Pattern Recognition 47 (2014) 2721-2731

journal homepage: www.elsevier.com/locate/pr

Contents lists available at ScienceDirect PATTERN
RECOGNITION

Pattern Recognition

Good recognition is non-metric

@ CrossMark

Walter J. Scheirer #¢* Michael J. Wilber®, Michael Eckmann ¢, Terrance E. Boult ¢¢

2 Harvard University, 52 Oxford St. NWL 209, Cambridge, MA 02138, United States

b Cornell University, 402 Gates Hall, Ithaca, NY 14853, United States

€ Skidmore College, 815 North Broadway, Saratoga Springs, NY 12866, United States

d Securics, Inc, 1867 Austin Bluffs Parkway, Suite 100, Colorado Springs, CO 80918, United States

€ University of Colorado Colorado Springs, 1420 Austin Bluffs Parkway P.O. Box 7150, Colorado Springs, CO 80933-7150, United States

ARTICLE INFO

ABSTRACT

Article history:

Received 11 May 2013
Received in revised form

5 December 2013

Accepted 27 February 2014
Available online 11 March 2014

Keywords:
Machine learning
Metric learning
Recognition

Recognition is the fundamental task of visual cognition, yet how to formalize the general recognition
problem for computer vision remains an open issue. The problem is sometimes reduced to the simplest
case of recognizing matching pairs, often structured to allow for metric constraints. However, visual
recognition is broader than just pair-matching: what we learn and how we learn it has important
implications for effective algorithms. In this review paper, we reconsider the assumption of recognition
as a pair-matching test, and introduce a new formal definition that captures the broader context of the
problem. Through a meta-analysis and an experimental assessment of the top algorithms on popular
data sets, we gain a sense of how often metric properties are violated by recognition algorithms. By
studying these violations, useful insights come to light: we make the case for local distances and systems
that leverage outside information to solve the general recognition problem.
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1. Introduction

Recognition is a term everyone in computer vision and machine
learning understands - or at least we think we do. Despite multiple
decades of research, it may be somewhat surprising to learn that a
very basic question remains unresolved: is recognition metric?
Familiar distance metrics used in computer vision include Euclidean
distance and Mahalanobis distance, both computed in feature space.
Given one of these metrics, the task of recognizing an unknown
object can be approached by finding the class label of its nearest
neighbor under that distance metric in a set of training samples.
Such an approach provides a recognition function, thus some level
of recognition can be accomplished with a metric. However, at a
more fundamental level, we would like to know if distance truly
captures all that is meant by the term recognition, and if metrics are
good approaches to solving complex recognition tasks in computer
vision. In this review paper, we adopt the convention that a problem
is metric if the best solutions to that problem can be achieved by
directly applying a distance metric to compute the answer.

An important observation with implications for recognition is
that in separable metric space, using a distance metric and the
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nearest neighbor (NN) algorithm provides useful consistency. As the
number of i.i.d. samples from the classes approaches infinity, the NN
algorithm will converge to an error rate no worse than twice the
Bayes error rate, i.e. no worse than twice the minimum achievable
error rate given the distribution of the data [3]. To many, this
convergence theorem suggests that recognition can always be
formulated as NN matching with an appropriate distance metric.
However, having to double the error of the optimal algorithm over
the same data often does not lead to a particularly good algorithm.
This becomes apparent when actual error rates are considered
during experimentation.

With the recent popularity of metric learning [4-13] for various
recognition tasks, where a metric is learned over given pairs of
images that are similar or dissimilar, one might infer that recogni-
tion is always a metric process. We note that the NN convergence
theorem [3] is true for any metric - hence any improvements
from the choice of metric, or metric learning, are not about the
asymptotic error, but something else such as the error for finite
samples and/or the rate of convergence. We will show that while
metric learning can produce reasonable results, enforcing metric
properties leaves out information, often limiting the quality of
recognition with finite data. This is consistent with supporting
prior work [14] in pattern recognition that shows increas-
ing discriminative power for non-metric distance measures over
visual data.

If the convergence theorem itself is about recognition, then the
recognition problem is assumed to be formulated in an asymptotic
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Fig. 1. Assumptions are often made about the underlying nature of recognition in
computer vision that do not hold true in practice. A common constraint placed
upon recognition algorithms is that they must be metric, meaning their distance
scores adhere to the properties of non-negativity, identity, symmetry and the
triangle inequality. At first glance, the scores from many recognition algorithms
appear to satisfy these constraints. However, violations can be subtle. For example,
the distance scores produced by the top-performing Tom-vs-Pete algorithm [1] for
these images from LFW [2] violate the triangle inequality.

sense with infinite i.i.d. samples. We argue that visual recognition
does not rely on either of those assumptions, but rather focuses
on maximizing the accuracy for finite, and, unfortunately, oppor-
tunistic and hence potentially biased sampling.

A metric function is defined as follows:

Definition 1 (Distance Metric). A function d : X x X —» R is metric
over a set X if it satisfies four properties for {x,y,z} = X:

1. d(x,y) > 0 (non-negativity).

2. d(x,y) =0 < x =y (identity).

3. d(x,y) =d(y,x) (symmetry).

4, d(x,z) <d(x,y)+d(y,z) (the triangle inequality).

