
Pattern Recognition 42 (2009) 676 -- 688

Contents lists available at ScienceDirect

Pattern Recognition

journal homepage: www.e lsev ier .com/ locate /pr

A scalable framework for cluster ensembles�

Prodip Hore, Lawrence O. Hall∗, Dmitry B. Goldgof
Department of Computer Science and Engineering, ENB118 University of South Florida, Tampa, FL 33620, USA

A R T I C L E I N F O A B S T R A C T

Article history:
Received 5 October 2007
Received in revised form 22 August 2008
Accepted 16 September 2008

Keywords:
Clustering
Hard/fuzzy-k-means
Large data sets
Ensemble
Scalability
Single pass algorithm

An ensemble of clustering solutions or partitions may be generated for a number of reasons. If the data
set is very large, clustering may be done on tractable size disjoint subsets. The data may be distributed
at different sites for which a distributed clustering solution with a final merging of partitions is a natural
fit. In this paper, two new approaches to combining partitions, represented by sets of cluster centers,
are introduced. The advantage of these approaches is that they provide a final partition of data that is
comparable to the best existing approaches, yet scale to extremely large data sets. They can be 100,000
times faster while using much less memory. The new algorithms are compared against the best existing
cluster ensemble merging approaches, clustering all the data at once and a clustering algorithm designed
for very large data sets. The comparison is done for fuzzy and hard-k-means based clustering algorithms.
It is shown that the centroid-based ensemble merging algorithms presented here generate partitions of
quality comparable to the best label vector approach or clustering all the data at once, while providing
very large speedups.

© 2008 Elsevier Ltd. All rights reserved.

1. Introduction

Clustering algorithms are used to partition unlabeled data into
groups or clusters. Clustering data is often time consuming. This is
especially true of iterative clustering algorithms such as the k-means
family [1] or EM [2]. As larger unlabeled data sets become avail-
able, the scalability of clustering algorithms becomes more impor-
tant. There are now unlabeled data sets which vastly exceed the size
of a typical single memory [3,4]. Subsets of data can be clustered in
such a way that each data subset fits in memory and finally the clus-
tering solution of all subsets can be merged. This enables extremely
large data sets to be clustered. Sometimes, data is physically dis-
tributed and centrally pooling the data might not be feasible due to
privacy issues and cost. Thus, merging clustering solutions from dis-
tributed sites is required. Moreover, iterative clustering algorithms
are sensitive to initialization and produce different partitions for the
same data with different initializations. Combining multiple parti-
tions may provide a robust and stable solution [5,6]. Also, combining
multiple partitions may produce novel clustering solutions which
might not be possible when clustering all the data [5,6]. In Ref. [7],

� This research was partially supported by the National Institutes of Health under
Grant no. 1 R01 EB00822-01.

∗ Corresponding author. Tel.: +18139744195; fax: +18139745456.
E-mail addresses: usfprodip@gmail.com (P. Hore), hall@csee.usf.edu (L.O. Hall),

goldgof@csee.usf.edu (D.B. Goldgof).

0031-3203/$ - see front matter © 2008 Elsevier Ltd. All rights reserved.
doi:10.1016/j.patcog.2008.09.027

it has been shown that consensus clustering converges to the true
underlying distribution as the ensemble size grows, further justify-
ing the use of cluster ensembles. So, combining multiple clustering
solutions has emerged as an important area of research to address
the issue of scalability, the distributed nature of some data, and the
robustness or stability of the clustering solution.

Current research on combining ensembles of clustering solutions
has focused on what we are going to call high-resolution represen-
tations [5,6,8–17]. Label vectors for each example or a co-association
matrix or a similar representation have been used. These represen-
tations have a size which is on the order of the number of ex-
amples in a partition. As the number of examples becomes large
to very large, both storage and time costs scale poorly with these
approaches.

The work presented in this paper focuses on scalable methods of
combining clustering solutions. We use a low resolution represen-
tation of the clustering solutions (partitions) in the form of cluster
centroids. The centroids are insensitive to the number of examples
from which they are created. Our approach does not require labels
from examples which is an advantage when combining clustering
solutions from object distributed data [5]. With object distributed
data there may be no overlap between the arbitrary labels created
from disjoint data sets making the label resolution difficult. This
could prove an obstacle to creating scalable clustering solutions by
applying a distributed clustering algorithm where solutions created
on subsets must be merged.

There are many ways to create an ensemble of data partitions by
clustering and we will touch on the most common. You can exploit

http://www.sciencedirect.com/science/journal/pr
http://www.elsevier.com/locate/pr
mailto:usfprodip@gmail.com
mailto:hall@csee.usf.edu
mailto:goldgof@csee.usf.edu

P. Hore et al. / Pattern Recognition 42 (2009) 676 -- 688 677

Data Repository

x1
x5
x25
 .
 .
 .

x70
x5
x4
 .
 .
 .

x110
x25
x5
 .
 .
 .

Data
set 1

Data
set 2 ...

Data
set n

c1

c2

c3

c3

c2

c1

c1

c3

c2

Cluster merging
algorithm

c1’

c2’

c3’

Final Cluster
Centroidsc4

Fig. 1. An illustration of cluster ensemble creation and merging. Data may be
extracted, with or without replacement, from a central repository. Alternatively, the
data sets may exist already (no feed in from above the dotted line). The number of
clusters may vary. Data are finally partitioned into three classes c1′–c3′ .

the sensitivity of the clustering algorithms to initialization and sim-
ply create r partitions by initializing the algorithm differently each
time. Disjoint subsets of the data may be clustered or overlapping
subsets of the data may be clustered. In studying scalability of par-
tition combining algorithms, we are primarily interested in disjoint
data subsets, which may be created to reduce the clustering time
required, or overlapping data sets. Also of interest are data sets that
are by nature distributed, for example data of the same type that
is owned by different companies. They might be willing to share
their central tendencies, but could not/would not share the data it-
self. Fig. 1 illustrates the problem of creating a final partition from
all of the data. Another example is when very large data sets of the
same type are geographically distributed. The distributed solutions
must be combined and we will analyze two approaches to combin-
ing centroids. The cluster to which any given example belongs can be
determined by using the nearest centroid using any similarity met-
ric (e.g. Euclidean distance). Certainly cluster centroids can be easily
distributed to different companies or computers for determining to
which cluster the examples belong.

We do not require the feature values of examples to produce
the final clustering solution. Hence, we have a knowledge reuse and
privacy preserving data mining framework which can be used to
merge already clustered solutions without knowing the underlying
data.

The main focus of this paper is to show how an ensemble of
centroids created from object distributed data, using fuzzy-k-means
and hard-k-means algorithms, can be merged in a scalable frame-
work. We have proposed two methods to merge ensembles of
centroids. We show a robust, quality final clustering solution was
obtained compared to a relevant multiple partition combining algo-
rithm (MCLA) [5], while providing superiority in terms of time and
space complexity. The quality of our ensemble merging algorithms
was also compared to the quality of clustering all the data at once in
memory, the average base clustering (BC) solutions in the ensemble,
and to a scalable single pass (SP) algorithm.

2. Related work

Creating and combining multiple partitions of a given data set has
been examined in several ways [4–17]. In Ref. [6], it has been pointed
out that existing merging algorithms suffer from a time complex-
ity problem. In most of the approaches which use high resolution

representations, each clustering solution in the ensemble will have
n, the number of examples, in its time andmemory complexity equa-
tions. In Refs. [16,17], to speed up their multiple partition combining
algorithm they used a sample of the original data set and then ex-
tended the results to global data. However, for large or extreme data
sets even a subsample may be quite large.

