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Abstract

Visual procedures especially tailored to the constraints and requirements of a legged robot are presented. They work
for an uncalibrated camera, with pan and zoom, freely moving towards a stationary target in an unstructured
environment that may contain independently moving objects. The goal is to dynamically analyse the image sequence in
order to extract information about the robot motion, the target position and the environment structure. The develop-
ment is based on the deformations of an active contour fitted to the target. Experimental results confirm that the
proposed approach constitutes a promising alternative to the prevailing trend based on the costly computation of
displacement or velocity fields. © 2001 Pattern Recognition Society. Published by Elsevier Science Ltd. All rights

reserved.
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1. Introduction

The present work is part of a project aimed at the
development of a low-cost walking robot for exploratory
tasks [1,2]. It is a six-legged robot with three degrees of
freedom (dof) per leg, and it is equipped with a compass
and a single camera with one dof (pan). Once an operator
marks a given target on an image captured by the cam-
era, the robot has to reach the target as autonomously as
possible. Since our robot has deliberately limited re-
sources, we do not look for very sophisticated procedures
aimed at attaining 100% performance success, but in-
stead we like to reach the best possible compromise
between simplicity and performance. Then the accuracy
demands are low for this application but, as a counter-
part, many constraints are imposed on the process of
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estimating camera motion:

monocular vision,

uncalibrated camera, with pan and zoom,
unstructured environment,

unknown camera motion,

visual control through robot legs and pan of the cam-
era,

limited computational resources,

e medium time demands.

The calibration parameters of a camera mounted on
a mobile robot are likely to change over time. Although
some intrinsic camera parameters (e.g., pixel size and
aspect ratio) remain constant for long periods of time [3],
others (e.g., image centre and focal length) may change
drastically along an image sequence [4]. The process of
calibration with the aid of a calibration pattern is inap-
plicable in cases where the camera optical parameters
undergo frequent changes. Different approaches have
recently emerged that consist in autocalibrating the cam-
era on-line [5] or in designing methods which do not
need the calibration parameters [6]. Among the latter,
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the procedures developed in this paper highlight the
abilities of a vision system based on an uncalibrated
camera. The same algorithms would supply qualitatively
different information depending on the degree of camera
calibration [7].

There are many works dealing with the visual guidance
of robots in structured scenes [8,9]; less works address
the visual guidance of wheeled or tracked robots in
slightly structured or nonstructured environments
[10-12]; but works tackling the visual guidance of walk-
ing robots in unstructured scenes are very scarce [13,14].
In this paper, we describe procedures that provide
a qualitative estimation of robot motion, target position
and environment structure. Other visual processes
related to landmark detection and recognition are de-
scribed elsewhere, as are the aspects related to locomo-
tion and navigation within our project.

Estimating camera motion and scene structure from
a sequence of images has been the object of intense
research within the computer vision community for some
years now [ 15-21]. The usual approach is based on optic
flow. This can be computed in two ways, either by ob-
taining the velocity vectors at all image positions, or by
extracting some clearly distinguishable features and
tracking them from frame to frame. Both procedures are
computationally costly and they fail to provide results in
homogeneous regions.

There are a few works that compute egomotion on the
basis of only local information. Cipolla and Blake [22]
use the area moments of closed contours to estimate
surface orientation and time-to-contact with a target.
Their procedure can be used for qualitative visual navi-
gation, if the viewer can make deliberate movements or
has stereoscopic vision. For a legged robot it is practic-
ally impossible to change the position and orientation of
its body in a predefined way, as arm robots do with their
end-effectors. What a legged robot can do is to always try
to maintain its body in a reference position (say, horizon-
tally) irrespective of terrain orientation, by means of the
so-called “balances” [2], a thing that tracked robots
cannot do without extra degrees of freedom in the cam-
era subsystem.

The method here proposed exploits the particular fea-
tures of our application to simplify the estimation
process, so that it can be performed under the constraints
listed above. The proposed scheme is summarized in
Fig. 1. The method combines the analysis of active con-
tours [23] with the geometric constraints between differ-
ent views of a single scene, namely the epipolar geometry.
An active contour is automatically fitted to a static target
marked by the operator in the image, from which a shape
vector is extracted for each frame. The analysis of the
active contour provides a direct measure of image defor-
mation that allows one to compute the egomotion up to
a scale factor and the time-to-contact, which is a qualitat-
ive measure of the distance to the target. To extract
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Fig. 1. Global scheme.

information about the scene structure, the analysis of the
active contour is combined with the data provided by
point matches between the different frames. We prove
that this combination makes it possible to self-calibrate
the principal point, which is used to compute the heading
direction, or epipole, from the scaled egomotion. Once
the principal point is known, the epipolar geometry can
be directly extracted from the active contour. The epipo-
lar constraints guide the matching between salient points
in two different views of the scene. Finally, combining the
matched points with the scaled egomotion, the qualitat-
ive 3D scene structure is recovered by interpolating the
depth of the matched points and the depth of the points
inside the target.