Metric functions have useful properties that allow one to show
that a particular problem can be formulated as a convex mini-
mization problem, or, as we have stated, that various types of
sequences converge in the limit. There are also several cases where
one of the properties is excluded. Functions that do not satisfy the
triangle inequality are called semimetrics, those that violate
symmetry are called quasimetrics, and those missing one or both
halves of the identity requirement are called pseudometrics.!
While the term “distance measure” is sometimes used to mean a
distance metric, it is more appropriate to use this term to mean a
measurement that provides information about dissimilarity, but
may be formally non-metric (our use of the term follows this
convention).

[s it reasonable to assume that a distance metric d maps pairs of
elements from X into R during recognition? When a person
recognizes an object, do they refer to an actual image of the object
of interest? A more likely alternative is a comparison to a stored
model with a more complex internal representation, not a direct
copy of some prior trained input. This view is consistent with
prototype theory [16] in cognitive psychology. Thus, at a structural
level, recognition in this mode takes an input x € X, and a model M,
and hence cannot be metric because it is not even of the proper
functional form. It is possible to build a model using just x, and
then consider the distance between models in a nearest neighbor

1 Note that without the property of identity, the theorem of NN convergence
[3] does not hold. It has also been shown [15] that the optimal distance measure, in
the sense of minimal Bayes risk, always violates the identity property and therefore
is not metric.

fashion. Many instance learning algorithms do just that. However,
for many other commonly used recognition algorithms, one
cannot induce a proper model from a single input.? Thus, the
general problem of recognition cannot be restricted to just metrics,
even though it must include them.

In the core pattern recognition literature, this issue has been
raised specifically in the context of Euclidean distance. Pekalska
et al. [17] observe that “Non-metric dissimilarity measures
may arise in practice, e.g. when objects represented by sensory
measurements or by structural descriptions are compared.”
Experiments to confirm this have included: comparing distance
measures before and after Euclidean transforms are applied
[17,18]; an examination of the parameter space of data for
metricity [14]; and an evaluation of dissimilarity representations
for classification [18-22]. In all cases, an enforcement of Euclidean
constraints does not help classification performance [23], and non-
Euclidean measures are often shown to be better, leading Pe kalska
et al. to conclude “that non-Euclidean and/or non-metric distances
can be informative and useful in statistical learning” [14].

However, even in light of this finding, the research area of
metric learning for computer vision remains quite active. A key
difference from earlier work in metrics for statistical learning is
that recent work in visual learning, with its strong need for data
normalization, eschews Euclidean distance in favor of Mahalanobis
distance [4]. In our review of the literature, we take a broader look
at the many non-Euclidean metric learning approaches that have
been proposed since the above studies were conducted.

Beyond statistical learning, it is natural to ask if the human
mind, a most successful recognition system operates in a way that
satisfies the key metric properties of symmetry and the triangle
inequality. The consensus in the cognitive psychology community
is a definitive “no”. In seminal work, Tversky [24] showed that
human analysis of “similarity” is non-symmetric and is context
dependent. One of the visual experiments conducted by Tversky
was a simple pair-matching task, where subjects were asked if two
block letters were the same or not. A similarity function S(p,q)
indicated the frequency at which subjects noted letter p to be the
same as q. The experiment showed that the order of presenta-
tion of the letters mattered in a statistically significant way:
S(p,q) # S(q,p). This result, along with others for matching faces,
abstract symbols, and the names of countries led Tversky to
conclude that “similarity is not necessarily a symmetric relation.”

In the subsequent work, Tversky and Gati [25] examined if the
triangle inequality (Fig. 1) is satisfied by humans when assessing
similarity. Because the triangle inequality can always be satisfied by
adding a large constant to the distances between individual points
when measuring dissimilarity on an ordinal scale, Tversky and Gati
proposed a test that assumes segmental additivity: d(x,z)=d
(x,y)+d(y,z). Over numerous pair-matching trials across stimuli,
human similarity judgments were found to violate the triangle
inequality in a statistically significant manner. Even without the
triangle inequality for additive functions, it is still possible to induce
metric models with subadditive metrics. However, in experiments
where subjects provided subjective probability estimates instead of
ordinal numbers, Tversky and Koehler [26] were only able to show
that the reported scores are often, but not always, subadditive.

Linking these findings back to pattern recognition, Duin [28,29]
finds a similar effect for the problem of judging difference between
real world objects, and highlights the need for a reconsideration of

2 For example, consider support vector machines (SVM): one cannot draw a
conceptual decision boundary without both positive and negative samples.

3 It is possible to work around the constraint of segmental additivity using a
subadditive metric based on Shepard's universal law of generalization to induce a
metric from finite sets of data [27], but the result is still not consistent with the
human perception findings of Tversky and Koehler [26].



W,J. Scheirer et al. / Pattern Recognition 47 (2014) 2721-2731 2723

the assumptions that underlie common distance measures for
automated classification. If humans are employing non-metric,
non-symmetric similarity measures, do we really want to constrain
our recognition algorithms in computer vision to be metric?
Addressing this notion in the following sections, we present the
following contributions:

® A critical review of the most recent literature in metric learning
for visual recognition.

® A new general definition of recognition, which includes provi-
sions for complex models trained over sets of images and
assumptions.

® An extensive meta-analysis of metric learning, along with
new experiments that give an indication of how often metric
constraints are violated.

® A series of useful recommendations, based on our results, for
recognition algorithm designs in metric and non-metric spaces.

