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Abstract

Multi-label learning originated from the investigation of text categorization problem, where each document may belong to several predefined
topics simultaneously. In multi-label learning, the training set is composed of instances each associated with a set of labels, and the task is to
predict the label sets of unseen instances through analyzing training instances with known label sets. In this paper, a multi-label lazy learning
approach named ML-KNN is presented, which is derived from the traditional K-nearest neighbor (KNN) algorithm. In detail, for each unseen
instance, its K nearest neighbors in the training set are firstly identified. After that, based on statistical information gained from the label sets of
these neighboring instances, i.e. the number of neighboring instances belonging to each possible class, maximum a posteriori (MAP) principle
is utilized to determine the label set for the unseen instance. Experiments on three different real-world multi-label learning problems, i.e. Yeast
gene functional analysis, natural scene classification and automatic web page categorization, show that ML-KNN achieves superior performance

to some well-established multi-label learning algorithms.

© 2007 Pattern Recognition Society. Published by Elsevier Ltd. All rights reserved.

Keywords: Machine learning; Multi-label learning; Lazy learning; K-nearest neighbor; Functional genomics; Natural scene classification; Text categorization

1. Introduction

Multi-label learning tasks are omnipresent in real-world
problems. For instance, in text categorization, each document
may belong to several predefined topics, such as government
and health [1,2]; in functional genomics, each gene may be
associated with a set of functional classes, such as metabolism,
transcription and protein synthesis [3]; in scene classification,
each scene image may belong to several semantic classes, such
as beach and urban [4]. In all these cases, each instance in the
training set is associated with a set of labels, and the task is
to output a label set whose size is unknown a priori for each
unseen instance.

Traditional two-class and multi-class problems can both be
cast into multi-label ones by restricting each instance to have

Abbreviations: KNN, K-nearest neighbor; ML-KNN, multi-label K-nea-
rest neighbor; MAP, maximum a posteriori; PMM, parametric mixture

model
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only one label. On the other hand, the generality of multi-label
problems inevitably makes it more difficult to learn. An in-
tuitive approach to solving multi-label problem is to decom-
pose it into multiple independent binary classification prob-
lems (one per category). However, this kind of method does
not consider the correlations between the different labels of
each instance and the expressive power of such a system can
be weak [1-3]. Fortunately, several approaches specially de-
signed for multi-label learning tasks have been proposed, such
as multi-label text categorization algorithms [1,2,11,12], multi-
label decision trees [5,6] and multi-label kernel methods [3,4]
and multi-label neural networks [23]. In this paper, a lazy learn-
ing algorithm named ML-KNN, i.e. multi-label K-nearest neigh-
bor, is proposed, which is the first multi-label lazy learning
algorithm. As its name implied, ML-KNN is derived from the
popular K-nearest neighbor (KNN) algorithm [7]. Firstly, for
each test instance, its KNNs in the training set are identified.
Then, according to statistical information gained from the label
sets of these neighboring instances, i.e. the number of neigh-
boring instances belonging to each possible class, maximum
a posteriori (MAP) principle is utilized to determine the la-
bel set for the test instance. The effectiveness of ML-KNN is
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evaluated through three different multi-label learning problems,
i.e. Yeast gene functional analysis [3], natural scene classifica-
tion and automatic web page categorization [8]. Experimental
results show that the performance of ML-KNN is superior to
those of some well-established multi-label learning methods.

The rest of this paper is organized as follows. In Section 2,
notations and evaluation metrics used in multi-label learning
are briefly introduced. In Section 3, previous works on multi-
label learning are reviewed. In Section 4, ML-KNN is proposed.
In Section 5, experimental results of ML-KNN and other multi-
label learning algorithms are presented. Finally in Section 6,
the main contribution of this paper is summarized.

2. Preliminaries

Let & denote the domain of instances and let % =
{1,2,..., O} be the finite set of labels. Given a training set
T={(x1, Y1), (x2,Y2), ..., X, Yi)} (xi € X, Y; C¥)iid
drawn from an unknown distribution D, the goal of the learn-
ing system is to output a multi-label classifier & : ' — 2Y
which optimizes some specific evaluation metric. In most
cases, however, instead of outputting a multi-label classifier,
the learning system will produce a real-valued function of the
form f : & x % — . It is supposed that, given an instance
x; and its associated label set Y;, a successful learning system
will tend to output larger values for labels in Y; than those not
in Y;,i.e. f(xi, y1) > f(x;, y2) forany y; € ¥; and y> ¢ Y;.

The real-valued function f (-, -) can be transformed to a rank-
ing function rank ¢ (-, -), which maps the outputs of f(x;, y) for
any y € % to {1,2,..., Q} such that if f(x;, y1)> f(xi, y2)
then rank ¢ (x;, y1) <rank ¢(x;, y2). Note that the correspond-
ing multi-label classifier z(-) can also be derived from the func-
tion f (-, ): h(x) ={ylf(xi, y) >t (xi), y € ¥}, where 1(-) is
a threshold function which is usually set to be the zero constant
function.

