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a b s t r a c t 

The lack of interpretability is an inevitable problem when using neural network models in real applica- 

tions. In this paper, an explainable neural network based on generalized additive models with structured 

interactions (GAMI-Net) is proposed to pursue a good balance between prediction accuracy and model in- 

terpretability. GAMI-Net is a disentangled feedforward network with multiple additive subnetworks; each 

subnetwork consists of multiple hidden layers and is designed for capturing one main effect or one pair- 

wise interaction. Three interpretability aspects are further considered, including a) sparsity, to select the 

most significant effects for parsimonious representations; b) heredity, a pairwise interaction could only 

be included when at least one of its parent main effects exists; and c) marginal clarity, to make main 

effects and pairwise interactions mutually distinguishable. An adaptive training algorithm is developed, 

where main effects are first trained and then pairwise interactions are fitted to the residuals. Numerical 

experiments on both synthetic functions and real-world datasets show that the proposed model enjoys 

superior interpretability and it maintains competitive prediction accuracy in comparison to the explain- 

able boosting machine and other classic machine learning models. 

© 2021 Elsevier Ltd. All rights reserved. 
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. Introduction 

Deep learning is one of the leading techniques in artificial in- 

elligence (AI). Despite its great success, a fundamental and un- 

olved problem is that the working mechanism of deep neural net- 

orks is hardly understandable. Without sufficient interpretability, 

t would be risky to apply these AI systems in real-life applications. 

 well-trained deep neural network is known to usually have accu- 

ate predictive performance on the data at hand. However, it may 

erform abnormally as the data is slightly changed, as its inner 

ecision-making process is unknown. Some recent examples can 

e referred to the adversarial attacks, where a convolutional neu- 

al network can be easily fooled by its attackers [1,2] . 

Interpretable machine learning is an emerging research topic 

hat tries to solve the aforementioned problem and opens up the 

lack-box of complicated machine learning algorithms [3] . Two 

ategories of interpretability are generally investigated, i.e., post- 

oc interpretability and intrinsic interpretability. In the post-hoc 

nalysis, a fitted model is interpreted using external tools. Exam- 

les of this category include the partial dependence plot (PDP; [4] ), 

ocal interpretable model-agnostic explanations (LIME; [5] ), SHap- 
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ey Additive exPlanations (SHAP; [6] ), and visual explanation of 

eep neural networks [7,8] . In contrast, intrinsic interpretability 

ims at making the model intrinsically interpretable. Many statis- 

ical models belong to this category, e.g., generalized linear model, 

ecision tree, and naïve Bayes classifier. In this paper, we limit our 

ocus to the second type of interpretability. 

The generalized additive index model (GAIM) is such an intrin- 

ically interpretable model when proper constraints are imposed. It 

as first proposed by [9] in the name of projection pursuit regres- 

ion. GAIM is shown to have close connections with feedforward 

eural networks [10] , which has universal approximation capability 

s the number of hidden nodes is sufficiently large [11] . The func- 

ional relationship between raw features x ∈ R 

p and the response 

 is represented by 

(E (y | x )) = μ + 

M ∑ 

j=1 

h j ( w 

T 
j x ) , (1) 

here g is a pre-specified link function, μ is the intercept, and 

is the number of additive functional components. For each j = 

 , . . . , M, w j ∈ R 

p denotes the projection index and h j is the so-

alled ridge or nonlinear shape function. Conventionally, GAIM is 

stimated by the backfitting algorithm, which iteratively estimates 

 pair of { w j , h j } at a time, with other pairs fixed. Nonparametric

egression (e.g., smoothing splines) is used to fit the shape func- 

https://doi.org/10.1016/j.patcog.2021.108192
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1 Higher-order interactions can be treated similarly by GAMI-Net, but for simplic- 

ity we focus on pairwise interactions only. Meanwhile, we believe that higher-order 

interactions are usually rare in practice (unlike pairwise interactions), and when 

they exist the interpretation is not straightforward. 
ions in (1) . Such a greedy procedure yields the sub-optimal solu- 

ion. Recently, GAIM has been reformulated to be an explainable 

eural network (xNN [12] ;). In xNN, a fully-connected multi-layer 

erceptron is disentangled into a projection layer followed by mul- 

iple sub-modular networks, where each subnetwork represents a 

onlinear shape function in (1) . The interpretability of xNN is fur- 

her enhanced by imposing sparsity, orthogonality and smoothness 

onstraints [13] . As a result of using neural network parametriza- 

ion of shape functions in xNN, it is more likely to obtain a globally

ptimal solution through full network training. 

The generalized additive model (GAM; [14] ) is another intrinsi- 

ally interpretable model of the form 

(E (y | x )) = μ + 

p ∑ 

j=1 

h j (x j ) , (2) 

hich is a special case of (1) . Regarding the expressive power, 

AIM is indeed much more competitive than GAM; however, for 

ome specific applications, the fitting results of GAIM are not eas- 

ly interpretable. The main problem lies in interpreting the projec- 

ion z j = w 

T 
j 
x . For features with different practical meanings, their 

inear combination could be non-intuitive and not interpretable. 

or example, a weighted sum of stock prices can be accepted by 

uman beings; while the weighted sum of feature values of dif- 

erent types (e.g., stock price and temperature) is not directly in- 

erpretable. To avoid GAIM with such hard-to-interpret projections, 

e consider GAM (2) whose each component is a function of the 

riginal interpretable feature. 

An empirical study of GAM based on machine learning datasets 

as presented by [15] , which suggested that using tree ensembles 

o fit nonlinear shape functions in (2) may achieve better predic- 

ive performance than using regression splines. Recently, it draws 

ur attention that [16] proposed to use neural network represen- 

ation for the shape functions in GAM, which is the same idea as 

n xNN [12,13] . 

The interaction effects between individual features can be in- 

orporated into the GAM for performance improvement [17,18] . 

mong them, the generalized additive models with pairwise in- 

eractions (GA 

2 M) proposed by [17] is a state-of-the-art extension 

f (2) plus pairwise interactions, which is also known as the ex- 

lainable boosting machine (EBM) with a fast implementation by 

icrosoft Research [19] . EBM is similar to [15] by using tree en- 

embles to fit either main effect h j (x j ) or pairwise interaction 

f jk (x j , x k ) , and it comes with a fast procedure for pairwise interac-

ion detection. It is shown by [19] that EBM has an overwhelming 

rediction performance when compared to some black-box models 

ased on five classification datasets. 

In this paper, a novel xNN structure is proposed by using neural 

etwork parametrization for both main effects and pairwise inter- 

ctions, and we call it GAMI-Net. Unlike EBM based on tree en- 

embles, we suggest modeling each main effect or pairwise inter- 

ction by a fully-connected subnetwork consisting of one or two 

nput nodes, respectively. These subnetworks are then additively 

ombined to form the final output. Each subnetwork can be easily 

isualized by 1D and 2D plots for the purpose of interpretation. In 

ddition to neural network parametrization, the interpretability of 

AMI-Net is enhanced with the following three constraints, 

• Sparsity . Model parsimony is an essential factor for an inter- 

pretable model. In GAMI-Net, only non-trivial main effects and 

pairwise interactions are included. Pruning of trivial effects is 

also helpful for reducing the degree of overfitting. 
• Heredity . The classic heredity principle in statistics is intro- 

duced to enhance structural interpretability. That is, a pairwise 

interaction can only be included in the final model if at least 

one of its parent main effects is important. 
2 
• Marginal clarity . The first two constraints are both employed 

to select important main effects and pairwise interactions, 

while marginal clarity serves as a regularization to avoid po- 

tential confusion between main effects and their corresponding 

child pairwise interactions. 