2. A general definition of recognition

Surprisingly, a canonical definition of recognition for computer
vision has yet to emerge. Many different definitions of recognition
can be found in the literature, each addressing particular aspects
of the problem. The familiar distance-based approach to recogni-
tion [5,7,11] compares feature vectors from a test image to one
or more feature vectors from known images using a distance
measure to indicate similarity. More compatible with recent
machine learning-based approaches, statistical learning theory
[30] casts recognition as risk minimization over a given loss
function and joint probability distribution for a class. Other
definitions include the probabilistic formulation described by
Shakhnarovich et al. [31], where recognition maximizes the prob-
ability that an input distribution matches a probability rule for a
single known class, as well as the NN decision rule [3] discussed in
Section 1.

With many possibilities for class sampling, modeling for train-
ing, and strategies for matching, a concise definition that captures
all of these aspects is an open issue. The above definitions tend to
satisfy the definition of a particular subproblem in recognition,
such as pair-matching (1:1 matching), verification (1:1 matching
with a claimed class), identification (1:n matching), or search
(1:n matching returning multiple results). However, no current
definition captures the general problem encompassing all of them.
Further, each definition is missing necessary detail with respect to
the information available during matching. For a given class, there
is a possibility that assumptions outside any given training
examples have been made, which should be incorporated into
the overall definition. These assumptions can include side-
information [32], regularization terms [33], score normalization
[34], or more fundamentally, data used to train a detector that is
applied when pre-processing the training and testing images
(e.g. in the case of face recognition). Another consideration is the
possibility of nested or hierarchical classes, where it is necessary to
return multiple class labels for a given input. With all of
these issues in mind, we introduce the following comprehensive
definition:

Definition 2 (The general recognition problem). Given image(s)
IR, where v is the number of pixels, let F: R*—RP extract a
D-dimensional feature vector x under a set of feature extractor-
specific assumptions ¢:

X= F(I’ d)F)»

The task of a recognition system is to find a ranked set of integer
class labels considered to be the best matches to a given input

xeRP 1)

feature vector xq. For a class labeled c e N, let X, be a set of training
data {xq,...} composed of m feature vectors, where m > 1. A class
model M, represents the information learned from X, incorporat-
ing a set of modeling-specific assumptions ¢,,. Let R be a matching
function that produces a similarity score s. by comparing xo to M,
taking into account a set of matching-specific assumptions ¢y:

Sc = R(xo, Mc(Xc, pm), Pr),  Sc € R (2)

For any input xo, let S be a set of similarity scores {s1, ...} generated
by n evaluations of R to compare xo to n known class models M.,
where n > 1. Let L be a labeling function that maps S to a ranked
set of k class labels C={c%,...}, where k> 1, taking into account
any labeling-specific assumptions ¢;:

C=LS, ¢, CeN &)
where ¢§ =0 is reserved for the non-match label.

Definition 2 is consistent with the four common modes of
recognition:

1. For pair-matching, M, can consist of just features from a single
training image X.=x;, with R a distance measure between
vectors and k=1,c* e {0,1} (non-match and match). ¢; con-
tains matching criteria (e.g. an estimated threshold). M. can
also be a complex model over many images, matching against
the image pair as Xo (see the discussion of LFW in Section 3).

2. For verification, we seek to check if an input image belongs to a
class c specified a priori, with training data defined as above for
pair-matching. R could be applied n times in a multi-view
setting with multiple models, matching against the set {M,, ...}
for class ¢, where n> 1. In all cases, Vc* e C,c* e {0,c} and ¢;
contains matching criteria.

3. Identification can also make use of the same training strategies
as pair-matching, but always applies R over a set of n different
class models, where n > 2. It returns at most one best answer
with k=1.

4. Search is similar to identification, but returns multiple labels,
ie k>1.

Next we define what it means for an algorithm to be metric.

Definition 3 (Metric Algorithm). Let A be an algorithm that solves
the recognition problem. Let R be the matching function as defined
in Definition 2. A is a metric algorithm if and only if R satisfies
all four properties of a metric as stated in Definition 1 for all
possible inputs.

Definitions 2 and 3 serve as general tools for deconstructing the
operation of individual recognition algorithms, regardless of the
context of recognition mode. Note that many recognition functions
fail to satisfy the metric requirement R : X x X —» R, making them
inherently non-metric. For instance, several of the algorithms
considered in our meta-analysis (Section 3) make use of an SVM
for pair-matching. Because the metric learning problem itself is
often framed as pair-matching it may seem intuitive to assume
that pair-matching with SVM would be metric. However, when R
from Definition 2 is examined for an SVM class model, M. is a
combination over a set of feature vectors X. from m different
images, where m > 1. Thus for an SVM, R : X x X" — R is not of the
appropriate functional form to be metric.

In contrast, consider an algorithm where R is a Mahalanobis
distance and where L in Eq. (3) selects argmax over multiple
classes to produce a label. If viewed as a function, the original
mapping from input vector to label is not of the form required
for Definition 1. However, rephrasing this algorithm in terms of
Definition 2 helps us reason about its metricity by splitting the
argmax from the matching function, allowing us to conclude
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algorithms like this are metric, because R is metric which is all that
is required by Definition 3. The decomposition in Definition 2
helps us draw out such details.