In Ref. [5] hyperedges were formed from each clustering solu-
tion represented as a label vector. Using these hyperedges, a final
partition was obtained by using graph partitioning algorithms like
cluster-based similarity partitioning (CSPA), hypergraph-partitioning
(HGPA), and meta-clustering (MCLA). In Ref. [8] clustering solutions
in the ensemble were represented by membership matrices of size
n by k, where n is the number of examples in the data set and k is
the number of clusters. A final clustering solution was then obtained
by soft correspondence, where each cluster from one partition cor-
responded to clusters in other partitions with a different weight. In
Refs. [12,14], weak clusters of a data set were formed by using ran-
dom hyperplanes and multiple views of a sample of the data. By cre-
ating many views of the data and merging them, they were able to
show the final partitions were better. However, the representations
of BC were in the form of label vectors, and the approach might be
complicated for large data sets because a large number of partitions
might have to be created to get a good overall partition. In Refs.
[13,18] clusters have been merged using co-association matrices,
but the approach is computationally expensive. In Refs. [10,11,19]
combining clustering solutions frommultiple bootstrap samples was
discussed. In Ref. [20], a method for fast and efficient ensemble clus-
tering was proposed using the Leader algorithm [21]. However, both
the ensemble creation and merging algorithm use parameters par-
ticular to the Leader algorithm, and the method may not generalize
to ensembles created from the k-means family or other clustering
algorithms.

As in our framework, disjoint subsets of data can be clustered
in parallel and used independently or merged to allow clustering
to scale for large data sets, so we also survey scalable clustering
algorithms. In recent years a number of new clustering algorithms
have been introduced to address the issue of scalability [1,22–28].
All the algorithms assume that the clustering algorithm was applied
to all the data centrally pooled in a single location. Various methods
for expediting fuzzy-k-means have been explored. In Ref. [29] data
subsampling was proposed and a good speedup of fuzzy-k-means
was obtained. Similarly, in Ref. [30] a multistage random sampling
algorithm was proposed to speed-up fuzzy-k-means. In Ref. [31],
a density based data reduction method has been discussed, which
condenses a data set into fewer examples. Recently two online clus-
tering algorithms have been proposed [32]. A parallel implementa-
tion of k-means [33] or other similar algorithms is not applicable to
cluster ensembles as they do not combine multiple clusterings.

In Refs. [34,35] distributed clustering has been discussed under
limited knowledge sharing. In Ref. [35] a clustering solution has been
represented by labels while in Ref. [34] generative or probabilistic
model parameterswere sent to a central site, where “virtual samples”
were generated and clustered using an EM algorithm [2] to obtain
the global model. In Ref. [36], data at local sites were first clustered
using the DBSCAN algorithm and then representatives from each
local site were sent to a central site, where DBSCANwas applied again
to find a global model. Another density estimation based distributed
clustering algorithm has been discussed in Ref. [37]. In Ref. [38], local
models or prototypes were detected using EM [2] in a distributed
environment and later merged by computing mutual support among
the Gaussian models. In Ref. [39] a method for speeding up the EM
algorithm by aggregating subclusters obtained from a data set was
discussed. However, the objective functions optimized by the above
algorithms are different from those optimized by the hard c means
and the fuzzy c means algorithms. Moreover, the above algorithms

678 P. Hore et al. / Pattern Recognition 42 (2009) 676 -- 688

are not known to have been studied in the context of merging cluster
ensembles for large or very large data sets in terms of time and space
complexity.

Recently in Ref. [40], improving the clustering solution by weight-
ing examples in a concept analogous to boosting in supervised learn-
ing was addressed, where less efficiently clustered points are given
more weight. However, it does not fall under the class of multiple
partition combining algorithms.

The contribution in this paper is twofold. First, we study scal-
ability issues, in terms of time and space complexity, for merging
ensembles for large or very large data sets. To our knowledge, algo-
rithms for merging cluster ensembles have not been studied for large
or very large data sets. Here, we address the merging of multiple
partitions formed from the widely used fuzzy-k-means and hard-k-
means algorithms in a scalable framework. Second, we propose an
algorithm to filter noisy clusters to prevent “blind” merging of BC so-
lutions, which to our knowledge has not been previously addressed.
The performance of algorithms under noise was studied in Ref. [5].

An algorithm which merges clusters from multiple partitions by
doing the best possible match without filtering may be said to do
blind merging. We will discuss a simple method to remove outlier
or noisy clusters which allows only a subset of clusters to be used to
produce a final partition. As an example, if there are five partitions
in an ensemble, each of three clusters, there are 15 clusters in the
ensemble. One final centroidmay be created from centroids from two
of the five partitions, another from four of five and the last from all
five. The unused centroids will be considered outliers or noisy. This
approach provides a mechanism to deal with noise in the data or an
unbalanced distribution (e.g. one or more classes is mostly missing
in one data set). The essential idea is to identify the closely matching
centroids and then filter out the outliers or “bad” centroids.

Although the concept of filtering and merging multiple cluster-
ing solutions (bipartite merger, BM algorithm) have been introduced
in our earlier work [3,4], in this work we propose and evaluate an-
other merging algorithm, the Metis merger (MM). We perform ex-
periments on large or very large data sets from several domains, and
quantitatively evaluate the performance of all of them compared to
a well known multiple partition combining algorithm, clustering all
data at once in memory, the average BC solution, and a SP algorithm.

3. Ensemble merging

Our first algorithm, BM, uses the assumption that the number of
clusters in the BC, the clustering solutions in the ensemble, are the
same for all partitions. However, the true number of classes in each
partition may not always be the same.

So, if we set the number of clusters to k, the maximum number,
what effect it will have on different mixtures?

Case A: If less than k classes are present in a subset, then we are
overclustering. Overclustering may not cause any information loss
as it will likely split homogeneous clusters. Information loss only
occurs whenwe undercluster, whichmust group non-alike examples
together.

Case B: If exactly all k classes are present, then we are neither
overclustering nor underclustering.

The above holds if in each subset there exist enough examples of
a class to form a cluster. In the case that a BC had a very small num-
ber of examples from a class which were not enough to form their
own cluster, they will get mixed in with a cluster of another class.
So, setting the number of clusters always equal to k, the maximum
number of classes in the data set, may not cause any information
loss in generating cluster ensembles in the cases that there are ad-
equate numbers of each class present in a BC or classes are absent
from a BC. Thus, we set the number of clusters to the maximum
number of classes in all our experiments for generating ensembles
for BM. Our second algorithm, MM, does not use the assumption

that the number of clusters in each BC is the same. So for MM, one
may also generate an ensemble with different numbers of clusters
in the base clustering, provided the knowledge of the true number
of classes is available. If that knowledge is not available, one may
generate an ensemble by using the maximum possible number of
classes, which should minimize any information loss. The knowledge
of the true number of classes may not always be easily available.
This is especially true for data divided in an unbalanced way. For ex-
ample, knowing a data set has 12 clusters we may attempt to divide
it into 10 disjoint subsets for generating ensembles. Now, if the data
are divided randomly into 10 subsets, it is likely that the number of
classes in each disjoint subset will also be 12; however, if the data
are divided in an unbalanced way, it is difficult to know how many
classes are in different subsets. We are certain that the maximum
possible in any subset is 12.