A three-stage adaptive training algorithm is proposed for GAMI- 

et estimation. First, the main effect subnetworks are trained and 

runed. Second, important pairwise interactions are selected, fit- 

ed, and pruned. Finally, all the important main effects and pair- 

ise interactions are collectively fine-tuned. Numerical experi- 

ents on both synthetic functions and real-world datasets are con- 

ucted. The superiority of GAMI-Net is reflected in both predictive 

erformance and intrinsic interpretability. In the synthetic func- 

ions, GAMI-Net achieves the best predictive performance and the 

isualized model fits are close to the ground truth. In the real- 

orld datasets, GAMI-Net also shows close predictive performance 

o black-box models, and its interpretability is demonstrated by 

wo case studies. Therefore, the proposed GAMI-Net can serve as 

 promising tool for interpretable machine learning. 

This paper is organized as follows. Section 2 presents the pro- 

osed GAMI-Net methodology, including the network architecture, 

he training algorithm, and the interpretability. One synthetic func- 

ion and multiple real-world datasets are used to test the GAMI- 

et performance in Section 3 . Finally, Section 4 concludes this pa- 

er. 

. GAMI-Net methodology 

This section first introduces the proposed GAMI-Net architec- 

ure, interpretability constraints, and computational algorithm. Fur- 

her discussions are then provided, regarding the model interpre- 

ation and hyperparameter tuning guidelines. Finally, we compare 

AMI-Net with its counterpart models from various perspectives. 

.1. Network architecture 

In GAMI-Net, a complex functional relationship is formulated 

ia its lower-order representations, including nonlinear main ef- 

ects and pairwise interactions 1 . Let S 1 , S 2 denote the sets of ac- 

ive main effects and pairwise interactions, respectively. Then, the 

roposed GAMI-Net is formulated as follows, 

(E (y | x )) = μ + 

∑ 

j∈ S 1 
h j (x j ) + 

∑ 

( j,k ) ∈ S 2 
f jk (x j , x k ) . (3) 

ote that ( j , k ) and ( k , j ) refer to the same pairwise interaction.

ere, each main effect and pairwise interaction is assumed to have 

ero mean, i.e., 
 

h j (x j ) dF (x j ) = 0 , ∀ j ∈ S 1 , 
 

f jk (x j , x k ) dF (x j , x k ) = 0 , ∀ ( j, k ) ∈ S 2 , 
(4) 

here F (x j ) and F (x j , x k ) represent the corresponding cumulative 

istribution functions. Besides, each pairwise interaction f jk (x j , x k ) 

s desired to be nearly orthogonal to its parent main effects h j (x j )

nd h k (x k ) , subject to the marginal clarity constraint to be dis- 

ussed later. Note that the zero mean and marginal clarity con- 

traints are both introduced for identifiability consideration. In par- 

icular, the zero mean constraint can be easily implemented by 

ormalizing the subnetwork outputs at the end of each training 



Z. Yang, A. Zhang and A. Sudjianto Pattern Recognition 120 (2021) 108192 

Fig. 1. The GAMI-Net architecture. The main effects are fitted first, then the top- K ranked pairwise interactions are selected and fitted to the residuals, subject to the heredity 

constraint. The dashed arrows pointing to the � nodes denote the sparsity constraints, where the trivial subnetworks are pruned. Finally, the marginal clarity is imposed for 

regularizing pairwise interactions, denoted by the symbol “C”. 
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teration; while the marginal clarity constraint is achieved by reg- 

larizing the outputs of pairwise interaction subnetworks during 

he training iterations. 

The GAMI-Net architecture is presented in Fig. 1 . It consists 

f a main effect module and a pairwise interaction module. Each 

ain effect h j (x j ) in (3) is captured by a subnetwork consisting of

ne input node, multiple hidden layers, and one output node. Each 

airwise interaction f jk (x j , x k ) in (3) is captured by a subnetwork 

ith two input nodes. All these networks are linearly combined 

plus a bias node for capturing the intercept μ) to produce the fi- 

al output. More specifically, each main effect subnetwork fits a 

D curve, while each interaction subnetwork approximates a 2D 

urface. When approximating an arbitrary curve or surface, we can 

se a single-hidden-layer feedforward neural network with a suffi- 

iently large number of hidden nodes, while modern deep learning 

raining techniques make it feasible to use multiple hidden layers 

o achieve superior predictive performance. In fact, the multi-layer 

ubnetworks are flexible enough to capture any form of functions 

pon proper network configuration. Besides, the categorical vari- 

bles are preprocessed using one-hot encoding. The subnetworks 

sed for fitting the main effects of categorical variables can be sim- 

lified to multiple bias nodes, where each node captures the inter- 

ept effect of a corresponding dummy variable. 

.2. Interpretability constraints 

The proposed GAMI-Net is developed with sparsity, heredity, 

nd marginal clarity constraints. Specifically, sparsity and hered- 

ty constraints are introduced to enhance the interpretability of the 

tted model; while the marginal clarity constraint is introduced to 

ake main effects and their child pairwise interactions uniquely 

dentifiable. 

Sparsity constraint . The principle of parsimony is commonly 

ssumed in statistical machine learning. The sparse models, upon 

eduction of unnecessary model complexity, not only enjoy compu- 

ational benefits but also prevent overfitting problems. Moreover, 

parsity is an essential building block for model interpretation. 
3 
or example, a shallow decision tree that uses a few explanatory 

ariables is generally thought to be easily interpretable; however, 

 deep decision tree involving multiple variables and many leaf 

odes can be hardly understandable. For high-dimensional data, 

he GAM involving all the variables can be too complex to inter- 

ret. Therefore, it is critical for GAMI-Net to remove unnecessary 

ain or interaction effects, in order to benefit from efficient com- 

utation and enhanced interpretability. 

The importance of a main effect or pairwise interaction can be 

uantified by the variation it explains. Empirically, the variation of 

he j-th main effect can be measured by the sample variance, 

 

(
h j 

)
= 

1 

n − 1 

∑ 

h 

2 
j 

(
x j 

)
, (5) 

here n is the sample size. We treat the main effect functions with 

ery small variation as trivial effects, and enforce them to zero, 

hich results in the sparse GAM [20] . Alternatively, given an in- 

eger parameter s 1 (between 1 and p), GAMI-Net is designed to 

elect the top- s 1 main effects ranked by D (h j ) values, as listed by

he index set S 1 . 

Similarly, the sparsity of pairwise interactions can also be in- 

uced by selecting the top- s 2 pairwise interactions according to 

 ( f jk ) defined by 

 

(
f jk 

)
= 

1 

n − 1 

∑ 

f 2 jk 

(
x j , x k 

)
, (6) 

or all the pairwise interactions. We use the index set S 2 to denote 

he list of selected top- s 2 pairwise interactions. 

Heredity constraint . In addition to sparsity constraint, hierar- 

hical and hereditary principles are essential rules for modeling 

ain effects and low-order to high-order interactions. The hierar- 

hical principle states that lower-order effects are generally more 

mportant than higher-order effects. The principle of heredity fur- 

her requires a more strict hierarchical structure between main ef- 

ects and interactions [21] , whereas the model violating the hered- 

ty principle is thought to be insensible [22] . The heredity principle 

as also been used in the variable selection literature [23–26] . 
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There are two versions of the heredity principle, namely strong 

eredity, and weak heredity. In the case of main effects (indexed 

y S 1 ) and pairwise interactions (indexed by S 2 ), the strong hered- 

ty imposes the constrain that 

 ( j, k ) ∈ S 2 : j ∈ S 1 and k ∈ S 1 , 

hile the weak heredity imposes that 

 ( j, k ) ∈ S 2 : j ∈ S 1 or k ∈ S 1 . 

hat is, a pairwise interaction can be included by S 2 only if a) both

f its parent main effects are included (strong heredity) by S 1 , or 

) at least one of its parent main effects are included by S 1 . 