3. Meta-analysis of algorithms for LFW

Our first case study of metric versus non-metric algorithms is
Labeled Faces in the Wild [2], a popular current data set for
face recognition research. LFW is ideal for testing pair-matching
algorithms because it is inherently a pair-matching problem. Using
the terminology of Definition 2, each algorithm selects an appro-
priate feature representation F, a model representation M, and a
matching function R. Each input is a pair of feature vectors. For
consistency with Definition 2, we express this as the concatena-
tion of the two fixed-length input vectors; thus, xo =F(I1, ¢f)
IF(I,, ¢r) where || denotes concatenation. Likewise, each algo-
rithm may train on X = {x;", ....X}. X 1....X;,}, a set of m match-
ing pairs and m nonmatching pairs of features. The labeling
function L(S, ¢;) usually checks some likelihood against a threshold
7 (learned as part of the labeling-specific assumptions, ¢;) to
decide whether the pair matches, returning c*=1 if s; >z and
¢* = 0 otherwise, but certain algorithms may instead define some-
thing more complicated.

In this analysis, we consider only recent results for the “Image-
restricted” setting where outside data was used for feature
extraction and in the recognition system, but we briefly mention
certain algorithms that take advantage of the unrestricted set. We
chose this set of results because it represents several algorithms
that are both metric and non-metric, allowing us to compare the
performance of both. To avoid confirmation bias, we only inves-
tigate the results listed on the official LFW results web page at the
time of writing [35]. By graphing the accuracy of these results over
time, some interesting trends become apparent; see Fig. 2.

First, with the exception of [36], the non-metric algorithms
perform better than the algorithms that constrain themselves to
be completely metric. We investigate specific cases below. Second,
the first results reported on LFW are from metric learning algorithms,
but more recent results are not metric and do not claim to be
metric. Note that in Fig. 2, we only consider an algorithm to
be “metric” if it satisfies Definition 3. Merely having “distance
metrics” or “metric learning” in the paper title is not enough to
show this - though many of the papers claim to be metric, upon

closer investigation, some of them have a non-metric R or only use
metric learning as a part of their overall computation. For example,
some techniques define an R that uses a local distance measure to
combine information over different neighborhoods, increasing
performance while making R globally non-metric.

One example of an algorithm that turns out to be non-metric
is [37], which uses a custom logistic discriminant-based metric
learning (LDML) approach. The algorithm specifies a nearest-
neighbor-like (MkNN) normalization strategy: during testing time,
each pair's score is influenced by neighborhoods of matching pairs
around the two images being compared. In our words, they define
a recognition function Ryynn(Xo, Mc(Xe¢, dp(X0)), ¢g). Note that
M:(Xc, pp(x0)) now changes at test time: instead of Ryynn being
fixed on a particular global model, each model's assumptions
¢m(Xo) depend on the input testing pair. From this, it is easy to
see that LDML-MKNN is not globally metric: Rynn Do longer
satisfies symmetry or the triangle inequality because it depends on
a model with assumptions that change as a function of the
ordering of an image pair being classified. This is important
because the extra label information available in the unrestricted
set is what allows MKNN to take advantage of the pairs in each
neighborhood. This implies that by making the algorithm non-
metric, it can take advantage of the extra information in LFW's
unrestricted set that is unavailable to the LDML-only algorithm.

Even without the MKNN step, we can make the case that the
base implementation of LDML is non-metric. According to Section
2 of [37], the R defined by the algorithm is R(xg,Mc,g) =
o(b—dw(F(l1,¢F),F(I2, ¢r))), where b is a bias term, ¢ is the
sigmoid function, and dy, is the Mahalanobis-like measure. Rather
than actual covariance, W e RP*P is a learned matrix, part of model
M.. If W was symmetric and positive-definite, it would result in a
metric. However, in Section 2.3 of [37], it is stated that no such
constraints are placed on W. Thus, this learned distance may not
be even pseudometric. Note that later work [38] used these
constraints and reported similar results.

Another example of an algorithm that turns out to be non-
metric is the Cosine Similarity Metric Learning as presented in [9].
According to Section 1.2 of [9], Resmi(Xo, Mc(Xe, ), ) = (an)"
(bn)/llayl1by Il = cos 6, where a, and b, are T(F(I,1,¢F)) and
T(F(In2,¢p)) for some matrix T, part of model M, that is learned
to minimize the distance between positive pairs and maximize
the distance between negative pairs. The algorithm's labeling
assumption ¢; is a threshold = over cos ¢, where ¢ is the angle
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Fig. 2. Recognition accuracy of algorithms on LFW. Horizontal axis is year of publication; some cluttered years are slightly separated along the horizontal axis for clarity.
“Side-info” refers to algorithms that use outside data in the recognition system beyond feature extraction/alignment. “Claimed to be metric” refers to publications where the
algorithm is claimed to be metric, but upon closer inspection, does not meet Definition 3's criteria for a metric learning algorithm. Even for pair-matching, purely metric
algorithms are not very competitive. Numbers inside each point correspond to bibliography entries. Points marked with a s are not discussed here; references for them can
be found on our companion website: http://www.metarecognition.com/metric-nometric/.
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between a,, and b,. However, cos is not a distance metric since it
may be negative and s.=0 only implies that a, and b, are
perpendicular rather than identical, which means cos only satis-
fies one of the four metric properties (symmetry).

A significant advantage of CSML is that the bounds of
Resve € [— 1, 1] allows for a fast coarse-to-fine search for optimal
parameters. In fact, many algorithms use metric learning precisely
for this reason. Here, CSML has found one way to use this property
while still performing better than other learning techniques, even
though CSML and other algorithms based on it [39,40] are not
actually metric.