Performance evaluation of multi-label learning system is dif-
ferent from that of classic single-label learning system. Popular
evaluation metrics used in single-label system include accu-
racy, precision, recall and F-measure [9]. In multi-label learn-
ing, the evaluation is much more complicated. For a test set
S={(x1, 1), (x2, Y2), ..., (xp, Yp)}, the following multi-label
evaluation metrics proposed in Ref. [2] are used in this paper:

(1) Hamming loss: evaluates how many times an instance—
label pair is misclassified, i.e. a label not belonging to the in-
stance is predicted or a label belonging to the instance is not
predicted. The performance is perfect when hlossg (%) = 0; the
smaller the value of hlossg(h), the better the performance:

p
hlossg (h) = ﬁ ; ém(xi)AYi I, (M

where A stands for the symmetric difference between two sets.
Note that when |Y;| = 1 for all instances, a multi-label system
is in fact a multi-class single-label one and the hamming loss
is 2/Q times the usual classification error.

While hamming loss is based on the multi-label classifier
h(-), the following metrics are defined based on the real-valued

function f (-, -) which concern the ranking quality of different
labels for each instance.

(2) One-error: evaluates how many times the top-ranked label
is not in the set of proper labels of the instance. The performance
is perfect when one-errorg(f) = 0; the smaller the value of
one-errors( f), the better the performance:

1<
one-errorg(f) = > Z [[arg max f(x;, y)] ¢ Yi], (2)
i=1

ye¥

where for any predicate 7, [n] equals 1 if = holds and 0 oth-
erwise. Note that, for single-label classification problems, the
one-error is identical to ordinary classification error.

(3) Coverage: evaluates how far we need, on the average, to
go down the list of labels in order to cover all the proper labels
of the instance. It is loosely related to precision at the level
of perfect recall. The smaller the value of coverageg(f), the
better the performance:

1 &
coverage = — max rank r(x;, y) — 1. 3
ges(f) p;yeyi 7 (i) 3)

(4) Ranking loss: evaluates the average fraction of label pairs
that are reversely ordered for the instance. The performance is
perfect when rlossg( f) =0; the smaller the value of rlosss( f),
the better the performance.

1 P
1 h = - — ) iy g i )
rlosss (f) pgmnnﬁ{(” YOI f (i, y1) < f (X2, y2)
(1, y2) € ¥i x Y}, )

where Y denotes the complementary set of ¥ in %.

(5) Average precision: evaluates the average fraction of labels
ranked above a particular label y € Y which actually are in
Y. It is originally used in information retrieval (IR) systems to
evaluate the document ranking performance for query retrieval
[10]. The performance is perfect when avgprecg(f) = 1; the
bigger the value of avgprecg(f), the better the performance:

avgprecg(f)
1< 1
=L
« 3 ' lrank s (x;, y') <ranky(xi,y), y' € Yijl
o rank g (x;, y)

(5
3. Previous works review

As stated in Section 1, the generality of multi-label prob-
lems inevitably makes it more difficult to solve than tradi-
tional single-label (two-class or multi-class) problems. Until
now, only a few literatures on multi-label learning are avail-
able, which mainly concern the problems of text categorization
[1,2,6,8,11,12], bioinformatics [3,5,23] and scene classifica-
tion [4].
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Research of multi-label learning was initially motivated by
the difficulty of concept ambiguity encountered in text cate-
gorization, where each document may belong to several topics
(labels) simultaneously. One famous approach to solving this
problem is BOOSTEXTER proposed by Schapire and Singer [2],
which is in fact extended from the popular ensemble learning
method ADABOOST [13]. In the training phase, BOOSTEXTER
maintains a set of weights over both training examples and their
labels, where training examples and their corresponding labels
that are hard (easy) to predict correctly get incrementally higher
(lower) weights. McCallum [1] proposed a Bayesian approach
to multi-label document classification, where a mixture proba-
bilistic model (one mixture component per category) is assumed
to generate each document and EM [14] algorithm is utilized
to learn the mixture weights and the word distributions in each
mixture component. Ueda and Saito [8] presented two types
of probabilistic generative models for multi-label text called
parametric mixture models (PMM1, PMM2), where the basic as-
sumption under PMMS is that multi-label text has a mixture of
characteristic words appearing in single-label text that belong
to each category of the multi-categories. It is worth noting that
the generative models used in [1,8] are both based on learning
text frequencies in documents, and are thus specific to text ap-
plications. Comité et al. [6] extended alternating decision tree
[15] to handle multi-label data, where the ADABOOST.MH al-
gorithm proposed by Schapire and Singer [16] is employed to
train the multi-label alternating decision trees.

Gao et al. [11] generalized the maximal figure-of-merit
(MFoM) approach [17] for binary classifier learning to the
case of multi-class, multi-label text categorization. They de-
fined a continuous and differentiable function of the classifier
parameters to simulate specific performance metrics, such as
precision and recall etc. (micro-averaging F; in their paper).
Their method assigns a uniform score function to each cat-
egory of interest for each given test example, and thus the
classical Bayes decision rules can be applied. Kazawa et al.
[12] converts the original multi-label learning problem of text
categorization into a multi-class single-label problem by re-
garding a set of topics (labels) as a new class. To cope with the
data sparseness caused by the huge number of possible classes
(Q topics will yield 22 classes), they embedded labels into
a similarity-induced vector space in which prototype vectors
of similar labels will be placed close to each other. They also
provided an approximation method in learning and efficient
classification algorithms in testing to overcome the demanding
computational cost of their method.