In GAMI-Net, the weak heredity constraint is employed for the 

ollowing reasons. First, the search space (of pairwise interactions) 

an be reduced and hence it brings computational efficiency. Sec- 

nd, the resulting model can be improved with enhanced inter- 

retability in the sense of the heredity principle. Third, the hered- 

ty principle is empirically supported in statistical modeling liter- 

ture; see, for instance, the meta-analysis conducted by [27] for a 

arge number of data sets from published factorial experiments. 

Marginal clarity . For model identifiability, each main effect or 

airwise interaction is assumed to have zero mean in (4) . How- 

ver, without further assumptions, the main effects can be easily 

bsorbed by their child interactions and vice versa. There could 

e multiple representations for a given model, which makes the 

odel estimation unstable and leads to confusion in model inter- 

retation. 

The marginal clarity constraint is accordingly introduced to 

ake the model more identifiable. It is motivated by the func- 

ional ANOVA decomposition, in which the original function can be 

niquely decomposed into orthogonal components. The weighted 

unctional ANOVA decomposition [28] is proposed for handling ex- 

lanatory variables with empirical distributions, where the orthog- 

nality condition for the j-th main effect and corresponding pair- 

ise interaction ( j, k ) is presented as follows, 
 

h j 

(
x j 

)
f jk 

(
x j , x k 

)
dF ( x ) = 0 . (7) 

he symbol F ( x ) denotes the joint cumulative distribution func- 

ion. Empirically, the degree of non-orthogonality can be defined 

y 

(h j , f jk ) = 

∣∣∣1 

n 

∑ 

h j (x j ) f jk (x j , x k ) 

∣∣∣. (8) 

he smaller the value of �(h j , f jk ) , the more clearly the marginal

ffect h j is separated from its child interaction f jk . The perfect 

ase is when �(h j , f jk ) = 0 ; in practice, it is acceptable to have

(h j , f jk ) slightly greater than zero. Hence in GAMI-Net, we pe- 

alize the non-orthogonality �(h j , f jk ) for all j ∈ S 1 and their cor-

esponding child interactions ( j, k ) ∈ S 2 , in a way for pursuing the

arginal clarity. Note that a similar interaction purifying method is 

roposed in [29] , which is based on post-hoc processing and only 

uitable for piecewise constant functions. 

.3. Computational aspects 

In this section, we discuss the computational procedures for 

stimating GAMI-Net. All the unknown parameters in the pro- 

osed model are denoted by θ. For each sample x , the predic- 

ion is denoted by ˆ y = E (y | x ; θ) . Combining all the interpretability

onstraints, GAMI-Net is estimated by solving the following con- 

trained optimization problem, 

in θ L λ( θ) = l( θ) + λ
∑ 

j∈ S 1 
∑ 

( j,k ) ∈ S 2 �(h j , f jk ) , 

.t. 

∫ 
h j (x j ) dF (x j ) = 0 , ∀ j ∈ S 1 , 

 

f jk (x j , x k ) dF (x j , x k ) = 0 , ∀ ( j, k ) ∈ S 2 , 

(9) 
4 
here the active sets of main effects and pairwise interactions 

 1 , S 2 are determined subject to sparsity and heredity constraints. 

he empirical loss l( θ) is determined by the type of tasks (e.g., re- 

ression or classification). The second term is the marginal clarity 

egularization, and the regularization strength is denoted by λ ≥ 0 . 

Referring to Fig. 1 , an adaptive training algorithm is introduced 

o sequentially estimate the main effects and pairwise interactions, 

hich can be summarized as the following three stages. 

1) Train all the main effect subnetworks for some epochs and 

prune the trivial main effects according to their contributions 

and validation performance. 

2) Select at most K pairwise interactions for training and then 

prune the trivial pairwise interactions according to their con- 

tributions and validation performance. 

3) Fine-tune all the network parameters for some epochs. 

Training main effects . In the first stage, all the main effect sub- 

etworks are simultaneously estimated while the pairwise inter- 

ction subnetworks are frozen to zero. The trainable parameters 

n the network are updated by mini-batch gradient descent with 

daptive learning rates determined by the Adam optimizer, which 

s scalable to very large datasets. 

The training would stop as the maximum number of training 

pochs is reached or the validation performance does not get im- 

roved for a certain number of epochs. Each main effect is then 

ormalized to have zero mean such that the bias node of the 

utput layer represents the overall mean. The trivial main effect 

ubnetworks are then pruned according to the sparsity constraint. 

iven a null model that only contains the intercept term, we eval- 

ate its performance on the validation set, denoted by l 0 . The most 

mportant main effect is then added, and we evaluate its validation 

erformance l 1 . Next, the other important main effects are added 

ne-by-one in the descending order of their contributions (5) . The 

ist { l 0 , l 1 , · · · , l p } represents the corresponding validation loss. 

In general, when more and more main effects are added, the 

alidation loss would show a decreasing trend. However, includ- 

ng too many main effects may lead to overfitting, as reflected 

y the turning trend in the validation loss curve. According to 

he sparse modeling principle, those main effects after the turn- 

ng point should be pruned. In practice, a tolerance threshold η is 

ntroduced to balance the level of sparsity and predictive perfor- 

ance. Then, s 1 is set to be the minimal index whose validation 

oss is smaller than or equal to (1 + η) min { l 0 , l 1 , · · · , l p } . The ac-

ive set S 1 is determined as the list of top- s 1 important main ef- 

ects. Note that the aforementioned threshold can be useless when 

he minimal loss is zero. In that case, we may need to manually 

etermine the validation loss threshold. 

Training interactions . After the top- s 1 important main effects 

re captured, the next step is to train the pairwise interaction sub- 

etworks. In total, there exist p(p − 1) / 2 possible pairwise interac- 

ions that can be tested, which is extremely time-consuming, es- 

ecially for a large p. According to the weak heredity constraint, 

e consider pairwise interactions with at least one of their parent 

ain effects belonging to S 1 . This reduces the computational com- 

lexity a lot when s 1 is much less than p. Besides, an interaction 

ltering procedure is introduced to remove the pairwise interac- 

ions, which are less likely to be important. There exist many inter- 

ction detection methods in the literature, to list a few, hierarchi- 

al Lasso [23] , shallow tree-like model-based pairwise interaction 

anking [17] , and neural network-based interaction detection [30] . 

In GAMI-Net, we employ the interaction ranking algorithm pro- 

osed in [17] , subject to the heredity constraint. The modified pair- 

ise interaction filtering algorithm selects the top- K pairwise in- 

eractions through the following steps. 

1) Obtain the prediction residuals from the main effect training 

stage. 
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2 https://github.com/SelfExplainML/GamiNet 
2) For each j < k with j ∈ S 1 or k ∈ S 1 , evaluate the strength of

interaction ( j, k ) by building shallow tree-like models between 

variables (x j , x k ) and the residuals; the strength of interaction 

( j, k ) is set to the minimal fitting loss across all evaluated 

trees [17] . 

3) Rank all the evaluated pairwise interactions and obtain the top- 

K pairwise interactions. 

Next, the selected top- K pairwise interactions are simultane- 

usly trained using the mini-batch gradient algorithm, subject to 

he marginal clarity regularization. Note that in this stage, the 

ain effect subnetworks are fixed. Each estimated pairwise inter- 

ction is normalized to have zero mean, for which the offset is 

dded to the bias node in the output layer. 