Another system that incorporates metric learning as part of a
pipeline that is not completely metric is [41], which uses multiple
one-shot similarity (OSS). In standard OSS, two models are trained
at test time from canonical “negative” examples with each image
in the image pair as positives:

McXe, i) = (M1 (FU{ L pp). X7, -.0),
Mo(Fy , ). X7, ..)) 4)

The scoring function Ross(Xo, Mc(Xe, $u), ¢r) uses each model to
classify its respective input and averages the two scores. However,
there is no clear way for OSS to take advantage of labels
when available, so OSS may be biased toward pose, lighting, etc.
Multi-OSS improves things by using multiple one-shot scores for
multiple labels at test time. Note that neither OSS nor Multi-OSS
are metric because each score depends on models created at
testing time using different assumptions/examples. This means
that none of [41-43] are metric. However, [41] shows that OSS and
Multi-OSS are more effective than a variety of metric techniques.
The improvement is attributed to the extra information provided
by the class labels — something that the metric techniques cannot
take advantage of.

According to Fig. 2, we see that the top scores come from non-
metric algorithms, whether the authors intended them to be
metric or not. What makes non-metric algorithms better? We
emphasize that treating all samples alike may unnecessarily
handicap an algorithm. For example, if one classifier is more
invariant to pose, that classifier may be better than a generic
classifier at handling samples with differing pose. This approach is
embraced in [44], where several classifiers are trained across
different subsets of the gallery for each pose combination to create
a pose-adaptive classification system. Similarly, a top performing
algorithm on the LFW unrestricted set, Probabilistic LDA (PLDA)
[45], uses a probabilistic model based on the observation that
features extracted from an image can change with respect to
irrelevant variables such as pose, expression, and illumination.
These variables may dwarf the variation created by the actual
change in identity in the image pair. A perfect metric system must
filter out such unwanted variation completely, which is impossible
if all variables can influence score distances. In fact, PLDA is not
metric. We show through our own experiments that this algorithm
violates the triangle inequality in Section 5.

Other probabilistic methods [46] explicitly model the inter-
personal and intra-personal variation within and between the face
distributions. These methods and others based on them [47-49]
are currently among the top performers on LFW's Image-restricted
protocol, but do not satisfy any of Definition 1's metric properties
at all. The closed form of their decision function is Rjg(xo, M
Xe» pm), bp) = Ak W an+b£W1 b, —2a’W,b,, where W; and W, are
learned as part of M.. This function may be negative and is also not
symmetric since alW,b, ;ﬁbZWzan in general. Identity also only
holds when W = W5, a special case equivalent to the Mahalanobis
distance. In fact, it can be explicitly shown [46, p. 8] that a
reduction in performance occurs by forcing the distance measure

to converge to Mahalanobis distance, demonstrating that the non-
metric algorithm captures more information.

Other non-metric algorithms include APEM [50], which trains a
Gaussian mixture model (GMM) on bags of spatial appearance
features of every image in the training set. The APEM algorithm
adapts the feature selection process for each face pair. In the APEM
formulation, a new GMM is trained based on the features from
both images, which becomes part of the learned model assump-
tions. Thus, even though APEM is the second-highest performer
on the LFW Image-restricted set without outside training data, it is
not metric because its model incorporates assumptions learned at
test time as a function of the specific image pair.

State-of-the-art deep learning approaches are also worth con-
sidering. The algorithm of Pinto and Cox [51] combines layers of
several nonlinear filters applied over the original image into each
model. A collection of such models is learned and the top-
performing models are selected and combined. This algorithm is
non-metric for several reasons. For example, each layer includes a
thresholding operation to normalize its inputs, which ensures
that the distance function is not globally smooth and thus does
not always satisfy the triangle inequality.

What about the algorithms that might be metric? Many
researchers discuss and formulate their metric learning algorithms
in the sense of a globally metric feature space while mentioning,
almost as an implementation detail, that they constrain their
implementation to be metric only in local neighborhoods [10]. With
no good alternatives, this might seem to makes sense. The authors
of [10] justify the choice of a local model by arguing that it “is
reasonable in the case of learning a metric for the k-NN classifiers
since k-NN classifiers are influenced most by the data items that are
close to the test/query examples.” However, the issue of the
propagation of the local/pairwise constraints is never addressed. It
is well known that in metric spaces, properties on local sets often
have global implications. For example, Menger [52] has shown that
the embeddability of a metric into the space 5 (i.e. the Euclidean
norm, with these parameters) is characterized by the embeddability
of all subsets of size n+3 into I5. Similarly, there is a wide range of
metric embeddings where local subsets imply global properties,
with results for exact metrics, and similar properties even for
embeddings with distortions [53]. Because the use of only local
constraints, not fully propagated, induces distortion into the global
metric space, we do not consider algorithms like the one in [10] to
be truly metric.

However, several LFW results are unambiguously metric. For
example, [54] is a linear combination of two similarity measures
learned only from face pairs. Similarly, the recently proposed
PMML algorithm of [36] is a linear combination of Mahalanobis
distances learned from different regions of the face. The regular-
izer encourages the learned matrix to be p.s.d, which makes it
metric in both design and implementation. Though it is not as
competitive as recent non-metric algorithms, this algorithm is the
top performing metric algorithm on LFW to date.