The paper is structured as follows. The next section
characterizes the projection of a moving curve under an
affine camera model. Section 3 presents the derivation of
the shape vector, from which we extract both the egomo-
tion (Section 4) and the time to contact with the target
(Section 5). The subsequent computation of the heading
direction or epipole is described in Section 6, where we
also explain how the principal point can be self-calib-
rated by combining a set of point matches with the
analysis of the shape vector. Section 7 is devoted to the
recovery of the epipolar geometry, which is used to
match different views. The combination of the analysis of
the contour with the matches allows one to recover
a qualitative depth map (Section 8). Finally, the advant-
ages and limitations of the proposed procedure are dis-
cussed in Section 9.

2. Projection of 3D motion onto the image plane

A static object in 3D space is used as reference to
estimate the camera motion. We fit a closed curve to its
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occluding contour in the initial position, which can be
written in parametric form as Dy(s) = (Xo(s), Yo(s),
Zo(s))" where s is a parameter that increases as the curve
is traversed. The projection of Dy (s) onto the image plane
is called the template, do(s). When there is a relative
motion between the camera and the object, the reference
object presents a new occluding contour which we denote
D(s).

Under a weak perspective situation, i.e. when the ob-
ject fits in a small field of view and the depth variation of
its points is small compared to their distances to the
camera, the occluding contour of the object can be as-
sumed to be a 3D curve that moves rigidly in 3D space.
As we are interested in tracking a distant target, both
assumptions hold. Therefore

D(s) = RDy(s) + T, (1)

where R is the rotation matrix and T is the translation
vector corresponding to the 3D rigid motion.

We calculate the projected curve using an affine cam-
era model. The affine camera, introduced by Mundy and
Zisserman [24], is a generalization of orthographic, weak
perspective and paraperspective projections. This is an
approximation to the full perspective, equivalent to
a weak perspective camera with unknown internal calib-
ration parameters.

Taking the camera coordinate frame as reference, Z(s)
can be approximated by the average depth Z, of the
contour. This approximation can be made because we
have already assumed a weak perspective situation in
which the target is shallow with respect to its distance to
the camera. We also assume that the occluding contour
of the target is contained in a plane parallel to the image
plane, otherwise the results would suffer from the bas-
relief ambiguity. Then the projected curve on the image
plane has the following expression:

do) — K, O f
(S)_[o —KJRsDo(s)

R R R X T
« |: 11 12 13} Yols) +[ x:|
Ry1 Ry Ry3 7 T,

where f is the focal length, K, x K, is the pixel size,
(uo,v0) is the principal point, R;; are the elements of the
rotation matrix R,R; is the third row of R, and
T=(T,,T,,T.)". We assume that the calibration para-
meters f, K, K,,uq, 0, are unknown, as corresponds to
an affine camera model. However, we explicitly write the
calibration parameters in order to highlight their effect

on different measures. We will finally prove that we can
provide the robot with enough information for navi-
gation without a priori knowledge of the calibration
parameters.

Without loss of generality, we can assume that the
centre of Dy(s) has X = Y = 0 components; it is equiva-
lent to assuming that the centre of the template dg(s)
equals the principal point. Thus, under weak perspective,
Ri3; Xo(s) + R32Yo(s) € R33Zy + T.,and Eq. (2) can be
rewritten as

K, 0 f
d(s) = _
0 —K,|Rs3Zo+T:

<|:R11 R12:||:X0(5):| |:R13:||:Tx:|>
X =+ ZO

Ry1 Ry fLYols) Ry LT,

In particular, the projection of the template is

_i Ku 0 Xo(S) Ug
%“”_ZJQ KJ[Y&9}+[%}’ @

Combining Egs. (3) and (4),

a(s) U Zy K, 0 Ri1 Ry

s)— =

U R33Zo+T:[ 0 —K,[[Rs1 Ry,
1

- 0 u
X Ku | <d0(S)—|: 0:|>+#
0 X Uo 33Zot+1;

dia G R

Now, it is interesting to observe that

o 2]

is the template centred on the upper left corner of the
image. Thus it can be computed from the observed tem-
plate by subtracting the coordinates of its centre.