The pruning of pairwise interaction effects is similar to that of 

he main effects. We start from the pre-trained model with the in- 

ercept term and active main effects. The top-ranked pairwise in- 

eractions are sequentially added to the model, together with the 

ecord of their corresponding validation losses. For simplicity, we 

se the same tolerance threshold η as for main effect pruning, 

n order to balance the level sparsity and predictive performance. 

hus, s 2 can be determined accordingly, and the active set S 2 is 

ormed as the list of the top- s 2 important pairwise interactions. 

Fine tuning . The first two stages perform a structured vari- 

ble selection. In the final stage, a fine-tuning procedure is im- 

lemented to jointly retrain all the active subnetworks, where the 

arginal clarity regularization is still imposed between main ef- 

ects and pairwise interactions. All the main effects and pairwise 

nteractions are re-normalized. We find such a fine-tuning step is 

elpful to solve the following two problems: 

1) The removal of trivial main effects or pairwise interactions may 

lead to biased estimation; 

2) The pairwise interactions estimated separately are conditional 

on the pre-trained main effects (subject to marginal clarity reg- 

ularization), which can limit the predictive performance. 

These two problems can be mitigated via jointly retraining all 

he selected main effects and pairwise interactions so that the pre- 

ictive performance of GAMI-Net can be further improved. When 

pplying the estimated GAMI-Net for prediction, data outside the 

raining range are clipped to make the prediction stable. Assume 

he training range of x 1 is [0 , 1] . As new data comes, data with x 1 
maller than 0 or greater than 1 would be clipped to 0 or 1, re-

pectively, before inputted into the model. 

.4. Interpretability of GAMI-Net 

The proposed GAMI-Net is intrinsically interpretable in the fol- 

owing aspects. 

Importance Ratio (IR) . Given an estimated GAMI-Net, we can 

nspect the contribution of each individual variable to the overall 

rediction. The IR of each main effect can be quantitatively mea- 

ured by 

R ( j) = D (h j ) /T , (10) 

here T = 

∑ 

j∈ S 1 D (h j ) + 

∑ 

( j,k ) ∈ S 2 D ( f jk ) . Similarly, the IR of each

airwise interaction can be measured by 

R ( j, k ) = D ( f jk ) /T . (11) 

he IR ’s of all the effects sum up to one. In practice, we can sort

he effect importance according to the IR values in descending or- 

er. The effects of large IR values are more important. 

The definition of IR is related to that of Sobol indices [31] . The

ain difference lies in that Sobol indice is derived under the as- 

umption that all the variables are independent and uniformly dis- 

ributed, while IR is based on the empirical distributions of ex- 

lanatory variables. 
5 
Global interpretation . In addition to measuring the importance 

f each estimated effect, we can further inspect the relationship 

etween one / two individual variables and the response by vi- 

ualizing the fitted shape functions. Unlike the post-hoc diagnos- 

ic tool PDP [4] , the partial dependence relationships can be di- 

ectly obtained from GAMI-Net. We suggest using the 1D line plots 

or numerical variables and the bar charts for categorical variables 

o show the input-output relationship, which can be linear, con- 

ex, monotonic, and any other forms. These plots can be directly 

rawn based on the final estimates of h j (x j ) for j ∈ S 1 . Moreover,

e suggest using the 2D heatmap for visualizing each estimated 

airwise interaction, which shows the joint effect of the two un- 

erlying variables. See, e.g., Fig. 4 (middle panel) for such kinds of 

lots. 

Local interpretation . The prediction by GAMI-Net is also easy 

o be locally explained, leading to a transparent decision-making 

ystem. Given a sample x , the model not only outputs the final de- 

ision but also the concrete function form (1) with the input x . The 

alues of each additive component, i.e., marginal main or pairwise 

nteraction effects, can be directly obtained. These marginal effects 

an be rank-ordered for understanding the decision for the input x 

pecifically. Besides, the sensitivity of prediction to small changes 

f an explanatory variable can be quantitatively investigated by the 

orresponding 1D line plots (or bar charts) and 2D heatmaps. 

.5. Hyperparameters 

Some hyperparameters for GAMI-Net can be configured with 

he following default settings (for numerical experiments in the 

ext section). The maximal number of pairwise interactions is set 

o K = 20 . For simplicity, each subnetwork is configured to have 5 

eLU hidden layers, with 40 nodes per layer. It is worth mention- 

ng that the choice of activation would affect the resulting func- 

ional forms of the fitted model. Using ReLU, the fitted curves are 

iecewise linear; while using hyperbolic tangent, the fitted curves 

an be more smooth. 

The subnetwork weights are initialized using the Gaussian or- 

hogonal initializer. The initial learning rate of the Adam optimizer 

s set to 0.0 0 01. The numbers of training epochs for the three train-

ng stages are set to 50 0 0, 50 0 0, and 50 0, respectively. The mini-

atch sample size is determined according to the sample sizes of 

ifferent datasets. A 20% validation set is split for early stopping, 

nd the early stopping threshold is set to be 50 epochs. The tol- 

rance threshold η is set to be 1% of the minimal validation loss. 

he marginal clarity regularization strength λ can be empirically 

elected from 0.0 0 01 to 1. 

Finally, a demo implementation of the proposed GAM-Net is 

ublicly available, which can be found on Github 2 , including the 

umerical examples presented in this paper. This package is based 

n the TensorFlow 2.0 platform using the Python language. 

.6. Comparison with related methods 

Unlike traditional spline-based GAMs, GAMI-Net uses neural 

etworks to model the non-parametric shape functions. The pro- 

osed GAMI-Net is also closely related to the explainable boosting 

achine (EBM; [17] ), as both of them are based on main effects 

nd pairwise interactions. 

Base models . In EBM, each main effect or pairwise interaction 

s estimated via gradient boosted shallow trees, which is modified 

rom the standard gradient boosting model [4] . Therefore, the esti- 

ated shape functions by EBM are all piecewise constant. Empiri- 

ally, gradient boosted shallow trees are shown to have strong ap- 

https://github.com/SelfExplainML/GamiNet
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roximation ability, which makes EBM even comparable to black- 

ox models [17] . Despite its predictive performance, EBM some- 

imes outputs shape functions with unexpected jumps, which are 

ard to explain. Such a problem may become worse when there 

xist outliers or noisy samples. 

In contrast, spline-based GAMs and neural network-based 

AMI-Net usually output continuous shape functions for numeri- 

al variables. Using splines, the smoothness of the fitted functions 

an be partially controlled by the choice of spline orders and the 

oughness penalty, while for GAMI-Net, the fitted functions can 

e piecewise linear (e.g., when using ReLU) or more smooth (e.g., 

hen using sigmoid). Such continuous or smooth shape functions 

an prevent unexpected jumps and therefore warrant the model 

nterpretability. 

Model estimation . EBM is estimated using a boosting algo- 

ithm, in which all variables are sequentially fitted to the residuals 

or multiple iterations until the stopping rule is reached. Spline- 

ased GAM models are usually estimated by backfitting, where 

ach variable is fitted at a time in a cycle sequential way. In GAMI- 

et, the training algorithm is composed of three stages. The first 

wo stages not only select important main effects and pairwise in- 

eractions but also provide a good initialization. The third stage 

ne-tunes all the network parameters. Unlike boosting or backfit- 

ing, the main effects and pairwise interactions in GAMI-Net are 

ointly optimized, and it is more likely to find the global optimum. 

n addition, the GAMI-Net fitting algorithm shares the advantages 

f modern deep learning training techniques and is easily scalable 

o extremely large datasets. 