In addition to text categorization, multi-label learning has
also manifested its effectiveness in other real-world applica-
tions, such as bioinformatics and scene classification. Clare and
King [5] adapted C4.5 decision tree [18] to handle multi-label
data (gene expression in their case) through modifying the def-
inition of entropy. They chose decision trees as the baseline
algorithm because of its output (equivalently a set of symbolic
rules) is interpretable and can be compared with existing bi-
ological knowledge. It is also noteworthy that their goal is to
learn a set of accurate rules, not necessarily a complete clas-
sification. Through defining a special cost function based on

ranking loss (as shown in Eq. (4)) and the corresponding mar-
gin for multi-label models, Elisseeff and Weston [3] proposed a
kernel method for multi-label classification and tested their al-
gorithm on a Yeast gene functional classification problem with
positive results. Zhang and Zhou [23] designed the multi-label
version of BP neural network through employing a novel er-
ror function capturing the characteristics of multi-label learn-
ing, i.e. the labels belonging to an instance should be ranked
higher than those not belonging to that instance. Boutell et al.
[4] applied multi-label learning techniques to scene classifica-
tion. They decomposed the multi-label learning problem into
multiple independent binary classification problems (one per
category), where each example associated with label set Y will
be regarded as positive example when building classifier for
class y € Y while regarded as negative example when building
classifier for class y ¢ Y. They also provided various labeling
criteria to predict a set of labels for each test instance based
on its output on each binary classifier. Note that although most
works on multi-label learning assume that an instance can be
associated with multiple valid labels, there are also works as-
suming that only one of the labels associated with an instance
is correct [19].!

4. ML-KNN

For convenience, several notations are introduced before pre-
senting ML-KNN. Given an instance x and its associated label set
Y € %, suppose KNNs are considered in the ML-KNN method.
Let y, be the category vector for x, where its /th component
y:(l) (I € %) takes the value of 1 if / € Y and O otherwise. In
addition, let N (x) denote the set of KNNs of x identified in the
training set. Thus, based on the label sets of these neighbors, a
membership counting vector can be defined as

Ch= ) Ju, lew, (6)

aeN(x)

where C + (1) counts the number of neighbors of x belonging to
the /th class.

For each test instance 7, ML-KNN firstly identifies its KNNs
N(t) in the training set. Let H ll be the event that ¢ has label /,
while H(l) be the event that ¢ has not label /. Furthermore, let
Ei (j €{0,1,...,K}) denote the event that, among the KNNs
of ¢, there are exactly j instances which have label /. Therefore,
based on the membership counting vector C 1, the category vec-
tor ¥, is determined using the following MAP principle:

¥, (1) = arg max P(H,ﬁ|E‘5 o) e (7
be{0,1} ‘

Using the Bayesian rule, Eq. (7) can be rewritten as

P(Hy)P(Eg \ |H})

V() = arg max

be{0,1} P(El@r(l))
= arg max P(H,ﬁ)P(E’é l |H}). (8)
be{0,1} 40

In this paper, only the former formalism of multi-label learning is
studied.
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[Gr, T]=ML-KNN(T', K, t, )

%Computing the prior probabilities P(H]})

(1) forie )y do

(2)  PUH]) = (s + X1 (1) /(s x 24+ m) ;

P(Hj) =1— P(H});

%Computing the posterior probabilities P(E”H,l))

(8) Identify N(x;), i€ {1,2,...,m};

(4) forle ) do

(5) for j € {0,1,...,K} do

(6) i) =0; Ll =0

(7) for i e {1,2,...,m} do

(8) 0= Co(1) = ety Fall):

(9) if (7,,(1) == 1) then ¢[d] = c[§] + 1;

(10) else ¢[0] = 0] + 1,

(11)  for j€{0,1,...,k} do

(12)  P(BUHD) = (s + cj])/(s x (+1) + 55y lpl);
(13)  P(EUHD = (s + ¢L)/(s x (5 + 1) + S5 o))

%Computing 7; and 7}

(14) Identify N(t);

(15) for I € Y do

(16) i) = Yaen Ya(l);

(17)  §(1) = argmaxyeqo1} P(H}) P(E!
(18)  ni(l) =

|H});
o HD)/P(EG, )
CL(!)lHD)/(Ebe{O.l}P<Hb P(Eg, | H})):

((z)
P(H{|Eg, )= (P(H})P(E

= (P(H})P(

Fig. 1. Pseudo code of ML-KNN.

As shown in Eq. (8), in order to determine the category vector
¥, all the information needed is the prior probabilities P (H, l)
(I € %, b € {0,1}) and the posterior probabilities P(E’ |H )
(j € {0, 1,...,K}). Actually, these prior and posterior proba—
bilities can all be directly estimated from the training set based
on frequency counting.

Fig. 1 gives the complete description of ML-KNN. T is
the training set as shown in Section 2 and the meanings of
the input arguments K, ¢ and the output argument y, are the
same as described previously. Furthermore, the input argu-
ment s is a smoothing parameter controlling the strength of
uniform prior (In this paper, s is set to be 1 which yields
the Laplace smoothing). 7; is a real-valued vector calculated
to rank labels in %, where 7;(l) corresponds to the posterior
probability P(H’|El (1)) As shown in Fig. 1, based on the
multi-label training 1nstances, steps (1) and (2) estimate the
prior probabilities P(Hé). Steps from (3) to (13) estimate the
posterior probabilities P(Eﬁ.lel), where c[j] used in each
iteration of / counts the number of training instances with
label / whose KNNs contain exactly j instances with label .
Correspondingly, ¢’[j] counts the number of training instances
without label / whose KNNs contain exactly j instances with
label /. Finally, using the Bayesian rule, steps from (14) to
(18) compute the algorithm’s outputs based on the estimated
probabilities.