The difference between the curve at a particular instant
and the template is

Uo
d(s) —do(s) = (L — I)<do(S) - [U D + P )
0
where I is the 2 x 2 identity matrix,
R R Kll
Z, "k, VK, |, (6)
L R21_ R22

T RyZo+T.| UK,
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_ 1 o, O 7 Ri; T, 7
"_R3320+Tz[o J( ‘{RZJ{RD 7

and o, = fK,,0, = — fK,.

This result shows that the rigid motion of a 3D curve
(Eq. (1)) projects as an affine deformation of the template
onto the image plane (Eq. (5)), when the curve is viewed
under weak perspective.

3. Affine deformation from the analysis of active contours

In this section we explain how the affine deformation
of the template in the image plane can be recovered from
the analysis of an active contour fitted to it.

A contour can be represented as a parametric spline
curve, as common in Computer Graphics [25],
d(s) = (d.(s),d,(s))", where both d.(s) and d(s) are B-
spline curves. We can write them as a function of their
control points,

dy(s) = B(s)Q%,  dy(s) = B(s)Q’,

where Q' is a column vector of control points for the ith
component and B(s) is a row vector of B-spline basis
functions [25,23].

Putting both expressions together, we obtain a com-
pact expression for d(s)

BsQ"] [Bs) 0 Q°
a9 = [B(S)Q’] - [0 B(SJ[QJ Svee ®

where U(s) = IQB(s)' and Q is the vector of control
points. In particular, the template can be written as

do(s) = U(5)Qo.-
Substituting this expression into Eq. (5), we obtain
d(s) — do(s) = (L = DHU(s)Qo + P,

where Q, is the vector of control points of the observed
template minus the coordinates of its centre. Observing
that B(s)1 = 1 from the convex hull property of B-spline
curves, and using Eq. (8), the difference between d(s) and
do(s) can be rewritten as

1 0
d(s) — do(s) = pxU(S)|:0:| + pr(S)|: J

+ (L — 1>U(s)[(?b} + LuU(s)[OQ"}

+ L, U( )|:0 :| + (L HU( )|:0 :|
21 U(S 22 — S R
Qs Q3

! ® is the kronecker product.

Comparing this result with expression (8), we can con-
clude that the difference in control points Q — Q, can be
written as a linear combination of six vectors. Therefore,
using matrix notation,

Q —Q, = WX,

where W is the shape matrix with the six vectors as
columns,

vl Heaslls™ )@

and X is a vector with the six parameters of the linear
combination, namely the shape vector,

X =(Px, Py, L1y — 1, Lyz — 17L21,L12)T-

We use the active contour tracker of Blake et al. [26],
which is based on the Kalman filter, to compute the
shape vector X along the sequence. The active contour is
forced to lie in the space of affine deformations of the
template for each frame.

4. 3D egomotion recovery

As mentioned in the introduction, due to the balances
of the legged robot [2], the optical axis is kept normal to
the gravity vector and the rotation of the camera is
reduced to a rotation around the Y-axis. Then,

cosyy 0 —siny
R=| 0 1 0
siny 0  cosy

and

V4 cos 0
L=_—" v . (10)
Zocosyy + T, |0 1

1 o, O T, — Zysiny
p= (1)
Zocosy + T, |0 o, || T,

y

and the shape vector recovered from the tracking of the
contour is

X = au(Tx*ZOSinl//) ava
“\ Zocosy +T. "Zocosy + T,

Zo Zo
—cosy —,—————1,0,0 ).
Zocosy + T, Zocosy + T,

Our purpose now is to compute the 3D motion para-

meters from the affine deformation of the curve in the
image plane. From the shape vector we directly obtain
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the rotation angle y up to a reversal,

Lll
cosy = — (12)
LZZ

and the scaled components of the translation vector

T. p« .
Oy—— = —— + o, siny, (13)
ZO L22
T, ,
pt =2 (14)
ZO L22
T 1
Z = _— —cosy. (15)
ZO LZZ

These results keep the ambiguities usual in monocular
images. Eqgs. (13)-(15) show the effect of the scale-depth
ambiguity in the computation of the translation. There is
no way to recover the absolute translation; only the
scaled translation can be computed. Eq. (12) keeps the
Necker reversal ambiguity. From cosy only the magni-
tude of ¥ can be computed. The sign of the angle cannot
be recovered.