Interpretability constraints . The proposed GAMI-Net tends to 

e more efficient and more interpretable than EBM. In EBM, all 

he main effects are included in the final model; the number 

f active pairwise interactions in EBM can only be pre-specified 

which is not flexible) or tuned by cross-validation (which is time- 

onsuming). The resulting model from EBM can be extremely com- 

lex for high-dimensional data. Besides, without marginal clarity 

onstraint in EBM, an estimated main effect and its correspond- 

ng child pairwise interactions may be mutually absorbed, which 

eads to non-identifiable results. Such problems can be well ad- 

ressed by GAMI-Net’s interpretability constraints, including spar- 

ity, heredity, and marginal clarity. 

. Numerical experiments 

In this section, the proposed GAMI-Net is tested on a synthetic 

xample and an extensive list of real-world datasets. 

.1. Experimental setup 

Several benchmark models are included for comparison, in- 

luding EBM, spline-based GAM, generalized linear models (GLM), 

ulti-layer perceptron (MLP), random forest (RF), and extreme gra- 

ient boosting (XGBoost). Specifically, EBM is implemented by the 

pen-source Python package interpret [19] . The spline-based GAM 

s based on the implementation of the pyGAM package [32] , and 

e use pyGAM to denote spline-based GAM in the remaining part 

f this paper. For the other benchmarks, GLM, MLP, and RF are all 

vailable in the Scikit-learn package, and XGBoost is implemented 

y the xgboost package. In particular, GLM uses Lasso for regres- 

ion tasks and � 1 -shrinkage logistic regression for binary classifi- 

ation tasks. The comparative results are grouped into two cate- 

ories, intrinsically interpretable models (GAMI-Net, EBM, pyGAM, 

nd GLM) and black-box models (MLP, RF, and XGBoost). 

By default, we split a dataset into training (80%) and test 

20%) sets upon random permutation. For hyperparameter tuning, 

 20% hold-out validation set is further split from the training set. 

AMI-Net is configured and trained using the settings described 
6 
n Section 2.5 . By default, the strength of the marginal clarity reg- 

larization is set to 1 in the simulation study and 0.1 in all the 

eal-world datasets. The rationale of such a setting is further jus- 

ified through ablation studies. In EBM, the number of interactions 

s set to 20, and all the other hyperparameters are set to the de- 

ault values. In pyGAM, the smoothness regularization strength is 

uned within the package’s recommended range. The � 1 regular- 

zation strength for Lasso (or logistic regression) is tuned within 

 10 −2 , 10 −1 , 10 0 , 10 1 , 10 2 } . For black-box MLP, the hidden layer ar-

hitecture is set to [40 , 20] with hyperbolic tangent nodes. Finally, 

he number of base estimators is set to 500 for both RF and XG- 

oost; and for each of them, the maximum tree depth is tuned 

ithin { 3 , 4 , 5 , 6 , 7 , 8 } . The predictive performance is measured by

he root-mean-square error (RMSE) for regression tasks and the 

rea under the ROC curve (AUC) for binary classification tasks. All 

he experiments are repeated 10 times, and we report the average 

esults. Each time the data is reshuffled before getting split. For 

 fair comparison, all the models are given the same training and 

est sets for the same repetition. 

.2. Simulation study 

A synthetic function is used to demonstrate the proposed 

ethod, in which both main effects and pairwise interactions are 

ncluded, as follows, 

 = 8 

(
x 1 − 1 

2 

)2 

+ 

1 

10 

e ( −8 x 2 +4 ) + 3 sin (2 πx 3 x 4 ) + 

5 e −2(2 x 5 −1) 2 − 1 
2 [ 15 x 6 +12(2 x 5 −1) 2 −13 ] 

2 

+ ε, (12) 

here the response is calculated via complicated nonlinear trans- 

ormations of the explanatory variables plus a noise term gen- 

rated from the standard normal distribution. In addition to 

 x 1 , · · · , x 6 ), a large number of noisy variables ( x 7 , · · · , x 100 ) are

lso introduced, which have no contribution to the response. These 

xplanatory variables are independently generated within the do- 

ain [0 , 1] , with 3 different distributions, i.e, uniform distribution 

(0 , 1) , normal distribution N(0 . 5 , 0 . 2 2 ) truncated within [0 , 1] ,

nd exponential distribution Exp(0 . 5) truncated within [0 , 1] . For 

ach of these three distributions, four different sam ple sizes are 

ested, i.e., n = { 10 0 0 , 20 0 0 , 50 0 0 , 10 0 0 0 } . 
Table 1 reports the averaged test set RMSE and standard de- 

iation (over 10 repetitions) of different models on this synthetic 

ataset. For each setting, the best interpretable and black-box mod- 

ls are both highlighted in bold, respectively. It can be observed 

hat the proposed GAMI-Net outperforms all the compared mod- 

ls, including both interpretable and black-box models. In all the 

ested cases, GAMI-Net outperforms the black-box models, includ- 

ng MLP and RF. 

The training and validation losses of GAMI-Net are presented in 

ig. 2 , for the case with uniform distribution and n = 10 0 0 0 . It can

e observed that the losses decrease significantly as pairwise in- 

eractions are added to the network, which shows the necessity of 

dding pairwise interactions to GAM. At the beginning of the fine- 

uning stage, there exists a sudden jump of training loss (increase) 

nd validation loss (decrease), which corresponds to the pruning 

f trivial pairwise interactions. Besides, the validation loss for de- 

ermining the optimal number of main effects and pairwise inter- 

ctions are visualized in Fig. 3 . The left and right x-axises denote 

he number of included main effects and pairwise interactions, re- 

pectively. Red star symbols mark the optimal number of main ef- 

ects / pairwise interactions. The results show that s 1 = 6 main ef- 

ects and s 2 = 2 pairwise interactions are included in GAMI-Net. 

he marginal benefits of adding more effects could be extremely 

mall and may even lead to the overfitting problem. 

Figs. 4 (a) and 4 (b) draw the ground truth and global interpreta- 

ion of GAMI-Net (with uniform distribution and n = 10 0 0 0 ). Note
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Table 1 

Testing RMSE comparison of the synthetic function. 

Distribution n GAMI-Net EBM pyGAM GLM MLP RF XGBoost 

uniform 1000 1 . 805 ±0.434 2.587 ±0.000 2.998 ±0.138 2.999 ±0.000 3.201 ±0.000 2.458 ±0.160 2 . 383 ±0.172 

uniform 2000 1 . 215 ±0.172 2.529 ±0.000 2.889 ±0.069 3.124 ±0.000 3.054 ±0.000 2.127 ±0.056 2 . 077 ±0.099 

uniform 5000 1 . 071 ±0.029 2.158 ±0.000 2.456 ±0.058 3.003 ±0.000 2.705 ±0.000 1.895 ±0.058 1 . 790 ±0.045 

uniform 10000 1 . 044 ±0.020 1.799 ±0.132 2.450 ±0.046 3.103 ±0.065 2.615 ±0.057 1.822 ±0.043 1 . 634 ±0.013 

normal 1000 1 . 858 ±0.360 2.029 ±0.000 2.528 ±0.120 2.399 ±0.000 2.484 ±0.000 1.914 ±0.104 1 . 882 ±0.121 

normal 2000 1 . 340 ±0.221 1.914 ±0.000 2.526 ±0.081 2.579 ±0.000 2.474 ±0.000 1.702 ±0.052 1 . 660 ±0.066 

normal 5000 1 . 043 ±0.020 1.854 ±0.000 2.105 ±0.050 2.505 ±0.000 2.148 ±0.000 1.541 ±0.059 1 . 487 ±0.042 

normal 10000 1 . 050 ±0.021 1.647 ±0.124 2.010 ±0.032 2.560 ±0.055 2.110 ±0.024 1.485 ±0.027 1 . 358 ±0.026 

exponential 1000 1 . 417 ±0.099 2.066 ±0.000 2.357 ±0.137 2.336 ±0.000 2.519 ±0.000 2.010 ±0.107 1 . 960 ±0.098 

exponential 2000 1 . 273 ±0.083 1.965 ±0.000 2.221 ±0.083 2.360 ±0.000 2.325 ±0.000 1.890 ±0.101 1 . 815 ±0.069 

exponential 5000 1 . 031 ±0.016 1.833 ±0.000 1.954 ±0.045 2.508 ±0.000 2.303 ±0.000 1.767 ±0.056 1 . 624 ±0.040 

exponential 10000 1 . 025 ±0.013 1.614 ±0.104 1.893 ±0.023 2.523 ±0.043 2.078 ±0.030 1.659 ±0.037 1 . 520 ±0.034 

Fig. 2. The training and validation trajectories of GAMI-Net for the synthetic function (uniform distribution; n = 10 0 0 0 ). 