5. Experiments

As reviewed in Section 3, there have been several approaches
to solving multi-label problems. In this paper, ML-KNN is com-
pared with the boosting-style algorithm BOOSTEXTER [2],2
multi-label decision tree ADTBOOST.MH [6],> and the multi-
label kernel method RANK-SVM [3], which are all general-
purpose multi-label learning algorithms applicable to various
multi-label problems.

For ML-KNN, Euclidean metric is used to measure distances
between instances. For BOOSTEXTER and ADTBOOST.MH, the
number of boosting rounds is set to be 500 and 50 respectively
because on all data sets studied in this paper, the performance
of these two algorithms will not significantly change after the
specified boosting rounds; For RANK-SVM, polynomial kernels
with degree 8 are used which yield the best performance as
shown in the literature [3].

In this paper, comparative studies of those algorithms are
performed on one bioinformatic data [3], one natural scene
classification data, and one automatic web page categorization
data [8].

5.1. Yeast gene functional analysis

In this paper, the effectiveness of multi-label learning algo-
rithms is firstly evaluated through predicting the gene functional
classes of the Yeast Saccharomyces cerevisiae, which is one
of the best studied organisms. Specifically, the Yeast data set
studied in the literatures [3,20] is investigated. Each gene is de-
scribed by the concatenation of micro-array expression data and
phylogenetic profile and is associated with a set of functional
classes whose maximum size can be potentially more than 190.
In order to make it easier, Elisseeff and Weston [3] preprocessed
the data set where only the known structure of the functional
classes are used. Actually, the whole set of functional classes
is structured into hierarchies up to four levels deep.* In this
paper, as what has been done in the literature [3], only func-
tional classes in the top hierarchy are considered. The first
level of the hierarchy is depicted in Fig. 2. The resulting multi-
label data set contains 2417 genes each represented by a 103-
dimensional feature vector. There are 14 possible class labels
and the average number of labels for each gene is 4.24 £ 1.57.

Ten-fold cross-validation is performed on this data set. The
experimental results of ML-KNN are reported in Table 1, where
the number of nearest neighbors considered by ML-KNN (i.e.
the parameter K as shown in Fig. 1) varies from 8 to 12. The
value following “#£” gives the standard deviation and the best
result on each metric is shown in bold face. Table 1 shows
that the number of nearest neighbors used by ML-KNN does not
significantly affect the performance of the algorithm. Therefore,
all the results of ML-KNN shown in the rest of this paper are

2Program available at http://www.cs.princeton.edu/~schapire/boost-
exter.html.

3The algorithm and a graphical user interface are available at
http://www.grappa.univ-lille3.fr/grappa/index.php3?info = logiciels.

4See http://mips.gsf.de/proj/yeast/catalogues/funcat/ for more details.
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Fig. 2. First level of the hierarchy of the Yeast gene functional classes. One gene, for instance the one named YALO62w, can belong to several classes (shaded

in grey) of the 14 possible classes.

Table 1

Experimental results of ML-KNN (mean=std) on the Yeast data with different number of nearest neighbors considered

Evaluation criterion Number of nearest neighbors considered

K=38 K=9 k=10 k=11 k=12
Hamming loss 0.195 £ 0.010 0.193 £ 0.009 0.194 £ 0.010 0.193 £ 0.008 0.192 + 0.010
One-error 0.233 £0.032 0.230 £ 0.041 0.230 £ 0.030 0.225 £ 0.036 0.232 £0.032
Coverage 6.291 +0.238 6.297 +0.223 6.275 + 0.240 6.285 + 0.208 6.283 +0.228
Ranking loss 0.169 £ 0.016 0.168 £ 0.016 0.167 £ 0.016 0.167 £ 0.015 0.167 £ 0.015
Average precision 0.763 £ 0.021 0.764 £ 0.022 0.765 £ 0.021 0.766 + 0.021 0.765 £ 0.020

obtained with the parameter K set to be the moderate value
of 10.

Table 2 reports the experimental results of ML-KNN and other
multi-label learning algorithms on the Yeast data, where the
best result on each metric is shown in bold face. To make a
clearer view of the relative performance between each algo-
rithm, a partial order “>" is defined on the set of all compar-
ing algorithms for each evaluation criterion, where A1 > A2
means that the performance of algorithm A1 is statistically bet-
ter than that of algorithm A2 on the specific metric (based on
two-tailed paired #-test at 5% significance level). The partial or-
der on all the comparing algorithms in terms of each evaluation
criterion is summarized in Table 3.

Note that the partial order “>"" only measures the relative
performance between two algorithms Al and A2 on one spe-
cific evaluation criterion. However, it is quite possible that A1
performs better than A2 in terms of some metrics but worse
than A2 in terms of other ones. In this case, it is hard to judge
which algorithm is superior. Therefore, in order to give an over-
all performance assessment of an algorithm, a score is assigned

to it which takes account of its relative performance with other
algorithms on all metrics. Concretely, for each evaluation crite-
rion, for each possible pair of algorithms Al and A2, if A1 >
A2 holds, then Al is rewarded by a positive score +1 and A2
is penalized by a negative score —1. Based on the accumulated
score of each algorithm on all evaluation criteria, a total order
“>" is defined on the set of all comparing algorithms as shown
in the last line of Table 3, where A1 > A2 means that Al per-
forms better than A2 on the Yeast data. The accumulated score
of each algorithm is also shown in the parentheses.