The bas-relief ambiguity is only cancelled if we assume
that the occluding contour of the object is in a plane
parallel to the image plane in the initial frame. Therefore,
the angles are measured taking into account this assump-
tion. However, another ambiguity appears, namely the
rotation—translation ambiguity, which is common when
the axis of rotation is located in the image plane. The
ambiguity arises because rotation about the Y-axis and
translation along the X-axis produce similar effects as
reflected in Eq. (13). The translation along the X-axis is
added to o, siny, and the two terms cannot be split
unless one of them is known.

This ambiguity is responsible for the invariance of
L,{/L,, to changes in . As far as the change in y does
not cause a sufficient change in perspective, the projected
curve is nearly the same as the one we would have
observed if the camera had translated along X. Fermuller
and Aloimonos [27] explain this ambiguity by proving
that the images of points rotating around the Y-axis of
the camera describe hyperbolas whose major axes co-
incide with the X-axis of the image plane. Therefore, the
ambiguity arises specially when a weak perspective or
affine camera model is used. It can only be avoided if the
whole image does not fit in the weak perspective model
and a nonlocal processing is applied (as proposed in Ref.
[28]), or there are motion parallax effects in the observed
regions [29]. A comparison between these methods is
presented in Ref. [19].

Since the method proposed in this paper is based on
a local processing, it is unable to solve the rota-
tion—translation ambiguity. However, this is not a prob-
lem in our application, since the robot is equipped with

a compass that provides the y angle and the camera is
able to pan. This way, the camera can compensate the
rotation detected by the compass and provide an image
free of rotation. In this case, the shape vector becomes

[ T %, T, Zo
TN\Zo+ T, Zo+ T, Zog + T,

s

Z,
____mg (16)
Zo+ T,

and the 3D egomotion parameters are easily computed
from it as

T
P (17)
Zo Lj
T, _ Py (18)
UZO LZZ’
T 1
Y (19)
ZO L22

5. Qualitative measure of distance to the target

We propose a qualitative measure of the distance from
the robot to the target based on the computation of the
time to contact. The time to contact (TTC) is the time
needed for the viewer to reach the target if the viewer
continues with the same speed. In fact, it is a measure that
has been used by different authors for the guidance of
wheeled robots [30] or road vehicles [31], assuming
motion on a planar surface.

We estimate the likely time to contact with the target
by computing the rate of expansion of the target in the
image while the camera moves towards it. This calcu-
lation can be done without knowledge of either the size
and distance of the target, or the speed of the camera
towards it.

From Eq. (19) we can observe that the scaled depth of
the target can be computed as

Zo+T. 1
ZO L22'

When the viewer goes straight to the target, the time left
for collision can be computed from the rate of change in
the scaled depth. The system automatically detects this
situation from the translation vector estimated using
Egs. (17)—(19). Let H; be the scaled depth for the contour
at frame i

Z T.;
H, :g,
Zo

where T; is the translation along Z at frame i.
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The difference between H in consecutive frames is

Tzi - Tzi—l
Z
Therefore,
1 Tzi - Tzi—l -1
Hi—Hi-\)7=———— =—,
Hi Zo + Tzi T

where 7 is the time to contact taking the sampling period
as time unit.

From this result, we can state that the time to contact
can be computed directly from the shape vector as

H;

T=—-.
Hi—l _Hi

The implementation of the theory shows that this
measure is a useful tool to predict the collision time. We
report an experiment carried out inside a laboratory in
order to estimate the reliability of the results. Fig. 2 de-
picts the situation in which the experiment is set. The
sequence was recorded moving the camera at a constant
velocity of approximately 16 cm per time unit, and the
target was set at 97 cm from the initial position. A simple
target was chosen, although the capability of active con-
tours to track complex shapes and their robustness to
occlusions have been proved elsewhere [23,26]. Fig. 3
shows the initial image in a sequence taken while the
viewer moves towards the target. In this case the target is
the black square. Fig. 4 shows four samples of the se-
quence recorded at time instants one to four as indicated
in Fig. 2. The shape vectors for these examples are

X4 =[0,0,0.219,0.219,0,0],
Xy = [0,0,0.563,0.563,0,07,
X¢ = [0,0,1.196,1.196,0,07,
Xp = [0,0,2.690,2.690,0,0]. (20)

Fig. 5 plots the recovered TTC as a function of time. It
can be observed that the graphic decreases linearly as

Fig. 2. Experiment to evaluate the TTC computation.