Fig. 3. The validation loss for determining s 1 , s 2 for the synthetic function (uniform distribution; n = 10 0 0 0 ). 
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hat the original formulation (12) has only 2 active main effects 

x 1 , x 2 ) and 2 active interaction effects { (x 3 , x 4 ) , (x 5 , x 6 ) } . But ac-

ording to the functional ANOVA decomposition, this formula can 

e rewritten such that the marginal main effects are extracted 

rom the interactions. Therefore, the active main effects also in- 

lude x 3 , x 4 , x 5 , x 6 . Each main effect / pairwise interaction is ranked

n the descending order of IR, and the pairwise interactions are all 

resented behind the main effects. It can be observed that all the 6 

ain effects and 2 pairwise interactions are successfully captured 

y GAMI-Net, which is close to that of the ground truth. 

Since EBM does not have a pruning procedure, the final model 

f EBM includes 100 main effects and 20 pairwise interactions. To 

ake a valid comparison, we also draw its first 6 main effects and 

rst 2 pairwise interactions in Fig. 4 c. The results indicate that 

BM can also approximately capture the shape of these important 

ffects. However, due to the use of gradient boosting trees, the es- 

imated shape functions are all piecewise constant, and the exis- 

ence of sudden jumps makes it hard to interpret. Second, we also 

alculate IR for each effect in EBM using the same method as in 

AMI-Net. The result of EBM is shown to have a larger bias as 

ompared to the actual model. For example, the interaction (x 5 , x 6 ) 

s underestimated, and the overall IR captured by these true effects 

s just around 80%. That means the noise effects take more than 
0% of the contribution. s

7 
The benefits of introducing the sparsity constraint in GAMI-Net 

re already demonstrated in Fig. 3 . Moreover, ablation studies are 

onducted to justify the use of heredity and marginal clarity con- 

traints. In Table 2 , we report the training, validation, and test 

MSE of the benchmark models. There exist several reasons that 

BM fails in this task. First, as the ground truth function is contin- 

ous, the piecewise constant fits cannot well capture the ground 

ruth. Second, due to the lack of sparsity consideration, EBM suf- 

ers from the overfitting problem. Third, as the main effects are not 

ell captured, the correct pairwise interactions may not always be 

etected. 

Then, the results of GAMI-Net with different marginal clarity 

egularization strengths are also reported in Table 2 . The last row 

enotes the results of GAMI-Net without heredity constraint and 

= 10 0 . The marginal clarity losses are calculated for both EBM 

nd GAMI-Net, via 
 

j∈ S 1 

∑ 

( j,k ) ∈ S 2 
�(h j , f jk ) , (13) 

or which the smaller, the better. The results show that the in- 

rease of λ can help a) prevent overfitting, according to the valida- 

ion RMSE; b) make the model more identifiable, see the decreas- 

ng trend of marginal clarity loss. As is discussed in the previous 

ections, the purpose of using heredity constraint is to help reduce 
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Fig. 4. The fitted results of GAMI-Net and EBM vs. the ground truth of the synthetic function (uniform distribution; n = 10 0 0 0 ). 

Table 2 

Comparison results of the synthetic function (uniform distribution; n = 10 0 0 0 ). 

Model Train RMSE Val-RMSE Test RMSE Clarity Loss 

XGBoost 0.135 ±0.103 1.630 ±0.046 1.634 ±0.013 - 

RF 1.500 ±0.019 1.840 ±0.060 1.822 ±0.043 - 

MLP 2.320 ±0.076 2.372 ±0.119 2.615 ±0.057 - 

GLM 3.062 ±0.039 3.123 ±0.094 3.103 ±0.065 - 

pyGAM 2.253 ±0.025 2.459 ±0.057 2.450 ±0.046 - 

EBM 1.155 ±0.157 1.211 ±0.165 1.799 ±0.132 0.0007 ±0.0001 

GAMI-Net 

λ = 10 0 1.004 ±0.009 1.054 ±0.020 1.044 ±0.020 0.0002 ±0.0001 

λ = 10 −1 0.977 ±0.023 1.056 ±0.018 1.051 ±0.019 0.0003 ±0.0001 

λ = 10 −2 0.976 ±0.013 1.050 ±0.023 1.046 ±0.024 0.0006 ±0.0004 

λ = 10 −3 0.967 ±0.016 1.068 ±0.020 1.061 ±0.018 0.0031 ±0.0022 

λ = 10 −4 0.953 ±0.010 1.063 ±0.019 1.060 ±0.019 0.0042 ±0.0026 

No Heredity λ = 10 0 1.004 ±0.013 1.051 ±0.023 1.045 ±0.019 0.0002 ±0.0001 

8 



Z. Yang, A. Zhang and A. Sudjianto Pattern Recognition 120 (2021) 108192 

Fig. 5. The GAMI-Net and EBM global interpretation for the bank marketing dataset. 
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he search space of interactions and make the model structurally 

ore interpretable. The possible drawback of heredity lies in that 

t may reduce the predictive performance. However, it is observed 

hat the inclusion of heredity constraint does not have a significant 

nfluence on predictive performance. Therefore, the use of heredity 

onstraint can be viewed as a bonus term for GAMI-Net. 

.3. Bank marketing dataset 

This dataset is typically used in a binary classification set- 

ing ( https://archive.ics.uci.edu/ml/datasets/Bank+Marketing ). It has 

5211 samples with 9 categorical variables and 7 numerical vari- 

bles, denoting a client’s age, education, job, and other related 

nformation. The goal is to predict whether a client would sub- 

cribe to the term deposit. Note that the variable "duration" is in- 

luded just for benchmarking purpose, but not for realistic predic- 

ive modeling. 

Due to the limit of page size, we only present the top 6 main

ffects and top 3 pairwise interactions, which is a subset of the se- 

ected 12 (out of 16) main effects and 4 (out of 20) pairwise inter- 

ctions. The top 3 important variables are “duration” (last contact 

uration, in seconds), “contact” (contact communication type), and 

month” (last contact month of year). The most significant pair- 

ise interaction is “day vs. month”. The fitted results of EBM in 

ig. 5 b are rather difficult to interpret. For instance, there exist sig- 

ificant fluctuations as the variable “age” is greater than 80. It is 

ard to explain why the predicted outcomes of a client change 

reatly when his age increases from 80 to 90. In contrast, GAMI- 

et is free from these problems as its fitted model is continuous 

nd even smooth. Finally, the local interpretability of GAMI-Net is 

emonstrated in Fig. 6 , which shows the prediction diagnosis of 

ne sample point. 