Table 3 shows that ML-KNN performs fairly well in terms
of all the evaluation criteria, where on all these metrics no al-
gorithm has outperformed ML-KNN. Especially, ML-KNN out-
performs all the other algorithms with respect to hamming
loss, coverage and ranking loss.” Tt is also worth noting that
BOOSTEXTER performs quite poorly compared to other algo-
rithms. As indicated in the literature [3], the reason may be
that the simple decision function realized by this method is not

SNote that ranking loss is not provided by the ADTBOOST.MH program.
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Table 2

Experimental results of each multi-label learning algorithm (meanzstd) on the Yeast data

Evaluation criterion Algorithm

ML-KNN BOOSTEXTER ADTBOOST.MH RANK-sVM
Hamming loss 0.194 £+ 0.010 0.220 £0.011 0.207 £0.010 0.207 £0.013
One-error 0.230 £ 0.030 0.278 +0.034 0.244 4+ 0.035 0.243 +0.039
Coverage 6.275 £ 0.240 6.550 £0.243 6.390 £0.203 7.090 £ 0.503
Ranking loss 0.167 £ 0.016 0.186 4+ 0.015 N/A 0.195 4+ 0.021
Average precision 0.765 £ 0.021 0.737 £0.022 0.744 £ 0.025 0.749 £ 0.026

Table 3

Relative performance between each multi-label learning algorithm on the Yeast data

Evaluation criterion Algorithm

A1-ML-KNN; A2-BOOSTEXTER; A3-ADTBOOST.MH; A4-RANK-SVM

Hamming loss
One-error
Coverage
Ranking loss
Average precision

Al > A2, Al > A4
Al > A2, Al > A3

Total order

Al > A2, Al > A3, Al > A4, A3 > A2, A4 > A2
Al > A2, A3 > A2, A4 > A2
Al > A2, Al > A3, Al > A4, A2 > A4, A3 > A2, A3 > A4

ML-KNN(11) >ADTBOOST.MH(1) >RANK-SVM(—3) >BOOSTEXTER(—9)

Fig. 3. Examples of multi-labeled images.

suitable to learn from the Yeast data set. On the whole (as shown
by the total order), ML-KNN substantially outperforms all the
other algorithms on the Yeast data.

5.2. Natural scene classification

In natural scene classification, each natural scene image may
belong to several image types (classes) simultaneously, e.g.
the image shown in Fig. 3(a) can be classified as a mountain
scene as well as a tree scene, while the image shown in Fig.
3(b) can be classified as a sea scene as well as a sunset scene.
Through analyzing images with known label sets, a multi-label
learning system will automatically predict the sets of labels for
unseen images. The above process of semantic scene classifica-
tion can be applied to many areas, such as content-based index-
ing and organization and content-sensitive image enhancement,
etc. [4]. In this paper, the effectiveness of multi-label learning

algorithms is also evaluated via this specific kind of multi-label
learning problem.

The experimental data set consists of 2000 natural scene im-
ages, where a set of labels is manually assigned to each image.
Table 4 gives the detailed description of the number of images
associated with different label sets, where all the possible class
labels are desert, mountains, sea, sunset and trees. The number
of images belonging to more than one class (e.g. sea 4 sunset)
comprises over 22% of the data set, many combined classes
(e.g. mountains + sunset + trees) are extremely rare. On av-
erage, each image is associated with 1.24 class labels. In this
paper, each image is represented by a feature vector using the
same method employed in the literature [4]. Concretely, each
color image is firstly converted to the CIE Luv space, which
is a more perceptually uniform color space such that perceived
color differences correspond closely to Euclidean distances in
this color space. After that, the image is divided into 49 blocks
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using a 7 x 7 grid, where in each block the first and second mo-
ments (mean and variance) of each band are computed, corre-
sponding to a low-resolution image and to computationally in-
expensive texture features, respectively. Finally, each image is
transformed into a 49 x 3 x 2=294-dimensional feature vector.

Ten-fold cross-validation is also performed on this image
data set. Experimental results of ML-KNN and other multi-label
learning algorithms are reported in Table 5, where the best result

Table 4

Summary of the natural scene image data set

Label set #Images
Desert 340
Mountains 268
Sea 341
Sunset 216
Trees 378
Desert + mountains 19
Desert + sea 5
Desert 4 sunset 21
Desert + trees 20
Mountains + sea 38
Mountains + sunset 19
Mountains + trees 106
Sea + sunset 172
Sea + trees 14
Sunset + trees 28
Desert + mountains + sunset 1
Desert + sunset + trees 3
Mountains + sea + trees 6
Mountains + sunset + trees 1
Sea + sunset + trees 4
Total 2000

Table 5

on each evaluation criterion is shown in bold face. Similarly as
the Yeast data, the partial order “>" and the total order “>" are
also defined on the set of all comparing algorithms which are
shown in Table 6.

As shown in Table 6, it is obvious that both ML-KNN and
BOOSTEXTER are superior to ADTBOOST.MH and RANK-SVM
in terms of all evaluation criteria. Furthermore, ADTBOOST.MH
outperforms RANK-SVM on all evaluation metrics and ML-KNN
outperforms all the other algorithms in terms of hamming loss.
On the whole (as shown by the total order), ML-KNN slightly
outperforms BOOSTEXTER and is far superior to ADTBOOST.MH
and RANK-SVM on the natural scene image data set. Fig. 4
shows some example images on which ML-KNN works better
than BOOSTEXTER, ADTBOOST.MH and RANK-SVM, where null
means that the predicted label set is empty.