Fig. 3. First image in a sequence recorded to validate the TTC
computation.

predicted for a uniform motion. The relative error is
under 2%. Note that the affine transformation breaks
down when the viewer is very close to the target and,
therefore, the estimate of time to contact may be degra-
dated in this case.

6. Computation of the heading direction

The heading direction is represented in the image
plane as the point of intersection between this direction
and the image plane. It is equivalent to the projection of
the translation vector onto the image plane

T, .
oy Ug
€x T
= g . (21)
& o E +v
sz 0
From Egs. (17)-(19) we have
T, Px
O(u T T A,
Tz 1 - M22
T
oy —~ = L, (22)
T. 1—M,,

that lead us to the heading direction if the principal point
is known.

The principal point can be self-calibrated by combin-
ing the analysis of the active contour with a set of point
matches.

A point match (u, u®) fulfils the following equation in
homogeneous notation (see Ref. [32] for details)

u? = ARA 'u® + ;, (23)
where Z; is the depth of the 3D point and A is the
calibration matrix. In particular, when the rotation has
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Fig. 4. Estimation of TTC from the deformation of an active contour. Four samples of a video sequence taken by a moving observer
approaching the target at a uniform velocity. The images were recorded at time instants one to four as indicated in Fig. 2. The camera
had moved 16 cm between consecutive images. An active contour tracks the target. Its deformations are used to estimate the time to
contact (Fig. 5). The next image in the sequence corresponds to collision.

been compensated for and the image has only the effects
of the translation, the above equation simplifies to
T,

oy — +u
T, °

AT T 2
u® =y — = u® 4| o, Ty + v . (24)

i z

N|[H

When the translation along Z is not null it can be
rewritten as
ex
TZ
u® = 4 | |7z,
1

s

where (e,, ¢,) are the components of the epipole. Going
back to nonhomogeneous notation, we have two linear

equations with three unknowns (the components of the
epipole and the relative depth Z;/T.)

Z;
2 t 2 1
WP = e T @ — )
T,

uP =e, % W@ — ulM). (25)
Each new matching adds two equations and one un-
known (the relative depth of the new 3D point). We take
a set of point matches and solve for the unknowns by
least mean squares. Once the epipole is known, the prin-
cipal point can be computed from Egs. (21) and (22),

T,

Ug = €x — Uy
T.

TY

Vg =€y — 0y —.
y Tz
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Time to contact (frames)
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Time (frame number)

Fig. 5. Estimated time to contact. The solid line depicts the
estimated time to contact, while the dotted one is the expected
time to contact, which decreases linearly for a uniform motion.
It can be observed that the error decreases as the camera
approaches the target until the viewer is very close to the target,
then the affine transformation breaks down and the estimate is
degradated.

If there is no translation along Z, Eq. (25) reduces to

2 1
ugc):u.(x)—i—au?’

i

u® =uV + o, & (26)
Z;
In this case the principal point cannot be computed. The
analysis of contour deformations allows the system to
detect when the translation along Z is null. Only when it
is not null, the system extracts the principal point.

The principal point often remains constant for long
periods of time, during which the analysis of the contour
provides enough information to guide the matching be-
tween frames. Only when the principal point changes (i.e.
when the camera zooms) the contour has to be combined
with point matches to recalibrate the camera.

7. Matching between frames. Computation of epipolar
lines

In this section we explain how the epipolar geometry
can be deduced from the analysis of an active contour.
The epipolar geometry is the only relation we can obtain
that describes the matching between two uncalibrated
images. We are interested in matching different points of
two views of the same scene in order to recover the depth
of these points. Once the depth of a set of points is
known, it can be interpolated to obtain an approximate
depth map of the whole scene.

In the preceding sections, we have been working with
a simplified camera model as we were focusing the pro-
cessing on the target. Now, we switch to a more general
camera model to compute the epipolar geometry of the
whole image. It is important to switch to a full-perspect-
ive camera model because we are interested in extracting
the epipolar lines corresponding to points in the image
that may be at different distances. The affine camera is
adequate to model the imaging process of the target, as it
is assumed that the target occupies a small region in the
image and its depth range is small compared to its
distance to the camera. However, this simplified model
does not generally fit the rest of the image, particularly
when the scene has objects at different depths.

A point u in the first image corresponds to a 3D
point that lies on the ray that backprojects through u®.
Therefore, its corresponding point in the second image,
u®, should lie on the projection of this ray, namely, the
epipolar line of u™. The epipolar lines simplify the corre-
spondence problem because the search for matches is
reduced to a 1D search. All epipolar lines intersect at the
projection of the optical centre of the camera at its first
location in the other camera location, namely the epi-
pole.