The comparison results of different methods are shown in 

able 3 , together with the GAMI-Net results under different set- 

ings. From the results, we can obtain similar conclusions to that 

f the simulation study. With the increase of λ, the marginal clar- 

ty losses get decreased while the predictive performance does not 

hange too much until λ = 10 −1 . Therefore, λ is set to 10 −1 for this 

ataset to pursue a good balance between model interpretability 

nd predictive performance. In addition, it is observed that GAMI- 

et with and without the heredity constraint achieve almost the 

ame accuracy. It indicates that the use of heredity constraint can 
9 
elp reduce the search space during model estimation, without 

acrificing the predictive performance. 

.4. Bike sharing hour dataset 

The bike sharing hour dataset is a regression task with 17379 

amples and 12 explanatory variables ( https://archive.ics.uci.edu/ 

l/datasets/bike+sharing+dataset ). Each sample records the basic 

nvironmental information, including 8 categorical variables, e.g., 

he season and the weather situation; and 4 numerical variables, 

.g., the temperature and wind speed. The target is to predict the 

ourly count of rental bikes in the capital bike share system be- 

ween 2011 and 2012. 

Similarly, the global interpretation of the bike sharing hour 

ataset is shown in Fig. 7 . In total, 9 (out of 12) main effects and 17

out of 20) pairwise interactions are shown to be non-trivial. The 

ost important variable is “hr” (hour, ranges from 0 to 23) with IR 

quals to 57.1%. It can be observed that there exist 2 peaks of bike 

haring around 8 AM and 5 PM, which correspond to the rush hour 

n a day. The categorical variable “yr” (year, 0 denotes 2011 and 1 

eans 2012) is the second important one, and the results show 

hat there exists an increasing trend of bike sharing over time. The 

hird important variable is “atemp” (normalized feeling tempera- 

ure in Celsius divided to 50), and the most appealing temperature 

s around 30 degrees Celsius. Regarding pairwise interactions, the 

hr vs. workingday” is shown to be the most important. 

The comparison results of the bike sharing hour dataset are 

hown in Table 4 , in which the consistent conclusions can be 

rawn. The default marginal clarity regularization strength is also 

et to 10 −1 considering the balance between predictive perfor- 

ance and model interpretability. Note that XGBoost achieves ex- 

remely small RMSE in the training data, and it also ranks the best 

egarding test performance. That is, although XGBoost overfits the 

raining data, it still has better generalization performance than 

ther compared models. 

.5. More real-world datasets 

In addition to the simulation study and 2 real-world applica- 

ions, we test the predictive performance of the proposed GAMI- 

et on another 20 regression datasets, collected from different do- 

ains. These datasets are available in the UCI machine learning 

https://archive.ics.uci.edu/ml/datasets/Bank+Marketing
https://archive.ics.uci.edu/ml/datasets/bike+sharing+dataset
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Fig. 6. The GAMI-Net local interpretation of one sample point in the bank marketing dataset. 

Table 3 

Comparison results of the bank marketing dataset. 

Model Train AUC (%) Val-AUC (%) Test AUC (%) Clarity Loss 

XGBoost 97.38 ±0.09 93.24 ±0.52 93.01 ±0.26 - 

RF 93.59 ±0.10 92.01 ±0.62 91.98 ±0.35 - 

MLP 93.15 ±0.65 93.12 ±0.90 92.29 ±0.41 - 

GLM 90.81 ±0.21 90.77 ±0.47 90.60 ±0.30 - 

pyGAM 91.90 ±0.17 91.68 ±0.39 91.53 ±0.36 - 

EBM 94.59 ±0.16 94.63 ±0.40 93.16 ±0.31 1.0228 ±0.0755 

GAMI-Net 

λ = 10 0 92.21 ±0.37 92.13 ±0.60 91.89 ±0.45 0.0012 ±0.0010 

λ = 8 × 10 −1 92.47 ±0.35 92.40 ±0.55 92.15 ±0.47 0.0018 ±0.0010 

λ = 6 × 10 −1 92.76 ±0.18 92.68 ±0.43 92.42 ±0.29 0.0034 ±0.0022 

λ = 4 × 10 −1 93.01 ±0.15 92.87 ±0.47 92.65 ±0.36 0.0059 ±0.0018 

λ = 2 × 10 −1 93.43 ±0.17 93.19 ±0.47 93.00 ±0.34 0.0092 ±0.0044 

λ = 10 −1 93.80 ±0.13 93.39 ±0.47 93.21 ±0.41 0.0258 ±0.0141 

λ = 10 −2 94.12 ±0.15 93.44 ±0.41 93.28 ±0.38 0.0874 ±0.0212 

λ = 10 −3 94.12 ±0.14 93.41 ±0.46 93.26 ±0.36 0.4293 ±0.1094 

λ = 10 −4 94.04 ±0.10 93.36 ±0.45 93.22 ±0.37 1.3240 ±0.2679 

No Heredity λ = 10 −1 93.81 ±0.12 93.41 ±0.47 93.23 ±0.39 0.0235 ±0.0109 

Fig. 7. The GAMI-Net and EBM global interpretation for the bike sharing hour dataset. 
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Table 4 

Comparison results of the bike sharing hour dataset. 

Model Train RMSE Val-RMSE Test RMSE Clarity Loss 

XGBoost 5.64 ±4.52 40.96 ±1.17 42.33 ±0.72 - 

RF 62.00 ±0.72 65.12 ±1.47 65.69 ±2.10 - 

MLP 35.54 ±1.31 37.09 ±1.52 43.35 ±1.32 - 

GLM 158.98 ±0.52 158.54 ±2.49 159.09 ±1.57 - 

pyGAM 99.52 ±0.60 100.16 ±1.61 100.22 ±1.12 - 

EBM 54.32 ±0.55 54.27 ±0.99 57.48 ±1.20 0.0026 ±0.0005 

GAMI-Net 

λ = 10 0 52.97 ±0.45 55.26 ±1.34 55.90 ±1.19 0.0006 ±0.0002 

λ = 8 × 10 −1 51.95 ±0.79 54.54 ±1.23 55.10 ±1.22 0.0006 ±0.0002 

λ = 6 × 10 −1 51.59 ±1.01 54.18 ±1.49 54.62 ±1.28 0.0007 ±0.0002 

λ = 4 × 10 −1 50.54 ±0.79 53.35 ±1.05 53.84 ±1.01 0.0006 ±0.0002 

λ = 2 × 10 −1 50.39 ±0.61 53.27 ±1.21 53.75 ±0.90 0.0008 ±0.0002 

λ = 10 −1 50.13 ±1.16 53.18 ±1.36 53.63 ±0.83 0.0008 ±0.0002 

λ = 10 −2 49.83 ±0.80 52.95 ±1.39 53.24 ±0.81 0.0014 ±0.0003 

λ = 10 −3 49.88 ±0.59 53.00 ±1.26 53.23 ±0.94 0.0047 ±0.0017 

λ = 10 −4 49.83 ±0.78 53.00 ±1.19 53.37 ±0.96 0.0142 ±0.0040 

No Heredity λ = 10 −1 50.13 ±1.09 53.18 ±1.33 53.66 ±0.83 0.0008 ±0.0002 

Table 5 

Test set RMSE on 20 real-world regression datasets. 