In a graph theoretical formulation, if the centroids of each par-
tition are represented by non-adjacent vertices of a graph and the
Euclidean distance between a centroid of a partition and other parti-
tions as a weighted edge, then it becomes a r-partite graph, where r
is the number of partitions to combine. Our objective is to partition
this r-partite graph into final target clusters, such that “similar” cen-
troids are grouped together. If the base clusterings/partitions have
an equal number of clusters and meaningful correspondences ex-
ist among them, the group size will tend to be equal. The centroids
in each group will then be used to compute a global centroid. The
partitioning of this r-partite group is like clustering the clustering
solutions, and optimizing it is generally an NP hard problem.

So, our two heuristic algorithms, BM and Metis Merger, attempt
to partition the ensemble of centroids, the r-partite graph. The BM
algorithm partitions the ensemble of centroids into exactly equal
size groups using the constraint of one to one centroid mapping
between any two partitions. Hence, the number of target clusters
must be the same as the number of clusters in each base partition.
Although this assumption is somewhat restrictive, it has also been
used for re-labeling purposes [10,11]. In many cases the underlying
distributions of data in subsets slowly changes or is similar, and
in those cases assumption of one to one correspondence generally
holds. MM tends to partition ensembles of centroids, using the graph
partitioning package METIS [41–43], into approximately equal size
groups. Note, in MM the group sizes may not be the same and it
does not require the number of clusters in the BC to be the same as
the target clustering.

The assumption of an equal number of clusters in all base cluster-
ing solutions, especially in BM, will not cover all cases, for example
the BC solutions may already exist with a different number of clus-
ters, and in this case only a knowledge reuse framework is needed
for merging. We do not specifically address this type of scenario for
BM in this work. However, one may use our MM approach for an
unequal number of clusters in the partitions.

The focus of this paper is on scalability, and we will show that for
the same ensembles, a centroids based representation is better than
or as good as the label vector based representation, while providing
significant superiority in terms of time and space complexity.

In the first method, we merged the ensemble using the bipartite
matching algorithm, and named it the BM. The second method uses
the graph partitioning package METIS [41–43], and is called the MM.
METIS was also used by Strelh and Ghosh [5] in their multiple par-
tition combining algorithm, MCLA, to merge base clusterings repre-
sented in the form of label vectors. We have used METIS to merge
BC solutions represented in the form of centroids. To our knowledge,
we are the first to use this graph partitioning package to merge an
ensemble of centroids. Below, we describe our two ensemble merg-
ing algorithms.

Between any two partitions, BM optimally matches clustering
solutions, but the constraint of one to one mapping may force a
matching of clusters without meaningful correspondence. This might

P. Hore et al. / Pattern Recognition 42 (2009) 676 -- 688 679

C11

C12

C21

C22

C31

C32

10
10

1

1

10

10

10

1

10

1

1

Partition 2 Partition 3Partition 1

1

Fig. 2. Partitions to be matched with edges whose weights are inverses of the distances between the centroids. For Bipartite merging the raw distances would be used. The
dotted lines (links) are only needed for Metis merger.

happen if one or more BC are relatively noisy or have originated from
an unbalanced distribution. To address this problem and make our
framework robust, we have proposed a filtering algorithm, described
later, that filters out “bad centroids” from merging. The filtering
concept has also been applied to MM to remove spurious centroids,
if any.

We will evaluate our algorithms on ensembles created from both
a balanced distribution, created by randomly dividing a data set, and
an unbalanced distribution. The number of clusters has been kept
at the maximum possible, k, for each clustering solution and is the
same as the target number of clusters. We will be comparing BM
withMM and also toMCLA, a well known relevant ensemblemerging
algorithm. Thus to provide a fair comparison, the same BC solutions
were used both for MM and MCLA.

3.1. Bipartite merger

After clustering was applied to each disjoint subset, there was a
set of centroids available which described each partitioned subset.
Clustering or partitioning a subset {Si} produces a set of centroids,
BC solutions, {Ci,j}kj=1, where k is the number of clusters. When r

subsets are chosen there will be r sets of centroids i.e. {C1,j}kj=1,

{C2,j}kj=1, . . . , {Cr,j}kj=1 forming an ensemble of centroids. To produce

the final partition, we need to reach a consensus of the position of
the centroids in the target clustering.

One way to reach a global consensus is to partition the ensemble
of centroids into k consensus chains, where each consensus chain
will contain r centroids {cl1, . . . , clr}, one from each of the subsets,
where l runs from 1 to k. The aim is to group similar centroids in each
consensus chain by solving the cluster correspondence problem. The
objective is to globally optimize the assignment �∗ out of the set f of
all possible families of centroid assignments to k consensus chains:

�∗ = arg min
�⊂f

{�}, (1)

� =
k∑

l=1

cos t(consensus_chain(l)), (2)

cos t(consensus_chain(l)) =
r∑

i=1

Dl(i), (3)

Dl(i) = 1
2

r∑

j=1

d(cli, c
l
j), (4)

where d(.,.) is the distance function between centroid vectors in
a consensus chain. We used the Euclidean distance in computing

the cost (4), as the underlying clustering solutions were also ob-
tained using the Euclidean distance metric. So, in a graph theoreti-
cal formulation finding the globally optimum value for the objective
function (1) reduces to the minimally weighted perfect r-partite
matching problem, which is intractable for r >2. Because the opti-
mization problem is intractable (NP-hard), a heuristic method was
used to group centroids.

We know that for two partitions, r = 2, there is a polynomial
time algorithm i.e. minimally weighted perfect bipartite matching to
globally optimize the above objective function. For optimally match-
ing centroids of two partitions we used the Hungarian method of
minimally weighted perfect bipartite matching [44]. After matching
a pair of partitions, we keep the centroids of one of the pair as the
reference and a new partition is randomly chosen and matched i.e.
minimally weighted bipartite matching. Now, the centroids of this
new matched partition are in the same consensus chain in which
the centroids of the reference partition belong. In this way we con-
tinue grouping the centroids of new partitions into consensus chains
one by one until they are exhausted. After the consensus chains are
created, we simply compute the weighted arithmetic mean of cen-
troids in a consensus chain to represent a global centroid, where the
weights of a centroid are determined from the size of the subset
from which it was created. In some cases, especially in the knowl-
edge reuse framework, weights/importance of BC solutions may be
difficult to obtain. In those cases, all the BC solutions may be con-
sidered to have the same weight/importance. Each consensus chain
tells us which centroid from which subset is matched to a centroid
in another subset. A final partition, in the form of label vectors, may
be obtained by assigning an example to the nearest global centroid.
It should be noted that the BM algorithm partitions the ensemble of
centroids into k perfectly balanced chains, that is, each chain has the
same number of centroids (one from each BC solution). More about
consensus chains can be found in our earlier work [3,4].

In Refs. [9,15], both examples and clusters were modeled as a
graph in which an example vertex can connect only to a cluster ver-
tex, thus formulating the problem of finding a consensus partition
as a bipartite matching problem. In our case, we formulated it us-
ing the centroids only, thus the time and space complexity will not
involve n, the number of examples in a data set.