The epipolar lines are usually computed from the fun-
damental matrix F, which is a 3 x 3 matrix that describes
the correspondence between two images of the same
scene recorded from different viewpoints [33-35]. It re-
lates the projections u™, u® of a 3D point, in homogene-
ous notation as follows:

u@TFu® = 0. (27)
F can be split up [33,35,36] as
F = A’T[T]*RA",

where A is the calibration matrix,

o 0  ug
A=|0 o, vyl
0 0 1

A~ is the transpose of A™! and [T], is a matrix ob-
tained from the elements of T,
0 ~-T, T
[T], =| T 0 — T, |
-T, T, 0
When the rotation has been compensated for, the epi-

poles are the same for both images and equal the heading
direction. In this case, F simplifies to

F = A "[T],A" = [AT], = [e®], = [eV],. (28)
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B

Fig. 6. The square is taken as target in the initial image. The
deformation of the contour fitted to it allows us to recover the
heading direction and epipolar lines. The latter will be computed
for the indicated points, as an example.

Using homogeneous notation, a line 1? passing
through a point u® fulfils the following equation (an
introduction to perspective geometry can be found in
Ref. [32]):

a7 —

Therefore, from Eq. (27), the epipolar line can be com-
puted as

19 = Fu® = A""[T], A" "u® = [AT], u™.
From Eq. (28),
19 = [e®], u®,

The epipolar line coincides with the line 1 joining the
epipole with u

1=e®xu® = (AT) xu® = [AT], u®.

Thus, the computation of the epipole allows us to draw
the epipolar lines. Some results are shown in Figs. 6-8. If
the disparity between images increases, an algorithm
based exclusively on point matches would fail, as it
would not be able to find reliable matches. On the con-
trary, the method based on contours maintains a right
measure of the epipolar geometry. Moreover, it confines
the search for a match to a segment of the epipolar line. If
the camera is approaching the target the search should
proceed from the point in the first image to the epipole,
while it should proceed away from the epipole when the
camera recedes from the target. When there is no transla-
tion along Z, the search should follow the same direction
as the target.

Fig. 7. Epipolar lines relating the image in Fig. 6 with the image
recorded after a translation along the Z direction. The heading
direction points towards the epipole, and the epipole is the point
of intersection of all epipolar lines.

Fig. 8. The epipolar lines are right even when there are either
independent motions in the scene or occlusions of the target.

8. Qualitative 3D scene reconstruction

The 3D structure of the visible environment can be
specified by the distance along the optical axis (the depth)
of each point in the image. Some applications may require
a description of solid shapes. In this case, there must also
be a transformation from the pointwise description to
a solid shape. However, in this section we restrict our
attention to pointwise 3D information and we interpolate
the result to obtain an approximation of the structure of
the whole scene assuming that the surface is smooth.

8.1. Proposed scheme

Once the principal point is known, the epipole can be
extracted from the analysis of the contour. We use it not
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only to know the heading direction, but also to draw the
epipolar lines. Thus, matches between frames are more
easily found. Once point matches are achieved, from Eqgs.
(19) and (25), we can solve for the scaled depth,
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The epipole and T./Z, are the same for all points in the
same frame. The magnitude of the depth of a point is
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where e is the epipole.

The above deduction is valid as far as there is a non-
null translation along Z. The analysis of contour defor-
mations allows one to detect when the translation along
Z is null and use a different set of equations to solve for
3D scene structure in this case. When there is no transla-
tion along Z, the scaled depth of the points can be
recovered from the combination of the scaled translation
obtained from the active contour and the matching of
points using Eq. (26), which is repeated here for conveni-
ence,

x
ugcz) = u.(xl) + Oy

Ty

(2) _ (1)
uy” = uy + (Xv—'.
i

Using point matches, we can compute the value of
olT/Z;), 0,(Ty/Z;). If we combine it with the
scaled translation (o, (T ./Z,), @,(T,/Z,)) obtained from
the analysis of the contour, we get the scaled depth
Zi|Z,.

Regardless of whether there is a translation along Z,
the depth map is improved by adding the points inside
the target to the set of points for which the depth is
known. From Eq. (19) we have an approximation of the
depth of points inside the target

Zo+T. 1
ZO L22'

Fig. 9 depicts the proposed scheme. We emphasise the
fact that there is an initialization step, in which the
principal point is computed. After this, a very simple
scheme makes it possible to extract both the epipolar
geometry and the 3D structure. Once the process has
been initialized, the epipolar geometry is directly extrac-
ted from the deformations of the contour.