4. Meta-analysis of algorithms for caltech 101

Our second case study examines the Caltech 101 data set [55].
Whereas LFW is ideal for analyzing pair-matching algorithms,
Caltech 101 is the most well known object recognition set for
identification and search scenarios, making it a useful subject of
study for these other classes of recognition. We split our meta-
analysis into two classes of top performing algorithms: those that
use 30 training samples, the most possible, and those that use 15
training samples. To avoid confirmation bias, we only report on the
30-sample algorithms compared in work organized by Lim [56]
and the additional algorithms compared in Yang et al. [57] and Jain
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et al. [11]. Similarly, to compare algorithms that use 15 training
samples, we only consider those listed by Lim [56]. Like our
analysis of LFW, we can draw some interesting conclusions by
considering the plots in Fig. 3.

Notably, there is a general absence of metric methods in Fig. 3.
For the algorithms making use of 30 training samples, only [58,59]
are metric. Among the top results [56], there are 33 non-metric
algorithms using 30 training samples that have better accuracy
than [59], which is metric. Yang et al. [60] achieved accuracy of
84.3% in 2009 with a non-metric algorithm. Some very recent non-
metric algorithms [61,62] come close to achieving that level of
accuracy. Other notable non-metric algorithms that were among
the best at the time of publication include [63-66].

For 15 training samples, although several non-metric algo-
rithms [57,67,64] do outperform it, the technique of Jain et al. [11]
is metric and performs well. In Fig. 3, Jain et al. [11] appears three
times. The best performing algorithm (73.7% accuracy) of the three
is one from a learned kernel which is the average of a pyramid
match kernel (PMK), a spatial PMK and two geometric blur
kernels. The other two (61% and 52.2% accuracy) are from a
learned correspondence kernel of Zhang et al. [68] and from a
learned PMK kernel using SIFT, respectively. Eq. 6 in [11] is the
matching function that corresponds to R in Definition 2, which is
metric when the chosen kernel function kq(x,y) is metric. How-
ever, the lack of metric approaches with larger amounts of training
data suggests that good performance is achieved by exploiting
relationships beyond pairs of samples. A common strategy for
Caltech 101 is to learn a model for multiple classes (often using an
SVM with a non-metric kernel) in a 1-vs-All configuration, which
is not of the appropriate form to even be considered metric.

Analyzing two specific cases that approach the problem from
a metric perspective, we again find clear violations of metric
assumptions. Instead of learning a global distance metric, the
technique of Frome et al. [5] learns a local distance measure for
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every feature vector in X. for all classes c (resulting in a set of
assumptions from ¢y (X1, ...,Xm) that help build M,) using sets of
image triplets incorporating a reference image, matching image,
and non-matching image. This approach is non-metric because it
intentionally maintains asymmetry; Section 3 of [5] states “Let f; ,
be the mth feature vector from image j. We assume a basic
asymmetric distance from a single feature vector f;, from one
image to the set of features F; from another.” The asymmetry is
inherent in computing distance within image triplets that are
specific to each reference image f; .

As another example, Yang et al. [57] refer to kernel metrics
throughout their article and while they do use kernel metrics to
build models, the overall recognition system is non-metric at a
structural level. Like the algorithm of Frome et al. [5], this
approach makes use of data dependent local models of groups,
as opposed to global models over all of the training data. Relating
this back to Definition 2, R includes group-sensitive kernel weights
$% (Section IV.A.3 of [57]) as part of its matching-specific assump-
tions ¢r(g) = {4%,.... 55}, where n is the total number of kernels,
and g is a specific group. Asymmetry is again inherent in this
formulation - by changing the selected group g, there is no
guarantee that different weights will yield the same classification
result.

5. Experimental assessment of metric constraints

To gain a sense of how often the metric conditions are violated
by good algorithms on pair-matching tasks that appear to be
metric in form, we conducted a series of experiments. We
considered three different algorithms applied to data from LFW.
The first algorithm is the “Tom-vs-Pete” classification approach
of Berg and Belhumeur [1], which learns a large set of identity
classifiers, each trained over images for just two people. As of this
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Fig. 3. Recognition accuracy of algorithms on Caltech 101, with 15 training images on the top plot and 30 on the bottom plot. The horizontal axis is year of publication; some
cluttered years are slightly separated along the horizontal axis for clarity. Note the metric algorithms are generally not as accurate, but are more competitive when fewer
images can be used for training. Numbers inside each point correspond to bibliography entries. Note that because not all algorithms reported error bars, we do not show any
error bars in this plot. Points marked with a s are not discussed here; references for them can be found on our companion website: http://www.metarecognition.com/
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Fig. 4. Results showing the distribution of violations of the triangle inequality for three recent face recognition algorithms [1,34,45] applied over triplets of images sampled
from the LFW [2] data set. “Magnitude of Violation” refers to the difference between the sum of the lengths of two sides of the triangle and the third side that is larger than
that sum, divided by the largest side of the triangle, which puts each algorithm on a common basis for comparison. Note that in some cases, it does not take a large sampling
of triplets to find violations (PLDA), while in other cases, the occurrences are rare (Tom-vs-Pete), requiring a much larger evaluation. PLDA and Tom-vs-Pete follow the same

distribution, suggesting there is some regularity to the pattern of violations.

writing, the “Tom-vs-Pete” algorithm is among the top three
algorithms on the LFW Image-restricted Training protocol. The
second algorithm is the “Multi-Attribute Spaces” approach of
Scheirer et al. [34], where the statistical extreme value theory is
leveraged to normalize scores across large sets of attribute
classifiers for recognition tasks. The third algorithm is the “Prob-
abilistic LDA” approach of Li et al. [45], which uses a probabilistic
generative model to determine if two faces have the same under-
lying identity cause. It is among the top six algorithms on the LFW
Unrestricted Training protocol [35].