Example. Consider the case that there are three subsets S1, S2, and
S3 of a data set and each subset is grouped into two clusters. Then
three partitions are produced as shown in Fig. 2. To later also use
this figure as an example for our MM algorithm, we have included
some extra detail. For now, ignore the dotted lines with weights.
The edges are between each centroid (Cij) from different partitions
where i is the partition number and j the cluster number for the
partition. The weights on the edges are the inverse of the distances

680 P. Hore et al. / Pattern Recognition 42 (2009) 676 -- 688

P1 P2 P3

C11 C21 C31

C12 C22 C32

Fig. 3. A consensus chain is shown for each of two clusters. The arrows show cluster
correspondences for the three partitions with Pi—partition i.

between the centroids. If we do the matching starting with partitions
one and two and then matching partitions two and three we will
get a consensus chain of similar centroids as shown in Fig. 3. It is
clear from the edges that the highest weights (i.e. shortest distances)
indicate which clusters would be grouped together. In BM, here, the
raw distances are used as specified in Eq. 1.

3.2. Metis merger

In MM, the ensemble of centroids, the r-partite graph, is parti-
tioned into k groups (target clusters). Fig. 2 shows an example of a
weighted r-partite graph obtained from partitioning three subsets
of data into two clusters. The MM algorithm is so named because it
uses the graph clustering algorithms of the METIS package.

The algorithm does a multilevel k-way partitioning of the graph
by coarsening the graph to reduce its size at each stage. It randomly
selects a vertex and then adds an edge, which has the largest weight,
to a vertex yet to be matched. This is continued until all vertices
have been visited. Paired vertices are collapsed into a single ver-
tex maintaining their edge weights. It is fast, O(|E|). The coarsened
graph is then k-way partitioned such that each partition contains
approximately 1/k of the weight of the original graph. A fast mul-
tilevel bisection algorithm is used together with some refinements
to produce the partition and is O(k ∗ m) for a graph with m edges.
Details can be found in Refs. [41,42]. Note that our r-partite graph
will have just r ∗ k vertices, where k is the number of clusters. Metis
partitions the ensemble of centroids into approximately equal size
groups; however, the groups may not be perfectly balanced, that is,
the number of centroids in each group may not be the same. For ex-
ample, consider a case in which a set of partitions had 2, 3, 2, and 3
clusters, respectively. We could require METIS to create three groups,
by necessity, of unequal size. This is an important difference from
BM, which guarantees a perfectly balanced grouping. We call each
group from MM a consensus group. Similar to the concept of con-
sensus chain in BM, it contains similar centroids grouped together.
For our purposes the ability of MM to create groups of unequal sizes
allows for classes of data that are split into two or more clusters to
be handled properly, which can occur when one or more classes are
not actually present in a particular data set.

For partitioning the ensemble of centroids using Metis, the
weights of the r-partite graph have to be normalized so that the
edge weights are proportional to the similarity between centroids,
that is, similar centroids should be connected by high weighted
edges and vice versa. The initial similarities can simply be the in-
verse of the Euclidean distance between centroids. Normalization is
done by finding the maximum weight, maxWeight, of the r-partite
graph and then all edge weights are subtracted from it. This will
ensure that edge weights are proportional to the similarity between
centroids. All edge weights are ensured to be non-zero by adding 1
to all weights so that the minimum weight is 1 and the maximum
maxWeight + 1. After partitioning the centroids into k consensus
groups, a global centroid is found by computing the weighted arith-
metic mean of centroids in each group. Similar to BM, weights
of a centroid are determined from the size of the subset from

which it was created. A final partition, in the form of label vectors,
may be obtained by assigning an example to the nearest global
centroid.

In BM, we are optimally matching the centroids of two randomly
picked partitions at a time. But the question arises, in which order
should the partitions be matched so that the overall matching cost is
minimum. We have found it to be equivalent to solving the traveling
salesman problem. This is because we are optimally matching two
partitions at a time and if we could also optimally select their order
of selection then we would be optimizing the whole objective func-
tion (1), which is an intractable problem. The implication of random
pair-wise matching is that in a consensus chain between any three
centroids there is a transitive relation i.e. if centroid C1 is matched
to C2, and C2 is matched to C3, then C1 is matched to C3. We believe
for the cluster correspondence problem the assumption of transitive
relations is quite valid. One could also use an approximate travel-
ing salesman algorithm to determine a sub-optimal minimum cost
order. However, we will show sensitivity to different orders is low,
implying the current algorithm is minimizing its objective function
quite effectively. Many approximate algorithms may exist for solv-
ing the minimally weighted perfect r-partite matching problem, but
we chose the bipartite matching algorithm because it is well known
and has been used to solve correspondence problem in clustering
[4,10,11].

MM uses the graph partitioning package METIS, which is a ran-
domized algorithm. So, it is also sensitive to the order the vertices are
numbered in the r-partite graph. We have conducted experiments
to estimate the sensitivity of our algorithms. METIS is also a well
studied graph partitioning package, and it has been used to combine
multiple partitions represented by label vectors or their variants.

4. Filtering bad centroids

For very large data sets, it is possible for a class of data to get split
into more than one cluster. It is also possible that an unfortunate
initialization and the usual noise that will exist in any data set can
cause a cluster to be formed that is not representative of any class
of data. The centroid of that cluster will not fit well in any chain [4].

In BM and MM, each consensus chain/group contains matched
centroids, and the problem is equivalent to removing outliers/noise
from it, if present. Clusters are typically compact because this is a
feature built into most clustering algorithms and particularly built
into the k-means family of algorithms. In the rare case we have a
very non-compact cluster, it is possible the centroid will fit into a
chain to which it does not belong.

With a limited number of centroids in a consensus chain and no
knowledge about the distribution of noise, detecting outliers is a
non-trivial task. It seems reasonable to assume that “good” centroids
are spatially close to each other. So, we expect a set of centroids
that represent the same class to form a reasonably compact cluster.
Thus for a consensus chain or, more broadly, a group of centroids
believed to represent the same class we search for a compact cluster
and any centroids that are distant from the rest would be classified
as outliers/noise. So, for each consensus chain we built a minimally
weighted spanning tree from a complete graph whose vertices are
the centroids in a consensus chain and the Euclidean distance be-
tween centroids was the weight of the edges. Next, we sorted the
edges of the tree and found the statistical median. Now, if all edges
of intermediate or high lengths are removed, this will reveal clus-
ters [45] in the consensus chain. We have set the threshold to cut
edges as: median+2.5∗median. After cutting the edges of the span-
ning tree, it becomes a forest. Now, we take vertices of the largest
tree/cluster from this forest for merging and the rest as outliers. This
largest connected component/tree is found using a depth-first search
algorithm. As stated earlier merging is then done by computing the

P. Hore et al. / Pattern Recognition 42 (2009) 676 -- 688 681

Fig. 4. (a) Minimally weighted spanning tree formed from centroids in a consen-
sus chain/group. (b) After cutting edge(s) above threshold, the largest connected
component (C1, C2, and C3) will be used for merging.

weighted arithmetic mean of these centroids in a consensus chain,
where the weights of a centroid are determined by the size of the
subsets it represents. Thus, each filtered consensus chain/group will
result in a final centroid. In the case of MM, the consensus groups,
formed after partitioning the r-partite graph, are similar in concept
to the consensus chain in the BM. So, the concept of filtering is the
same with a spanning tree built for each of the k consensus groups
from the centroids in the kth group.