Target tracking

Computation of
scaled translation

A 4
i Computation of epipole

Search of matches and epipolar lines

Computation of

!

1

I

I

1 - N

| Guided search for
epipole and 3D ! matches

1

' !

|

1

1

1

structure
3D structure recovery

Self calibration of the
Scheme repeated for
each new frame

principal point

Initialization step

Fig. 9. Proposed scheme to recover epipolar geometry and 3D
structure.

8.2. Experimental results

The proposed algorithm has been tested on several
image sequences, and good results have been obtained.
At a first stage the algorithm was evaluated using in-
door scenes, but later it has been successfully applied to
real outdoor scenes. Here we provide the qualitative
depth map of one of these scenes. Figs. 10 and 11 show
different frames of the scene with a translation between
them. An active contour is fitted to the target, which is
the door.

Fig. 12 highlights some points in the image, for which
the epipolar lines are drawn in Fig. 13. A set of salient
features are automatically detected in Fig. 14. Among the
available ways to detect salient points in an image
[37,38], we have used the technique proposed by Zhang
[39]. The points are matched with the ones in Fig. 11
using the epipolar lines computed from the analysis of the
active contour. Once the matches are known, the depth
map is computed. Fig. 15 shows the result. Blue colours
depict distant regions while red ones represent near
points. For instance, the silhouette of the tree can be
observed, in red, in the left side of the image. Few points
are detected on the house, therefore the 3D structure
recovered is not very accurate in this zone. This result is
improved when the reconstruction is enriched by adding
the estimated depth of the points inside the target to the
depth of the matched salient points. Fig. 16 depicts a view
of the final result. We can observe the shape of the tree in
red, the target and background points in blue, the grass
in a combination of yellows, which means that it is in
between the tree and the target. In front of the target, we
can observe the shape of a branch of the tree and the
reconstruction of points that belong to the tractor.
All these data about the environment structure are a
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Fig. 10. An active contour is fitted to the target. Fig. 13. The epipolar lines corresponding to the image points in
Fig. 12 are drawn.

Fig. 11. The target is tracked along the sequence.

Fig. 14. Whole set of salient points of the image. Matches for
them between frames are found using the epipolar lines com-
puted from the deformation of the active contour.

valuable information for the robot to decide its best path
towards the target.

8.3. Error analysis and estimation

In our approach, uncertainty arises from several sour-
ces:

orientation compensation,
edge detection,

active contour fitting,
detection of salient features,
matching between frames.

Fig. 12. The epipolar lines will be computed for the set of salient
points drawn in this figure.
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X Axis

Fig. 15. 3D structure recovery from interpolation of the depth of matched points.

500

X Axis

Fig. 16. 3D structure recovery adding the depth of the points inside the target. This reconstruction has been computed by interpolating
the depth of the matched points and that of the points inside the target.

They introduce errors in the motion estimate and in the image plane. We use Egs. (10) and (11), when the correct
3D depth map. ones in this case are Egs. (6) and (7). This introduces an
An error in the compensation of rotation causes error in the computation of the scaled translation which

a wrong interpretation of the affine deformation in the is transferred to the epipole estimate. A perturbation in
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the epipole displaces the epipolar lines. If the perturba-
tion is small, the epipolar lines can still be used by
searching for matches in a region around the estimated
epipolar line. Obviously, the efficiency of the method
decreases as the perturbation in the compensation of
rotation increases.

On the other hand, the equations we use to compute
the depth assume that the rotation has been completely
compensated (Eq. (24)). Using these equations when there
is rotation introduces an error term ¢ such that

AT
u® —u =— 4
i

where, from Egs. (23) and (24),
&= (ARA™! — Du'V,

Note that the error term does not only depend on the
rotation matrix, but also on the calibration matrix. When
the rotation is not completely compensated, the scaled
depth of points (Z;/T.) can only be computed if the
internal calibration parameters of the camera are known.

Apart from the compensation of rotation, the other
error sources are associated to measurements. Errors
may arise in the extraction of salient features and their
matching between frames, as well as in edge detection
and the subsequent contour fitting. Weng et al. [40]
address this kind of errors and derive how they affect to
the 3D structure and motion estimation from point
matches. Here we focus on the propagation of the error
related to the use of an active contour as the basis to
compute the 3D motion.