Dataset n p GAMI-Net EBM pyGAM GLM MLP RF XGBoost Scale 

no2 500 7 4.992 ±0.484 4 . 681 ±0.396 4.971 ±0.514 6.508 ±0.626 5.201 ±0.466 4 . 688 ±0.422 4.911 ±0.342 ×0 . 1 

sensory 576 11 7.284 ±0.437 7 . 054 ±0.475 7.923 ±0.279 8.066 ±0.226 7.455 ±0.339 7 . 318 ±0.497 8.205 ±0.549 ×0 . 1 

disclosure z 662 3 2.432 ±0.261 2.438 ±0.275 2 . 429 ±0.277 2.438 ±0.267 2 . 442 ±0.270 2.445 ±0.260 2.856 ±0.184 ×10 0 0 0 

bike share day 731 11 0.688 ±0.028 0 . 663 ±0.043 0.710 ±0.036 1.144 ±0.045 0.827 ±0.042 0.727 ±0.051 0 . 711 ±0.067 ×10 0 0 

era 1000 4 1 . 566 ±0.036 1.566 ±0.038 1.568 ±0.039 1.684 ±0.041 1.583 ±0.041 1 . 573 ±0.041 1.596 ±0.045 ×1 

treasury 1049 15 2.197 ±0.269 2.513 ±0.400 2 . 114 ±0.260 8.971 ±0.739 2 . 367 ±0.282 2.416 ±0.324 2.489 ±0.247 ×0 . 1 

weather izmir 1461 9 1 . 116 ±0.133 1.322 ±0.073 1.150 ±0.131 3.231 ±0.133 1 . 289 ±0.129 1.303 ±0.103 1.337 ±0.095 ×1 

airfoil 1503 5 2 . 101 ±0.149 2.169 ±0.100 4.563 ±0.194 6.357 ±0.205 2.607 ±0.269 2.440 ±0.126 1 . 742 ±0.161 ×1 

wine red 1599 11 6.225 ±0.153 5 . 991 ±0.231 6.252 ±0.129 7.473 ±0.180 6.201 ±0.165 5 . 918 ±0.210 6.135 ±0.251 ×0 . 1 

skill craft 3395 18 0.969 ±0.025 0 . 920 ±0.026 1.154 ±0.531 1.200 ±0.022 1.019 ±0.075 0 . 927 ±0.025 0.997 ±0.021 ×1 

abalone 4177 8 2 . 133 ±0.066 2.240 ±0.052 2.168 ±0.091 2.975 ±0.126 2 . 142 ±0.078 2.186 ±0.074 2.372 ±0.066 ×1 

parkinsons tele 5875 19 0 . 377 ±0.038 0.412 ±0.008 0.771 ±0.035 1.061 ±0.018 0.580 ±0.026 0.321 ±0.014 0 . 198 ±0.009 ×10 

wind 6574 14 3 . 050 ±0.068 3.085 ±0.064 3.071 ±0.062 4.590 ±0.064 3 . 046 ±0.071 3.258 ±0.069 3.205 ±0.095 ×1 

cpu small 8192 12 0.288 ±0.008 0 . 286 ±0.010 0.327 ±0.011 1.464 ±0.049 0.310 ±0.006 0.314 ±0.011 0 . 294 ±0.023 ×10 

topo 2 1 8885 266 2.884 ±0.320 2 . 873 ±0.312 3.054 ±0.337 2.940 ±0.318 2.892 ±0.314 2 . 864 ±0.318 3.067 ±0.301 ×0 . 01 

ccpp 9568 4 3.866 ±0.070 3 . 673 ±0.069 4.087 ±0.084 6.143 ±0.053 4.157 ±0.084 3.705 ±0.073 3 . 121 ±0.090 ×1 

electrical grid 10000 11 0 . 935 ±0.023 0.951 ±0.016 1.718 ±0.020 2.885 ±0.049 0 . 658 ±0.019 1.448 ±0.028 0.993 ±0.016 ×0 . 01 

ailerons 13750 40 1 . 660 ±0.049 1 . 660 ±0.049 1.690 ±0.054 3.380 ±0.087 1 . 590 ±0.030 1.680 ±0.040 1.650 ±0.050 ×0 . 0 0 01 

elevators 16599 18 2 . 218 ±0.042 2.284 ±0.087 2.389 ±0.053 6.710 ±0.167 2 . 106 ±0.070 3.147 ±0.064 2.167 ±0.041 ×0 . 001 

california housing 20640 8 5 . 118 ±0.119 5.235 ±0.084 6.504 ±0.327 9.160 ±0.091 5.777 ±0.169 5.796 ±0.095 4 . 708 ±0.087 ×0 . 1 

Table 6 

Pairwise comparison of test set RMSE for different models. 

GLM pyGAM MLP RF XGBoost EBM GAMI-Net 

GLM - 1 (1) 1 (0) 1 (0) 3 (2) 0 (0) 0 (0) 

pyGAM 19 (17) - 7 (7) 8 (5) 9 (7) 5 (3) 3 (1) 

MLP 19 (19) 13 (11) - 10 (5) 11 (9) 7 (5) 5 (3) 

RF 19 (19) 12 (10) 10 (8) - 10 (9) 6 (4) 6 (6) 

XGBoost 17 (17) 11 (8) 9 (7) 10 (10) - 7 (5) 8 (5) 

EBM 20 (19) 15 (13) 13 (12) 14 (10) 13 (11) - 8 (5) 

GAMI-Net 20 (19) 17 (14) 15 (11) 14 (10) 12 (10) 11 (8) - 
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epository or the OpenML platform. The sample sizes range from 

00 (no2) to 20640 (california housing), and the number of vari- 

bles varies from 3 (disclosure z) to 266 (topo 2 1). The detailed 

nformation of each data and numerical results is presented in 

able 5 , where the test set performance of each compared method 

s reported. Note that the reported results are all rounded to a cer- 

ain precision, while the best performer (based on the full preci- 

ion) is highlighted in bold. Besides, the listed results should be 

ultiplied by the corresponding scaling factors in the last column. 

Table 6 presents the pairwise comparison results of the com- 

ared methods. The numbers indicate how often the methods in 

ow (significantly; by paired t -test over the 10 repetitions, with 

 p -value of 0.05) outperform the methods in column, which are 

ounted using the 20 real-world datasets. For instance, GAMI-Net 

utperforms EBM in 11 out of the 20 datasets, in which 8 are 

ested to be significant; in contrast, EBM beats GAMI-Net in only 

G

11 
 datasets, and they show the same performance on the ailerons 

ataset. 

Generally speaking, GAMI-Net shows comparative predictive 

erformance to EBM and other benchmark models. GAMI-Net is 

ore likely to have better predictive performance when the actual 

hape functions are continuous and smooth, while EBM is more 

ikely to perform better when the shape functions are piece-wise 

onstant. Both of them are competitive regarding predictive power, 

hile the proposed GAMI-Net is designed with more interpretabil- 

ty considerations. Therefore, GAMI-Net is a promising tool in the 

rea of interpretable machine learning. 

. Conclusion 

In this paper, an intrinsically explainable neural network called 

AMI-Net is proposed. It approximates the complex functional re- 
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ationship using subnetwork-represented main effects and pairwise 

nteractions, which can be easily interpreted using 1D line plots / 

ar charts and 2D heatmaps. Several statistically meaningful con- 

traints are considered to enhance the model interpretability, in- 

luding the heredity constraint for enforcing structural pairwise in- 

eractions, the sparsity constraint for promoting model parsimony, 

nd the marginal clarity constraint for avoiding the effects mix- 

ng problem. The experimental results show that the proposed 

odel has competitive predictive performance to black-box ma- 

hine learning models. Meanwhile, the model estimated by GAMI- 

et is highly interpretable and easily visualizable. 

To extend GAMI-Net, the following topics are promising. One 

irection is to consider additional shape constraints for each com- 

onent function, e.g., monotonic increasing / decreasing, convex or 

oncave, according to prior experience or domain knowledge. An- 

ther direction is to consider higher-order interactions for more 

ophisticated developments. 
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