Note that in this data set, the average number of class la-
bels associated with each image is relatively small (i.e. 1.24).
Therefore, to further evaluate the performance of the multi-label
learning algorithms on the problem of natural scene classifica-
tion, images with only one class label are excluded from the
original data set. Thus, a filtered data set containing 457 images
is obtained, in which each image is associated with 2.03 class
labels on average. Ten-fold cross-validation is again performed
on the filtered image data set, where experimental results of
the multi-label learning algorithms are reported in Table 7 with
the best result on each evaluation criterion shown in bold face.
Similarly as the Yeast data, the partial order “>" and the total
order “>" are also defined on the set of all comparing algo-
rithms which are shown in Table 8.

Table 8 shows that both ML-KNN and BOOSTEXTER are su-
perior or at least comparable to ADTBOOST.MH and RANK-
SVM in terms of all evaluation criteria. Furthermore, ML-KNN

Experimental results of each multi-label learning algorithm (meanzstd) on the natural scene image data set

Evaluation criterion Algorithm

ML-KNN BOOSTEXTER ADTBOOST.MH RANK-sVM
Hamming loss 0.169 £+ 0.016 0.179 £ 0.015 0.193 £0.014 0.253 £ 0.055
One-error 0.300 £ 0.046 0.311 £0.041 0.375 £0.049 0.491 £ 0.135
Coverage 0.939 +0.100 0.939 + 0.092 1.102 £ 0.111 1.382 +0.381
Ranking loss 0.168 £ 0.024 0.168 £+ 0.020 N/A 0.278 £ 0.096
Average precision 0.803 + 0.027 0.798 £+ 0.024 0.755 £ 0.027 0.682 + 0.093

Table 6

Relative performance between each multi-label learning algorithm on the natural scene image data set

Evaluation criterion Algorithm

A1-ML-KNN; A2-BOOSTEXTER; A3-ADTBOOST.MH; A4-RANK-SVM

Hamming loss
One-error
Coverage
Ranking loss
Average precision

Al >~ A4, A2 >~ A4

Total order

Al = A2, Al = A3, Al = A4, A2 = A3, A2 = A4, A3 >~ A4
Al = A3, Al > A4, A2 > A3, A2 > A4, A3 > A4
Al = A3, Al = A4, A2 = A3, A2 = A4, A3 = A4

Al > A3, Al > A4, A2 > A3, A2 > A4, A3 > A4

ML-KNN(10) >BOOSTEXTER(8) >ADTBOOST.MH(—4) >RANK-sVM(—14)
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Fig. 4. Some example images on which ML-KNN works better than BOOSTEXTER, ADTBOOST.MH and RANK-svM. (a) Ground-truth: desert, ML-KNN: desert,
BOOSTEXTER: desert + trees, ADTBOOST.MH: null, RANK-SVM: mountains; (b) Ground-truth: mountains, ML-KNN: mountains, BOOSTEXTER: mountains + trees,
ADTBOOST.MH: trees, RANK-SVM: trees; (¢) Ground-truth: mountains+trees, ML-KNN: mountains+trees, BOOSTEXTER: null, ADTBOOST.MH: mountains, RANK-SVM:
mountains; (d) Ground-truth: sea 4 sunset, ML-KNN: sea + sunset, BOOSTEXTER: sunset, ADTBOOST.MH: null, RANK-SVM: sunset.

Table 7
Experimental results of each multi-label learning algorithm (mean = std) on the filtered natural scene image data set
Evaluation criterion Algorithm

ML-KNN BOOSTEXTER ADTBOOST.MH RANK-sVM
Hamming loss 0.235 £ 0.019 0.240 4 0.043 0.270 4 0.027 0.275 +0.035
One-error 0.205 £+ 0.051 0.211 £0.058 0.250 4+ 0.070 0.236 £+ 0.064
Coverage 1.875 £0.072 1.921 £ 0.140 2.080 £ 0.151 2.054 +0.162
Ranking loss 0.195 £+ 0.021 0.204 £+ 0.034 N/A 0.228 £+ 0.040
Average precision 0.8324+0.018 0.828 4+ 0.029 0.799 £ 0.034 0.805 £+ 0.032
Table 8

Relative performance between each multi-label learning algorithm on the filtered natural scene image data set

Evaluation criterion Algorithm

A1-ML-KNN; A2-BOOSTEXTER; A3-ADTBOOST.MH; A4-RANK-SVM

Hamming loss Al = A3, Al = A4, A2 = A3, A2 = A4

One-error Al = A3

Coverage Al = A3, Al = A4, A2 = A3

Ranking loss Al > A4

Average precision Al = A3, Al = A4, A2 = A3, A2 = A4

Total order ML-KNN(8) >BOOSTEXTER(5) >RANK-SVM(—6) >ADTBOOST.MH(—7)

outperforms ADTBOOST.MH on all evaluation metrics while
BOOSTEXTER outperforms ADTBOOST.MH and ML-KNN outper-
forms RANK-SVM on all evaluation metrics except one-error. On
the whole (as shown by the total order), the same as the orig-
inal (unfiltered) data set, ML-KNN again slightly outperforms

BOOSTEXTER and is far superior to ADTBOOST.MH and RANK-
SVM on the filtered natural scene image data set. These results
show that ML-KNN can also work well on the problem of nat-
ural scene classification when more class labels are associated
with each image.
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Table 9
Characteristics of the web page data sets (after term selection)
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Data set Number of categories Vocabulary size Training set Test set
PMC (%) ANL PRC (%) PMC (%) ANL PRC (%)