Example: Let each consensus chain (consensus group in the case
of MM) have four centroids. As mentioned earlier, for MM the con-
sensus group is not guaranteed to be of equal size; nevertheless, in
this example we assume they are of equal size, that is, four centroids
in each group. Fig. 4a shows an example of building a spanning tree
from such a consensus chain/group and Fig. 4b shows the resulting
forest after cutting edge(s) from such a minimally weighted span-
ning tree. The largest connected component C1, C2, and C3 is then
selected for merging.

5. Experimental setup

In Ref. [8] an extensive comparison of soft-correspondence en-
semble clustering (SCEC) was done with four other state of the art
algorithms on three real data sets Iris, Pen Digits, and Isolet6. The
algorithms compared with were CSPA [5], MCLA [5], QMI [12], and
MMEC [6]. CSPA and MCLA are graph partitioning algorithms while
QMI uses k-means, andMMEC is based onmixture model based clus-
tering. Although no single algorithm was a clear winner on all data
sets, overall SCEC performed better in a majority of the cases fol-
lowed closely byMCLA; however, they also reported thatMCLA tends
to give better partitions when each partition has the true number
of clusters because that tends to result in nearly balanced clusters
in the ensemble. In Ref. [5], it was stated that MCLA performs best,
compared to HGPA and CSPA, when meaningful cluster correspon-
dence is likely to exist. In Ref. [16], it was also reported that MCLA
was a strong competitor to the PLA (probabilistic label aggregation)
and wPLA (weighted probabilistic label aggregation) algorithms as
compared to the three other algorithms CSPA [5], HGPA [5], and a
mixture model based approach [6]. In our framework, we fixed the
number of clusters in the BC solutions and target clustering to be
the same, k (maximum possible). Hence, it is likely that cluster cen-
troids in the ensemble will have meaningful correspondence (espe-
cially for a balanced distribution) in the BC solutions. So, we chose to
compare our algorithms with MCLA, which is likely to perform well
in this setting. Since MM and MCLA use the same graph partitioning
package, METIS, a good framework was available for evaluating the
quality of the ensemble formed from centroids versus an ensemble
formed from label vectors. We re-implemented our algorithms in C.
The METIS package (in C code), which MCLA and MM uses, is avail-
able at http://glaros.dtc.umn.edu/gkhome/views/metis.

MCLA requires representation of clustering solutions in the form
of label vectors over all examples (global data) because the label
vectors created from examples of disjoint subsets will not have any
overlap and hence no meaningful correspondence. For MCLA a label
vector equivalent representation of a BC solution in an ensemble

was created, assigning an example to the nearest centroid in that
partition, over all the examples.

It is well known that even if a data set is centrally available,
loading all the data into memory and clustering it can be time con-
suming for large data sets. If we cannot load all data into mem-
ory, hard-k-means or fuzzy-k-means will have to make disk accesses
every iteration. To address this problem, in Ref. [23] a SP cluster-
ing algorithm was described for hard-k-means, where only part of
the data was loaded into memory at a time and the whole data
set was clustered in one disk access. We compare to this approach
because merging clustering solutions created from disjoint data is
a way of scaling the clustering process of the full data set. It al-
lows independent processors to cluster subsets simultaneously. Ob-
viously, if data are geographically distributed (assuming centrally
pooling the data is difficult) or have already been clustered (knowl-
edge reuse), multiple partition combining algorithms must be used.
The code for the SP hard-k-means algorithm [23] is available at
http://www-cse.ucsd.edu/users/elkan/skm.html.

Measuring cluster quality is a non-trivial task. Unlike supervised
learning, where the learning algorithm uses real class labels to min-
imize error over training examples, the true labels are not used to
group data into different clusters. The sole purpose of a clustering
algorithm is to try to optimize its objective function, which may re-
sult in a good set of clusters. Moreover, true labels will not typically
be available. One way of evaluating cluster quality without using
true labels is the sum of squared error (SE) criterion, which is, sum
of the square of the Euclidean distance of the examples in a cluster
from their geometric mean. It intuitively indicates how compact or
scattered the examples are in clusters. We have used this metric to
evaluate and compare clustering quality in our experiments.

It is defined as follows [45]: For a data set D = {x1, . . . , xn} of n
examples, the task of clustering is to partition it into k disjoint subsets
Di, . . . ,Dk. The sum of SE of examples in the clusters is then SE =
∑k

i=1
∑

x∈Di
‖x−mi‖2, wheremi=1/ni

∑
x∈Di

x, ni=|Di|. Generally, this
or a variant are minimized in many iterative clustering algorithms.

In summary, using the SE metric we compared the quality of our
multiple partition combining algorithms, BM and MM, with MCLA
against clustering with all the data at once in memory (global clus-
tering, GC). The average quality of BC solutions, and a SP algorithm
(for hard clustering only) were also compared to GC. We will show
the ensemble formed by our centroid based approach has almost the
same quality (sometimes even better) compared to the label vector
based approach, MCLA. Further, it provides a speed up of the order of
hundreds of thousand times on medium or large data sets. We will
also show that compared to GC, the average BC solution, and a SP
clustering algorithm, our centroids based approach performs better
than or as good as the label vector based algorithm MCLA. We will
quantitatively evaluate the difference in quality (DQ) in each case.
Filtering (Section 4) was used to produce all results with BM and
MM unless otherwise stated.

6. Data sets used

While this clustering approach is designed for data sets that are
too large to fit in main memory, for comparison purposes we show
results on tractable sized data sets for which we can compare against
clustering all of the data. Some data sets were chosen to allow for
comparison with published results. Table 1 describes the six data
sets.

The Iris data set [46] has been heavily studied and has one class
linearly separable from the other two. The ISOLET6 data set is a
subset of the ISOLET spoken letter recognition training set and has
been prepared in the same way as in Ref. [8] with six classes out
of 26 randomly selected. Pen digits is the pen-based recognition of
handwritten digits from the UC Irivne repository [46].

http://glaros.dtc.umn.edu/gkhome/views/metis
http://www-cse.ucsd.edu/users/elkan/skm.html

682 P. Hore et al. / Pattern Recognition 42 (2009) 676 -- 688

Table 1
Data sets

Name Number of examples Number of features Number of classes

Iris 150 4 3
ISOLET6 1440 617 6
Pen Digits 3498 16 10
Plankton 419,358 26 12
KDD98 95,412 56 10
MRI-1 1,132,545 3 9
MRI-2 3,991,592 3 9

The plankton data consist of 419,358 samples of plankton from
the underwater SIPPER camera which records eight gray levels. The
sampleswere taken from the 12most commonly encountered classes
of plankton during the acquisition in the Gulf of Mexico. The class
sizes range from about 11,337 to 74,053 examples. The KDD98 data
set is the 1998 KDD contest data set [47]. This data set is about
people who gave charitable donations in response to direct mail-
ing requests and was processed as done in Ref. [23] (http://www-
cse.ucsd.edu/users/elkan/skm.html).

The large MRI-1 data set was created by concatenating 45 slices of
MR images of a human brain each of size 256×256 from modalities
T1, PD, and T2. The magnetic field strength was 3T. The largest data
set, MRI-2, was created by concatenating 48 slices of MR images of a
human brain each of size 512× 512 from modalities T1, PD, and T2.
The magnetic field strength was 1.5 T. Air was removed from both
MRI-1 and 2 using a threshold.