Violations of the triangle inequality are subtle, requiring us to
perform a large-scale search of the LFW image space. Triplets of
images are generated by sampling image combinations from the
LFW set, including cases where matches and non-matches occur.
Using each algorithm, we calculated the match score for each
unique image pair in the triplet, and then checked if the scores
satisfied the triangle inequality. To ensure a proper evaluation of
distance, the scores si,...,s;, from the algorithms are processed
with a simple transform T that forces a “smaller is better” result:
T(s;) =s,—si, where s, is the largest score in the set {sy,...,5;}. We
were able to find multiple violations for each algorithm?; details
are provided in Fig. 4. Note that the frequency of violations is a
function of the algorithm. In some cases, it does not take a large
sampling of triplets to find violations (PLDA), while in other cases,
the occurrences are quite rare (Tom-vs-Pete), requiring a much
larger evaluation. Further, we see that PLDA and Tom-vs-Pete
follow the same distribution when the violations are expressed
as magnitudes and binned accordingly. The existence of this

4 Visual examples of these violations can be found on this paper's companion
website: http://www.metarecognition.com/metric-nometric/

distribution suggests that there is some regularity to the pattern
of violations across algorithms. However, there is some algorith-
mic dependence, since the Multi-Attribute Spaces algorithm
follows a different distribution.

Understanding why these violations occur in a seemingly
metric scenario is important. Similar to the MKNN algorithm [37]
discussed in Section 3, the Multi-Attribute Spaces algorithm makes
use of a local neighborhood of scores around one particular
image (bounded from below by a parameter «, and from above
by p) during a match, in order to build a good model for its
normalization [34]. Thus, if the neighborhood around image x is
different from the neighborhood around image y, symmetry is
violated in the general case: ¢y (ax, ) S {VSe R : ay <5 < By} # by
(ay,py) = (VseR:ay<s<p,). Fig. 5 shows the prevalence of
symmetry violations in the Image Restricted Training protocol of
LFW for this algorithm. The formulation of Multi-Attribute Spaces
also means there is no guarantee that the triangle inequality will
be satisfied: the local neighborhoods considered when matching
(x,y), (y,z) and (x,z) can be different from one another, often
resulting in sets of distances that cause a violation. For the experiments
presented here, the neighborhood around the first image is considered
for the first two cases, and the neighborhood around the second image
is considered for the third case. Even under the weaker constraints of
quasimetrics and semimetrics, the algorithm still does not satisfy what
is necessary to be considered either. Since the Multi-Attribute Spaces
algorithm intentionally exploits similarity around single image targets,
it is unclear what advantage, if any, would be provided by enforcing
the constraints of symmetry and the triangle inequality.

The statistics for the individual images involved in the viola-
tions of the triangle inequality are also interesting. Table 1
summarizes the violations that are common between algorithms
computed over the data from Fig. 4. While we do not find any of
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Table 1

Number of violations that are common between algorithms computed over the
data from Fig. 4. An “exact match” refers to the exact same image involved in the
violations, while “identity match” refers to images from the same person. We do
not find any of the exact same triplets violating the triangle inequality across
algorithms, but there are numerous instances of common images and identities
appearing between all three algorithms. This suggests that some similarity
judgements are inherently data driven (supported by Tversky's observations on
local features and context dependency during matching [24]), even in the case of
automated algorithms.

Matches PLDA and TvP TvP and attributes PLDA and attributes
3 Exact matches 0 0 0
2 Exact matches 0 1224 380
1 Exact match 10 12,612 9876
3 Identity matches 0 13 30
2 Identity matches 10 6207 1172
1 Identity match 88 14,238 22,044

the exact same triplets violating the triangle inequality across
algorithms, there are still numerous instances of common images
appearing between all three algorithms. This suggests that beyond
algorithmic design as a cause of non-metric behavior, some
similarity judgements are inherently data driven. With respect to
visual data, Tversky [24] notes that local features such as color,
shape, line length and orientation may detract from overall
similarity matching in humans. Further, Tversky also emphasizes
that a change in scene context also corresponds to a significant
change in the measure of the feature space. We found that the
violations often include a change in context across the same
identity within a triple (i.e. the same person in two different
settings) and that certain identities appear more frequently than
others in the violations. An example is shown in Fig. 6. This can
possibly be attributed to a combination of emphasis on local
features and scene context during matching for those identities
in LFW.

We also conducted a second series of experiments to assess, on
a common feature basis, the accuracy and training time of a
prevalent metric learning approach for visual recognition tasks
versus a typical “off-the-shelf” non-metric supervised method in
machine learning. Our meta-analysis provides an indication of
general performance, but leaves open the possibility that the
metric learning algorithms simply made use of weaker features,
and hence did not perform as well as non-metric algorithms
leveraging better features. To address this, we selected three very
well-studied machine learning benchmark feature sets for visual
data: USPS [72], Letter [73], and Satimage [73]. We trained one
classifier for each set using the Information-Theoretic Metric
Learning (ITML) algorithm [69,70] and the “1-against-1" multi-class

SVM with an RBF kernel provided by LIBSVM [71]. We set SVM
parameters C and y using the values reported by Nguyen and Ho [74]
for USPS, and those reported by Hsu and Lin [75] for Letter and
Satimage.