Arts & Humanities 26 462 44.50 1.627 19.23 43.63 1.642 19.23
Business & Economy 30 438 42.20 1.590 50.00 41.93 1.586 43.33
Computers & Internet 33 681 29.60 1.487 39.39 31.27 1.522 36.36
Education 33 550 33.50 1.465 57.58 33.73 1.458 57.58
Entertainment 21 640 29.30 1.426 28.57 28.20 1.417 33.33
Health 32 612 48.05 1.667 53.13 47.20 1.659 53.13
Recreation & Sports 22 606 30.20 1.414 18.18 31.20 1.429 18.18
Reference 33 793 13.75 1.159 51.52 14.60 1.177 54.55
Science 40 743 34.85 1.489 35.00 30.57 1.425 40.00
Social & Science 39 1047 20.95 1.274 56.41 22.83 1.290 58.97
Society & Culture 27 636 41.90 1.705 25.93 39.97 1.684 2222

PMC denotes the percentage of documents belonging to more than one category, ANL denotes the average number of labels for each document, and PRC
denotes the percentage of rare categories, i.e. the kind of category where only less than 1% instances in the data set belong to it.

5.3. Automatic web page categorization

Recently, Ueda and Saito [8] presented two types of prob-
abilistic generative models called parametric mixture models
(PMM1, PMM2) for multi-label text. They also designed effi-
cient learning and prediction algorithms for PMMS and tested
the effectiveness of their method with application to the specific
text categorization problem of WWW page categorization.®
Specifically, they tried to categorize real Web pages linked from
the “yahoo.com” domain, where it consists of 14 top-level cate-
gories (i.e. “Arts & Humanities”, “Business & Economy”, etc.)
and each category is classified into a number of second-level
subcategories. By focusing on the second-level categories, they
used 11 out of the 14 independent text categorization problems.
For each problem, the training set contains 2000 documents
while the test set contains 3000 documents.

In this paper, these data sets are used to further evaluate
the performance of each multi-label learning algorithm. The
simple term selection method based on document frequency
(the number of documents containing a specific term) is used to
reduce the dimensionality of each data set. Actually, only 2%
words with highest document frequency are retained in the final
vocabulary.” Note that other term selection methods such as
information gain and mutual information could also be adopted.
After term selection, each document in the data set is described
as a feature vector using the “Bag-of-Words” representation
[22], i.e. each dimension of the feature vector corresponds to
the number of times a word in the vocabulary appearing in this
document. Table 9 summarizes the characteristics of the web
page data sets. It is worth noting that, compared with the Yeast
data and the natural scene image data, instances are represented
by much higher dimensional feature vectors and a large portion

Data set available at http://www.kecl.ntt.co.jp/as/members/ueda/yahoo.
tar.gz.

"Based on a series experiments, Yang and Pedersen [21] have shown
that based on document frequency, it is possible to reduce the dimensionality
by a factor of 10 with no loss in effectiveness and by a factor of 100 with
just a small loss.

Table 10
Experimental results of each multi-label learning algorithm on the web page
data sets in terms of hamming loss

Data set Algorithm
ML-KNN  BOOSTEXTER ADTBOOST.MH RANK-SVM

Arts & Humanities 0.0612  0.0652 0.0585 0.0615
Business & Economy 0.0269 0.0293 0.0279 0.0275
Computers & Internet  0.0412  0.0408 0.0396 0.0392
Education 0.0387 0.0457 0.0423 0.0398
Entertainment 0.0604  0.0626 0.0578 0.0630
Health 0.0458  0.0397 0.0397 0.0423
Recreation & Sports ~ 0.0620  0.0657 0.0584 0.0605
Reference 0.0314  0.0304 0.0293 0.0300
Science 0.0325 0.0379 0.0344 0.0340
Social & Science 0.0218 0.0243 0.0234 0.0242
Society & Culture 0.0537 0.0628 0.0575 0.0555
Average 0.0432  0.0459 0.0426 0.0434

of them (about 20—45%) are multi-labeled over the 11 problems.
Furthermore, in those 11data sets, the number of categories are
much larger (minimum 21, maximum 40) and many of them
are rare categories (about 20% ~ 55%). Therefore, the web
page data sets are more difficult to learn from than the previous
data collections.

The experimental results on each evaluation criterion are
reported in Tables 10-14 , where the best result on each data
set is shown in bold face. Similarly as the Yeast data, the partial
order “>" and total order “>" are also defined on the set of all
comparing algorithms which are shown in Table 15.

As shown in Table 15, ML-KNN achieves comparable results
in terms of all the evaluation criteria, where on all these metrics
no algorithm has outperformed ML-KNN. On the other hand,
although BOOSTEXTER performs quite well in terms of one-
error, coverage, ranking loss and average precision, it performs
almost worst among all the comparing algorithms in terms of
hamming loss. It is also worth noting that all the algorithms
perform quite poorly in terms of one-error (around 45% for all
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Table 11
Experimental results of each multi-label learning algorithm on the web page
data sets in terms of one-error

Data set Algorithm

ML-KNN  BOOSTEXTER ADTBOOST.MH RANK-SVM

Arts & Humanities 0.6330  0.5550 0.5617 0.6653
Business & Economy 0.1213  0.1307 0.1337 0.1237
Computers & Internet 0.4357  0.4287 0.4613 0.4037
Education 0.5207  0.5587 0.5753 0.4937
Entertainment 0.5300  0.4750 0.4940 0.4933
Health 0.4190 0.3210 0.3470 0.3323
Recreation & Sports ~ 0.7057  0.5557 0.5547 0.5627
Reference 0.4730  0.4427 0.4840 0.4323
Science 0.5810  0.6100 0.6170 0.5523
Social & Science 0.3270  0.3437 0.3600 0.3550
Society & Culture 0.4357  0.4877 0.4845 0.4270
Average 04711  0.4463 0.4612 0.4401
Table 12