The values of m used for fuzzy clustering were m = 2 for Iris,
Plankton, MR1-1, MRI-2; m = 1.2 for ISOLET6, KDD98, and m = 1.5
for the Pen Digits data set. The different values enabled repeatable
partitions with the full data to be obtained.

Experiments on the three small data sets, Iris, Pen Digits, and
Isolet6 were run on an UltraSPARC-III+ with one 900MHz processor
with 1024MB memory. As memory requirements with the other
four medium or large data sets were greater, they were run on an
UltraSPARC-III with eight processors each of 750MHz with 32GB of
shared main memory. None of the programs were multi-threaded.

7. Results for ensembles created from a balanced distribution

In this section, we evaluate performance of algorithms on an en-
semble created by randomly dividing the data into disjoint subsets.
On the small data sets, Iris, ISOLET6, and Pen Digits, two types of
experiments have been conducted. For the Iris data set, we used r ∈
{3, 5} i.e. divided randomly into 3 and 5 disjoint equal size subsets.
In the first experiment, an ensemble of base partitions from three
subsets, will be merged, and in the second experiment base parti-
tions from five subsets will be merged. Similarly, for ISOLET6 and
Pen Digits it was r = 5 and 10. As the clustering time is larger for
the other four large/medium large data sets, we split them in only
one way. Plankton and KDD98 were divided into 15 disjoint equal
size subsets (r = 15), while MRI-1 and MRI-2 were divided into 20
disjoint equal size subsets (r = 20). We chose these values because
we believe a 10% (r=10) to 20% (r=5) sample size to be reasonable
for small data sets and 5% (r = 20) for medium or large data sets. In
each experiment, all the BC/partitions in an ensemble were formed
either using hard-k-means or fuzzy-k-means. When all BC in an en-
semble were formed by hard-k-means, we will denote that experi-
ment as a hard-ensemble experiment, and when the ensemble was
formed by fuzzy-k-means, we will call it a fuzzy-ensemble exper-
iment. All experimental results were the average over 50 random
initializations.

The evaluation of our experiments was done by the DQ as shown

DQ(X,Y) = (XSE − YSE)
YSE

∗ 100, (5)

where XSE and YSE are the squared error for algorithm X and Y ,
respectively. For example, DQ(BM,MCLA), means we are comparing
the SE of the BM (BMSE) andMCLA (MCLASE) algorithms, respectively.

7.1. Hard-ensemble experiments

Table 2 shows the DQ of all approaches when compared to clus-
tering with all the data (GC). We also show how the average BC in
the ensemble (BC) compares to GC. The first column of the table is a
data set name followed by the number of disjoint subsets into which
it was divided. For example, Iris 3S means that a row contains results
of the Iris data divided into three subsets.

For the SP experiment, each time the number of examples loaded
was equal to the number of examples present in a subset. For exam-
ple, for Iris 3S, SP will load exactly 1

3 of the examples into memory
at a time.

A bold negative value in Table 2, which shows the DQ values,
indicates that the squared error criterion was less than the value
achieved by clustering all the data for a particular algorithm. We can
see that the single pass algorithm was generally not as good as the
others. However, its average percentage difference from GC was only
1.79% making it comparable. The average quality of the base clus-
tering solution in the ensemble is not as good as was achieved after
combination with BM or MM. Hence, the combination approaches
show utility. It is also the case that the final partitions produced af-
ter bipartite merging and Metis merging were comparable to that
produced by MCLA. On average, all three combination methods were
slightly better than GC with MM slightly better than BM.

It should be noted that getting better results, compared to GC,
for a multiple partition combining algorithm may depend on the
ensemble size and how the ensemble was created. In Ref. [8], the
ensemble size was much bigger than we used. Our purpose is to
show our algorithms using a low resolution representation of an
ensemble produced quality which approximates that produced by a
high resolution ensemble representation algorithm, MCLA.

In Table 3 the average speed up of our centroids based ensemble
algorithms, BM and MM, compared to the label vector based algo-
rithm, MCLA, is shown. We excluded the very small Iris data set.
The results in Table 3 show that the speed-up from BM and MM is
thousands of times on medium or large data sets. On the MRI-2 data
set, which contains about 4 million examples, BM was more than
six hundred thousand times faster than MCLA, while MM was over
two hundred thousand times faster. It seems from the results that
BM and MM have almost constant time complexity, that is, inde-
pendent of data set size, while with MCLA it grows with data size.
Theoretical time complexity analysis will be given later. It should
be noted that for MRI-2, the largest data set, MCLA on average took
about 3.84h, while BM and MM took only 0.02 and 0.06 s, respec-
tively. Looking at the contrast, it seems MCLA and other similar label
vector based multiple partitioning algorithms, having similar time
complexity, might not be scalable for large or very large data sets.

7.2. Fuzzy-ensemble experiments

The base partitions of the ensemble were generated using the
fuzzy-k-means algorithm. We conducted comparison experiments
similar to those with the hard ensembles. The DQ of the fuzzy results
is evaluated using the same formula as used in the hard-ensemble
experiments (5). We do not compare with SP because it is a crisp
variant of the hard-k-means algorithm.

http://www-cse.ucsd.edu/users/elkan/skm.html
http://www-cse.ucsd.edu/users/elkan/skm.html

P. Hore et al. / Pattern Recognition 42 (2009) 676 -- 688 683

Table 2
Difference in quality of BM, MM, MCLA, BC and SP compared to GC

DQ(BM,GC) (%) DQ(MM,GC) (%) DQ(MCLA,GC) (%) DQ(BC,GC) (%) DQ(SP,GC) (%)

Iris, 3S −13.018628 −10.171465 −11.049958 −6.7334 5.4191
Iris, 5S −10.944115 −12.828112 −12.055461 −0.49746 3.88442
Isolet6, 5S 0.240304 0.449673 −0.083840 0.679067 0.688666
Isolet6, 10S 1.536500 −0.136227 −0.374712 1.733862 1.194516
Pen Digits, 5S 3.898204 2.584418 3.535625 2.412399 3.003857
Pen Digits, 10S 5.497644 0.195674 1.814700 3.547871 3.524519
KDD, 15S 2.037422 3.022958 1.472665 0.404138 0.278379
Plankton, 15S 1.807285 5.134778 2.576170 0.316429 −0.385283
MRI-1, 20S 0.167477 −0.210917 −0.196870 0.271010 0.298877
MRI-2, 20S 1.240812 1.579382 2.168377 −0.035630 0.012238
Average −0.753710 −1.037984 −1.219330 0.206835 1.791933

All values expressed in percentage.

Table 3
Time computed in seconds

MCLA BM MM SU-BM SU-MM

Isolet6, 5S 0.56 0.0062 0.0562 89.87 9.91
Isolet6, 10S 1.32 0.0148 0.1244 89.40 10.63
Pen Digits, 5S 0.68 0.0052 0.0138 130.46 49.15
Pen Digits, 10S 2.87 0.0056 0.0298 511.85 96.18
KDD, 15S 223.63 0.0410 0.0798 5454.39 2802.38
Plankton, 15S 1424.38 0.0302 0.0760 47,164.90 18,741.84
MRI-1, 20S 3745.35 0.0214 0.0626 175,016.35 59,829.87
MRI-2, 20S 13,840.25 0.0222 0.0634 623,434.68 218,300.47

Speed up of BM and MM compared to MCLA. SU-BM, SU-MM mean the speed up using bipartite merger and Metis merger, respectively.