The results for the comparison can be seen in Fig. 7. For all
three data sets, ITML yields lower accuracies at the expense of
extra time for training. Considering the relative ease of the data
sets and that SVM is an older approach, it is somewhat surprising
that ITML, a more recent algorithm that is the foundation of a
variety of metric learning work [58,76,7,11], is not the best
performing approach here. This finding is consistent with previous
studies found in the literature using multi-class SVM as a point of
comparison [77].

A further note should be made on the dimensionality of feature
vectors used for learning. We considered performing a more
exhaustive experiment comparing features for Caltech 101 and
LFW from the best algorithms, but encountered a problem with
respect to the limits of what data is feasible to compute with
metric learning. As described by Guillaumin et al. [37], available
reference implementations for ITML and LDML (described in
Section 3) are “intractable when using 600" or more feature
dimensions. Even for the most standard off-the-shelf but well-
performing object recognition features (e.g. HOG), we must con-
sider several thousand dimensions for a data set such as Caltech
101. Thus, metric learning approaches turn to dimensionality
reduction to reduce the feature representations before training.
Of course, this introduces the risk of discarding information that
may be valuable for recognition. Moreover, even though ITML is
provably convex, this does not mean an optimal solution can be
found in a practical amount of time for a feature set.

6. Discussion

During the course of this work, we found that some problems
and their corresponding solutions do not even have the structural
form necessary to be metric - they compare input features to more
complex models. Similar observations have been made before
[17,78,29]. In [78] it is proved “that under the Naive-Bayes
assumption, the optimal distance to use in image classification is
the KL “Image-to-Class” distance, and not the commonly used
“Image-to-Image” distribution distances.” Moreover, even for the
restricted recognition problem of pair-matching, which at least
initially looks as if it is metric, the best performing algorithms have
a model for “matched pairs” that is non-metric. Metric properties
allow some powerful mathematical machinery to be employed
and, with effort, any recognition problem's solution can be “made”
metric — the question is if metric constraints improve recognition
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Fig. 6. An example of a common identity occurring in violations of the triangle inequality across algorithms. Note that each pair of images containing the same identity
shows a change in scene context (top: room change; bottom: indoor/outdoor). The numbers below each violation indicate the distance between images in the “triangle”. An
identity that yields only a subset of local features for matching coupled with a change in context is one possible explanation for this phenomenon [24]. Many more examples
of such violations can be found on this paper's companion website: http://www.metarecognition.com/metric-nometric/.

Accuracy

USPS Letter

Satimage

W Information-Theoretic Metric Learning B Multi-class SVM

Fig. 7. Information-Theoretic Metric Learning versus “l-against-1" Multi-Class
SVM. For this experiment, we compared a prevalent metric learning approach
[69,70] to a typical “off-the-shelf” choice for non-metric supervised learning [71]
on a common feature basis, which our meta-analysis does not directly provide.
Across three very well-known machine learning visual benchmark sets (USPS [72],
Letter [73], and Satimage [73]), we observe a clear trend: Information-Theoretic
Metric Learning yields lower accuracies at the expense of extra time for training
(shown inside each bar).

performance. Our meta-analysis and experimental analysis of top-
performing algorithms show violations of symmetry for some and
violations of the triangle inequality for others. With so many cases
where performance improves as metric conditions are relaxed (an
observation supported by the pattern recognition literature [14]),
we conclude that, in general, good recognition is non-metric.

However, this paper should not be interpreted as suggesting
that metrics have no role in computer vision or that metric
learning is not useful for recognition. On the contrary, our analysis
has shown that metric learning has provided interesting first cut
solutions. Furthermore, many good recognition algorithms use
local distance measures as the core of an overall non-metric
algorithm. Learning metrics, at least locally, appears to be an
effective way to incorporate various types of constraints. In many
cases, the original feature space (Eq. (1)) is transformed into
another locally normalized/metric feature space, before combining
data, yielding a non-metric but effective scoring process.

One observation, which can be exploited in other vision work,
is why we believe the problem is inherently non-metric. General
recognition problems must capture and model the uncertainty in
the data and in the class definitions. They must handle local
variations in features, in sample density and in labeling. If, as is
true in the general setting, the data is not uniformly sampled with
uniform error, good recognition algorithms develop local distance

measures in a way that may result in asymmetric measures and/or
measures that violate the triangle inequality. Thus, even if one
chooses to use local metric learning to help normalize the data,
one should also look for models that integrate multiple sources of
information (including side-information) and use them to model
the regional variations and errors.

A good metric-based recognition algorithm would need to
have approximately uniform error. If its “learning” could transform
an inherently non-uniform biased sampling and errors into a
single representation with uniform errors, it would provide a near
perfect “whitening” filter correcting the per-class biases and
errors. While it is true that in the limit, assuming i.i.d. samples, a
metric plus nearest neighbor classification has an error rate no
more than twice the Bayes error rate, we note that “in the limit”
the infinite i.i.d. sampling requirement is effectively removing any
sampling bias and providing uniform error. Most recognition
problems do not have the luxury of ii.d. sampling nor can they
wait for the limit of infinite samples. Thus we believe it is
important to develop robust features and models of uncertainty/
error for more effective recognition algorithms.

We emphasize that this study is ongoing. The rapid evolution of
learning algorithms will likely lend new perspectives on this issue
as the results reported for Caltech 101 and LFW reach ceiling. We
encourage interested readers to submit new algorithms to be
included in the meta-analysis through this paper's companion
website: http://www.metarecognition.com/metric-nometric/.
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