ¢ =200, for different values of ¢ KDAr performed better
than LDAr and MLR even when m=1. In the table, the best
performance was obtained with KDAr when m=40. Comparing
the performance of GPR and 5NN, when m=1, GPR performed
better than 5NN except for MLR, LDAr and KDAr. For other values
of m, 5NN outperformed GPR in all the experiments.

5.3.2. Yale database—scaling

In this subsection, each of the Yale face images was scaled 10
times by a random factor from 100% up to 150% and then cropped
to the original 100 x 80 size as shown in Fig. 5. As in the rotation
experiment in the previous subsection, the first 55 images of five
individuals were used to create the training images, while the
remaining 110 images were used for testing. Therefore, the
number of training and test images are 550 and 1100 respectively.

In this problem, the target variable is the scaling factor in
percent. As a regressor, both 5NN and GPR were used and the

Fig. 3. Original image (left) and 20° rotated image (right) of Yale database. The
corner pixels that cannot be filled are painted black.

-18° -6°

-28° -7° -23°

Fig. 4. Rotated images of a circularly cropped Yale database with their corre-
sponding rotation angles.

Table 9
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smaller rms errors of the two regressors on the test data are
reported in Table 10.

In the table, we can see that KDAr outperforms other linear
feature extraction methods for all the number of extracted
features m. Note that LDAr performs rather bad for this problem
but its nonlinear extension KDAr performs better than other
conventional feature extraction methods. For this problem, when
the number of extracted features is one, GPR performed better
than 5NN but as the number of features increases, 5NN becomes
better except for the LDAr case.

6. Conclusion

In this paper, a new feature extraction method KDAr for
regression problem has been proposed. It is an extension of LDAr,
a linear discriminant analysis for regression problems, to a non-
linear version by using the so-called kernel trick. The basic idea is
to map the input space to a high-dimensional feature space in
which variables are nonlinearly related to the input space and
then try to maximize the ratio of distances of samples with large
differences in the target value and those with small differences in
the target value. In the derivation of KDAr, we have investigated
the relationship of KDAr with Laplacian eigenmap and gave a
guideline for edge matrices. In addition, the properties of KDAr
were also investigated.

We have applied the proposed method to several regression
problems including artificial and real-world problems as well as
facial alignment problems and compared the performance of
KDAr with those of the conventional linear feature extraction
methods. The experimental results show that the proposed KDAr
outperforms the conventional feature extraction methods in most
cases and can be used as a dimensionality reduction method for
regression problems.

|

@

124 148 144 128 118

Fig. 5. Scaled images of Yale database with their corresponding scaling factor in
percent.

Performance for the Yale rotation dataset (rms errors of test data in °). Both 5NN and GPR were used and the smaller rms errors of the two is
reported. ‘N’ and ‘G’ in the parenthesis denote 5NN and GPR respectively.

No. of features (m) 1 10 20 30 40 50

PCA 19.92 (G) 4.45 (N) 3.95 (N) 3.58 (N) 3.46 (N) 3.37 (N)
MLR 4.20 (N) - - - - -

GPL 7.30 (G) - - - - -

SIR 6.92 (G) 3.69 (N) 3.74 (N) 3.60 (N) 3.58 (N) 3.49 (N)
PHD 15.71 (G) 4.50 (N) 4.09 (N) 3.71 (N) 3.82(N) 3.79 (N)
WPCA 19.13 (G) 4.35 (N) 3.93 (N) 3.57 (N) 3.48 (N) 3.40 (N)
LDAr 5.11 (N) 1.82 (N) 4.02 (N) 3.90 (N) 6.85 (N) 7.25 (N)
KDAr (6 =2 x 10%) 5.71 (N) 1.55 (N) 1.28 (N) 1.19 (N) 1.17 (N) 1.19 (N)
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Performance for the Yale scaling dataset (rms errors of test data in %). Both 5NN and GPR were used and the smaller rms errors of the two is
reported. ‘N’ and ‘G’ in the parenthesis denote 5NN and GPR respectively.

No. of features (m) 1 10 20 30 40 50

PCA 16.03 (G) 8.32 (N) 7.77 (N) 7.76 (N) 7.45 (N) 7.36 (N)
MLR 11.02 (N) - - - - -

GPL 7.82 (G,N) - - - - -

SIR 7.98 (G) 7.12 (N) 7.53 (N) 7.51 (N) 7.53 (N) 7.60 (N)
PHD 10.43 (G) 8.95 (N) 7.40 (N) 7.52 (N) 7.32 (N) 7.28 (N)
WPCA 16.01 (G) 8.23 (N) 7.75 (N) 7.75 (N) 7.45 (N) 7.31 (N)
LDAr 10.75 (N) 14.22 (G) 14.22 (G) 14.22 (G) 14.22 (G) 14.22 (G)
KDAr (¢ = 1.5 x 10") 7.60 (G) 6.80 (N) 6.83 (N) 6.84 (N) 6.86 (N) 6.82 (N)
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