Table 4
Difference in quality of BM, MM, MCLA, and BC compared to GC

DQ(BM,GC)
(%)

DQ(MM,GC)
(%)

DQ(MCLA,GC)
(%)

DQ(BC,GC)
(%)

Iris, 3S 1.73 1.97 1.78 3.72
Iris, 5S 0.42 0.66 0.34 9.22
Isolet6, 5S 0.69 1.26 0.28 0.54
Isolet6, 10S 1.20 1.19 0.98 0.99
Pen Digits, 5S 1.62 0.61 1.47 0.98
Pen Digits, 10S 3.01 −0.50 −0.46 1.76
KDD, 15S 1.30 1.45 1.23 −0.01
Plankton, 15S 1.24 −1.45 1.03 −0.25
MRI-1, 20S 1.77 1.16 1.82 0.29
MRI-2, 20S 0.055 0.055 0.058 0.06
Average 1.30 0.64 0.85 1.73

All values expressed in percentage.

As MCLA can only merge partitions in the form of label vectors, a
crisp partition of the fuzzy centroids in the ensemble was obtained
after assigning an example to the nearest centroid. For BM and MM,
the fuzzy centroids in the ensemble were merged to obtain k global
centroids. A crisp partition was then obtained by assigning an exam-
ple to the nearest centroid. The quality of MCLA, BM, and MM was
then evaluated using the SE metric.

Table 4 shows the quality difference in percentage of BM, MM,
MCLA and BC compared to GC. In the case that one of the algorithms
had a lower SE value than GC the number is negative in bold. MM
was better than MCLA on average. It was quite a bit better on the
plankton data set. Again, the average BC was the approach most
different from clustering all the data. In the fuzzy case, all of the
combination approaches resulted in slightly larger SE criterion values
than clustering all the data at once. However, they were all less than
1.3% different and hence were comparable final partitions.

We also empirically evaluated the average speed up of BM and
MM when compared to MCLA. Similar to the hard-ensemble exper-
iments, the results in Table 5 show that speed-up for BM and MM
was thousands of times.

7.2.1. Experimental summary
In summary, we compared the threemultiple partition combining

algorithms, BC and SP (for hard-ensemble experiments only)with GC.
On average for all experiments BM, MM and MCLA were better than
BC and SP. For the hard-ensemble experiments MCLA was slightly
better than MM, and BM. For the fuzzy-ensemble experiments MM
was slightly better than MCLA and BM. For both hard-ensemble and
fuzzy-ensemble experiments, in all cases, our centroids based al-
gorithms (MM and BM) produced similar quality to that of MCLA
(a label vector based algorithm); however, our algorithms were hun-
dreds of thousands times faster on medium/large data sets.

Looking at the time taken and speed up from using the centroids
based algorithms, BM and MM, it seems that for very large or ex-
treme data sets label vector based approaches may not be scale. It
is true that in many cases BC in the form of a centroid vector may
not exist (nominal features); however, there are many domains for
which all features are numeric. For example, besides many generic
data sets, image processing and many other multispectral imaging
domains, including magnetic resonance and satellite imaging almost
always have only numeric features. We have shown that our cen-
troid based ensemble merging algorithms are better than or as good
as a label vector based ensemble merging algorithm, MCLA, while
being scalable. A centroid representation is likely to be a low res-
olution representation as the number of clusters is typically much
less than number of examples in large or very large data sets. So,
in all cases, for ensembles created from balanced distributions, the
performance of our algorithms approximates MCLAs.

In some applications, a final partition in the form of label vec-
tors may need to be created from the centroids, which would
require another linear scan through the data on the disk. We empir-
ically computed the time taken to create label vectors on the largest
two data sets, MRI-1 and MRI-2. On average over 50 random exper-
iments MRI-1 and MRI-2 took 2.3032 and 8.1654 s, respectively. If
we add this time to the time taken by the BM and MM in Table 3,
the speed up compared to MCLA is still more than a thousand
times, that is, 1611.18 and 1583.12 for BM and MM, respectively,
on the MRI-1 data set and 1690.39 and 1681.92 for BM and MM,

684 P. Hore et al. / Pattern Recognition 42 (2009) 676 -- 688

respectively, on the MRI-2 data set. Similar results would be ob-
tained if we add this label vector creation time to the BM and MM
times in Table 5. In summary, if one needs to create a final clustering
solution in the label vector form, BM and MM still result in very large
speed ups.

8. Performance under unbalanced distributions and the effect
of filtering

In the previous section, data were randomly divided into equal
size subsets i.e. each subset contains a uniform/slowly changing dis-
tribution from all classes. Skewed distributions may also exist in
physically distributed data, and there may be no chance of homoge-
nizing the distributed sites due to privacy preserving issues [5,34,35].
Moreover, in some cases one or more clustering solutions in the en-
semble may be noisy. We created a type of unbalanced distribution
using the three small data sets Iris, Pen Digits, and Isolet as shown
in Tables 6, 7, and 8, respectively. We chose these data sets because
being small they were easy to analyze plus they have true labels,
which can be used to create known unbalanced distributions. All
three data sets were divided into approximately equal sized subsets;
r = 5 for Iris, r = 10 for Pen Digits, and r = 10 for Isolet6. For all the
data sets, 80% of the subsets, four subsets for Iris, eight for Pen Digits
and isolet6, have examples from at least one class missing, to create
an unbalanced distribution of examples. We arbitrarily created the
unbalanced distribution for each data set. The purpose is to provide

Table 5
Time computed in seconds

MCLA BM MM SU-BM SU-MM

Isolet6, 5S 0.56 0.0054 0.0566 103.92 9.91
Isolet6, 10S 1.33 0.0144 0.1270 92.01 10.43
Pen Digits, 5S 0.68 0.0056 0.01420 121.32 47.84
Pen Digits, 10S 2.87 0.0068 0.0304 421.38 94.25
KDD, 15S 223.49 0.0420 0.0762 5321.19 2932.93
Plankton, 15S 1424.83 0.0310 0.0796 45,962.25 17,899.87
MRI-1, 20S 3741.78 0.0194 0.0632 192,875.25 59,205.37
MRI-2, 20S 13,847.10 0.0212 0.0648 653,165.09 213,689.81

Speed up of BM and MM compared to MCLA. SU-BM means the speed up using Bipartite merger. Similarly for SU-MM.

Table 6
Unbalanced distribution of Iris data set into five subsets

S1 S2 S3 S4 S5

Class1 10 0 20 10 10
Class2 10 20 0 0 20
Class3 10 10 10 20 0

S1, S2, . . . , S5 are the subsets.