The Kalman filter [41] provides an estimate X of the
shape vector of the target’s contour at each frame. It
yields only an estimate of the shape vector, but also an
estimate of its covariance matrix. Once the shape vector
X is estimated and its covariance matrix I'x is computed,
we extract the motion parameters. We analyse how the
uncertainty in the shape vector propagates to the motion
parameters and the scaled depth of the contour. Assum-
ing a small perturbation in the original data, we analyse
the linear terms of the perturbation of the final result to
estimate the errors.

The Kalman filter provides the estimation X of the
shape vector and the covariance matrix I'y assuming that
the shape vector follows a gaussian distribution. From
the third component (X 3) of the shape vector estimate we
have an estimation of the scaled depth (see Eq. (16)),

Zo+T. 1

HA =
Z, X5 +1

We approximate H up to the linear term of a Taylor
series expansion about X3 = X3, leading to an approxi-
mation of the covariance of H (I'y) as a function of the

covariance of X3 (I'y,),

1

CoRNTEA >

FH=

which can be approximated as
l—‘H = ﬁ4rX3 5

where H is the mean of H. When the camera moves
towards the target (H €(0,1]) the covariance of the scaled
depth is smaller than the one for the third component of
the shape vector (I'y < I'y,). In this case, the propagated
error is bounded. However, when the viewer moves away
from the target the covariance of the scaled depth in-
creases with exponent four and the uncertainty is un-
bounded.

9. Concluding remarks

This paper presents a new approach to provide a walk-
ing robot with qualitative information to reach a visual
target. The work highlights the benefits of using the
information derived from an active contour to guide the
matching of features between frames. The proposed
method is based on a direct measure of image deforma-
tion from an active contour fitted to a target. It is essen-
tially different from the common techniques that use
velocity or displacement fields as the unique basis for
further computation [19,42-44].

Several advantages are attained by focussing the pro-
cessing on the target. The first one is speed, the epipolar
geometry is recovered at frame rate from live video (25
frames/s) using a Silicon Graphics Indy at 150 MHz. The
size of the images is 485 x 372, but note that the analysis
of the contour is invariant to the image dimensions as it is
carried out in a local region. The second advantage is the
robustness of the method to independent motions in the
scene. It is remarkable to observe that most of the current
methods to compute the epipolar geometry rely on the
assumption of a single independent, motion; ie., they
work for scenes containing only one moving object or,
alternatively, a moving camera in a stationary environ-
ment [35,45]. The third one is that the focusing mecha-
nism allows us to assume a simplified camera model for
points in the target, no matter if this model does not
fit the rest of the image. The proposed method relies
on a combination of an affine camera and a full-perspect-
ive camera. Once the motion parameters have been re-
covered using the simplified camera model, the epipolar
geometry and scene structure are computed using a
full-perspective camera model. Therefore, we combine
the generality of a full-perspective camera model with
the robustness of a scheme based on linear approxima-
tions.
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The method is limited to situations in which the target
is static and visible under a weak perspective assumption.
In this case, the usual techniques based only on point
matches can be complemented with the information from
the contour.

The traditional approach requires an initial set of
reliable matches to extract the epipolar geometry and
then guide the search for additional matches [33-35],
while the proposed method takes advantage of the analy-
sis of the contour to avoid the initial unguided matching.
Moreover, a number of the previous works rely on the
computation of the fundamental matrix, which becomes
unstable when the matched points are coplanar. In this
situation, it is better to describe the relation between two
views by a homography instead of a fundamental matrix
[32,33]. The key question is to know when to switch from
using the fundamental matrix to using a homography,
and vice versa. The proposed method is invariant to the
distribution of salient points in the image. The epipolar
geometry is recovered directly from the active contour;
therefore it does not become unstable when salient points
are coplanar. In addition, the analysis of the active con-
tour allows one to estimate a qualitative measure of
depth, namely the time to contact, even when there are
no salient points in the scene. The traditional approach
based only on matched points limits the extraction of 3D
information to those scenes in which a set of salient
points can be detected.

Future work will include a more thorough analysis of
error propagation and estimation, as well as the exten-
sion of the method to using several contours fitted to
different regions in the image. The fusion of the informa-
tion provided by different contours would make the
process more robust. Moreover, once a contour is
fitted to a region, we have proved that its scaled
depth can be computed and used to enrich the 3D recon-
struction of the whole scene. The final depth map is
expected to combine the depth of point features with the
depth of the contours fitted to homogeneous regions.
Thus, by exploiting the information provided by the
active contours, the extraction of depth information is
not limited to those scenes in which salient points can be
detected.
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