Experimental results of each multi-label learning algorithm on the web page
data sets in terms of coverage

Data set Algorithm

ML-KNN  BOOSTEXTER ADTBOOST.MH RANK-SVM

Arts & Humanities 54313  5.2973 5.1900 9.2723
Business & Economy 2.1840 2.4123 2.4730 3.3637
Computers & Internet 4.4117  4.4887 4.4747 8.7910
Education 34973 4.0673 3.9663 8.9560
Entertainment 3.1467 3.0883 3.0877 6.5210
Health 3.3043  3.0780 3.0843 5.5400
Recreation & Sports  5.1010  4.4737 4.3380 5.6680
Reference 3.5420 3.2100 3.2643 6.9683
Science 6.0470  6.6907 6.6027 12.4010
Social & Science 3.0340 3.6870 3.4820 8.2177
Society & Culture 53653 5.8463 4.9545 6.8837
Average 4.0968 4.2127 4.0834 7.5075
Table 13

Experimental results of each multi-label learning algorithm on the web page
data sets in terms of ranking loss

Data set Algorithm

ML-KNN  BOOSTEXTER ADTBOOST.MH RANK-sVM

Arts & Humanities 0.1514  0.1458 N/A 0.2826
Business & Economy 0.0373 0.0416 N/A 0.0662
Computers & Internet 0.0921  0.0950 N/A 0.2091
Education 0.0800 0.0938 N/A 0.2080
Entertainment 0.1151  0.1132 N/A 0.2617
Health 0.0605 0.0521 N/A 0.1096
Recreation & Sports  0.1913  0.1599 N/A 0.2094
Reference 0.0919  0.0811 N/A 0.1818
Science 0.1167 0.1312 N/A 0.2570
Social & Science 0.0561 0.0684 N/A 0.1661
Society & Culture 0.1338  0.1483 N/A 0.1716
Average 0.1024 0.1028 N/A 0.1930

comparing algorithms). The reason may be that there are much
more categories in those 11 data sets which makes the top-
ranked label be in the set of proper labels of an instance much

Table 14
Experimental results of each multi-label learning algorithm on the web page
data sets in terms of average precision

Data set Algorithm

ML-KNN  BOOSTEXTER ADTBOOST.MH RANK-SVM

Arts & Humanities 0.5097  0.5448 0.5526 0.4170
Business & Economy 0.8798 0.8697 0.8702 0.8694
Computers & Internet 0.6338  0.6449 0.6235 0.6123
Education 0.5993 0.5654 0.5619 0.5702
Entertainment 0.6013  0.6368 0.6221 0.5637
Health 0.6817 0.7408 0.7257 0.6839
Recreation & Sports ~ 0.4552  0.5572 0.5639 0.5315
Reference 0.6194  0.6578 0.6264 0.6176
Science 0.5324  0.5006 0.4940 0.5007
Social & Science 0.7481 0.7262 0.7217 0.6788
Society & Culture 0.6128 0.5717 0.5881 0.5717
Average 0.6249  0.6378 0.6318 0.6046
Table 15

Relative performance between each multi-label learning algorithm on the web
page data sets

Evaluation criterion Algorithm

A1-ML-KNN; A2-BOOSTEXTER; A3-ADTBOOST.MH; A4-
RANK-sVM

A3 > A2, A4 > A2

A2 = A3

Al > A4, A2 = A4, A3 > A4
Al = A4, A2 = A4

A2 > A4

Hamming loss
One-error
Coverage
Ranking loss
Average precision

Total order {ML-KNN(2), BOOSTEXTER(2)} >ADTBOOST.MH(1)>RANK-

SVM(—5)

more difficult. On the whole (as shown by the total order), ML-
KNN is comparable to BOOSTEXTER and both of them slightly
outperform ADTBOOST.MH and are far superior to RANK-SVM
on the web page data sets.

6. Conclusion

In this paper, a lazy learning algorithm named ML-KNN,
which is the multi-label version of KNN, is proposed. Based on
statistical information derived from the label sets of an unseen
instance’s neighboring instances, i.e. the membership counting
statistic as shown in Section 4, ML-KNN utilizes MAP princi-
ple to determine the label set for the unseen instance. Exper-
iments on three real-world multi-label learning problems, i.e.
Yeast gene functional analysis, natural scene classification and
automatic web page categorization, show that ML-KNN outper-
forms some well-established multi-label learning algorithms.

In this paper, the distance between instances is simply mea-
sured by Euclidean metric. Therefore, it is interesting to see
whether other kinds of distance metrics could further improve
the performance of ML-KNN. On the other hand, investigating
more complex statistical information other than the member-
ship counting statistic to facilitate the usage of maximum a
posteriori principle is another interesting issue for future work.
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7. Summary

In this paper, a lazy learning algorithm named ML-KNN,
which is the multi-label version of KNN, is proposed. Based on
statistical information derived from the label sets of an unseen
instance’s neighboring instances, ML-KNN utilizes maximum a
posteriori principle to determine the label set for the unseen
instance. Experiments on three real-world multi-label learn-
ing problems, i.e. Yeast gene functional analysis, natural scene
classification and automatic web page categorization, show that
ML-KNN outperforms some well-established multi-label learn-
ing algorithms.
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