Table 7
Unbalanced distribution of Pen Digit data set into 10 subsets

S1 S2 S3 S4 S5 S6 S7 S8 S9 S10

Class1 35 35 0 35 35 70 35 5 65 48
Class2 35 35 70 35 35 0 35 65 5 49
Class3 35 35 35 0 35 35 70 35 35 49
Class4 35 35 35 35 35 35 35 35 35 21
Class5 35 35 35 70 0 35 0 70 35 49
Class6 35 35 35 35 35 35 35 35 35 20
Class7 35 35 5 35 35 65 35 35 0 56
Class8 35 35 35 35 70 35 35 0 70 14
Class9 35 35 65 65 35 5 5 35 56 0
Class10 34 34 34 4 34 34 64 34 13 51

S1, S2, . . . , S10 are the subsets.

an understanding of the performance of the algorithms under an un-
balanced distribution. Figs. 5, 6, and 7 show the average results from
50 random experiments on the Iris, Pen Digits, and Isolet6 data sets,
respectively. Experimental results on ensembles formed from both
hard-k-means and fuzzy-k-means are provided. In the figures, BM′′
means the ensemble was merged using the bipartite merger with
filtering options turned off, MM′′ means Metis merger with filtering
option turned off, while BM and MM means the filtering option was
on. MCLA has no notion of filtering, so it is unchanged. We compared
the results with BC and GC. With the filtering option turned on, the
quality of BM and MM improved in all experiments, justifying the
concept of filtering. Because the distribution was heavily skewed,
as expected the average SE value of BC is poor. In all hard-ensemble
experiments, among the three multiple partition combining algo-
rithms, MM was the best on all data sets. It managed to recover
good partition quality, even better than GC on Iris, with the filtering
option turned on. This is a non-trivial accomplishment because the
distribution is heavily skewed, which is indicated by the poor SE
value of BC. For fuzzy-ensemble experiments, MM was the best ex-
cept on Isolet6, where MCLA was slightly better. BM with the filter-
ing option turned on provided quality better than BC on all data sets;
however, it performed poorly, except on Iris, compared to MM and
MCLA. This might be because 80% of the subsets had an unbalanced
distribution, which is not a favorable condition for grouping cen-
troids using a one to one mapping constraint. BM optimally matches
centroids between a pair of partitions by providing the best matches

P. Hore et al. / Pattern Recognition 42 (2009) 676 -- 688 685

Table 8
Unbalanced distribution of Isolet6 data set into 10 subsets

S1 S2 S3 S4 S5 S6 S7 S8 S9 S10

Class1 24 24 0 24 4 48 24 44 48 0
Class2 24 24 24 0 44 24 48 4 24 24
Class3 24 24 48 24 24 0 24 24 0 48
Class4 24 24 24 48 24 24 0 24 24 24
Class5 24 24 4 24 48 44 24 0 24 24
Class6 24 24 44 24 0 4 24 48 24 24

S1, S2, . . . , S10 are the subsets.

Fig. 5. Experiment on unbalanced Iris data set. Experimental results in SE both from (a) hard-k-means and (b) fuzzy-k-means are provided.

Fig. 6. Experiment on unbalanced Pen Digits data set. Experimental results in SE both from (a) hard-k-means and (b) fuzzy-k-means are provided.

Fig. 7. Experiment on unbalanced Isolet6 data set. Experimental results in SE both from (a) hard-k-means and (b) fuzzy-k-means are provided.

locally. In many cases, this type of one to one constrained map-
ping might be useful, especially for mapping clusters of partitions
whose distribution is slowly changing/evolving. For example, a one
to one mapping constraint was used in Ref. [10] for addressing

the clustering problem in perceptual organization, which was
used to provide additional knowledge about a 3D object. They pro-
posed path based clustering to group smooth curves and textured
segmentations.

686 P. Hore et al. / Pattern Recognition 42 (2009) 676 -- 688

It should be noted that even without filtering, the quality of MM
was always better (except on the fuzzy ensemble of isolet6) than
MCLA.

9. Analysis of time and space complexity

We analyzed the time complexity of the multiple partition com-
bining algorithms. Let n be the number of examples in the whole
data set, k the number of clusters, and r the number of BC/partitions
in the ensemble. Then, the time complexity of MCLA is O(nk2r2) [5].
For BM and MM, centroids were used to represent the ensemble,
thus the time complexity of our algorithms is free from n. The time
complexity for BM is O(rk2f + rk3 + kr2), where f is the number of
features in the data. The first term describing the time complexity of
BM is the time required to compute the distances between cluster
centers in adjacent partitions for an arbitrarily chosen ordering. The
second term is the time required to apply the Hungarian algorithm
for the bipartite matching to each of the r − 1 pairs. The last term
is the time required to build a spanning tree (using an adjacency
matrix) for filtering (or just retrieval of the consensus chain) after
bipartite matching has been done as there are r vertices. For filter-
ing one must do depth first search which is also O(|V|2) or O(|kr2|)
for k consensus chains.

The time complexity for MM is O(r2k2f + kr2). The first-term
describing the time complexity of MM is the time required to obtain
the distances between cluster centers and convert them to weights.
The second term is the time required to create the partition using
METIS which is bounded by the number of edges in the r-partite
graph. It also is the time to do all of the filtering as noted above
(which only changes the constant).

The time complexity of other related label vector based multiple
partition algorithms is also of interest. For SCEC it is O(tnr2k), where
t is the number of iterations required in SCEC and CSPA is O(n2kr)
[5]. It has been noted in Ref. [8] that the QMI and MMEC have the
same time complexity as SCEC. It seems that CSPA will be slower
than MCLA as it depends on n2. SCEC, hence QMI and MMEC, will
be faster than MCLA if t, the number of iterations required in their
algorithm, is less than k, which is the number of clusters. So, all have
n in their time complexity equation, except BM and MM. However, it
should be noted that if one needs to create a final solution in the form
of label vector, a linear scan through the data is required. We have
shown that our algorithms still produce significant speed up when
the linear scan through the data is required. The time complexity for
creating a label vector for the full data set is O(nkf).

We also analyzed the space complexity of the representation of
the two types of ensemble, that is, centroid based and label vector
based. Assuming hyperedges are loaded in memory, the space com-
plexity of the label vectors based algorithm, MCLA, is O(knr). For BM
and MM it is free from n, that is, O(kfr), assuming all centroids are
loaded in memory for merging. We did an empirical evaluation using
our largest size data set, MRI-2. It contains 3,991,592 examples, three
features, nine clusters, and was divided into 20 subsets, that is, en-
semble size r=20. For representing hyperedges, an indicator vector,
in MCLA, we used char type memory allocation (1 byte). In MM and
BM, floating point precision (4 bytes) was used to store cluster cen-
troids. For MCLA, 9∗20=180 hyperedges were kept in memory for ef-
ficient construction of the meta graph. So, the total memory require-
ment to store the hyperedges are 180∗3, 991, 592∗1=718, 486, 560
bytes (approximately 685MB). To keep the ensemble of centroids in
memory, we need 9∗3∗20∗4 bytes, only 2160 bytes. Thus the mem-
ory requirement of the label vector based algorithm, MCLA, is more
than three hundred thousand times larger, that is, 332,632.66. In a
wide area network scenario, which might occur for merging clus-
tering solutions of physically distributed data, transferring centroids
would also be efficient in terms of network bandwidth cost. Thus,
the centroid based ensemble algorithms not only provided a speed-

Table 9
Sensitivity experiments of BM, MM, and MCLA on hard ensembles

Iris, 5S (%) Isolet6, 10S (%) Pen Digits, 10S (%) Average (%)

BM 1.304684 0.308255 0.453086 0.688675
MM 0.361843 0.145923 0.210061 0.239275
MCLA 0.096984 0.148035 0.369641 0.204886

All values expressed in percentage change of SE.

Table 10
Sensitivity experiments of BM, MM, and MCLA on fuzzy ensembles

Iris, 5S (%) Isolet6, 10S (%) Pen Digits, 10S (%) Average (%)

BM 1.139955 0.181290 0.315357 0.545534
MM 0.106712 0.178516 0.174228 0.153152
MCLA 0.040850 0.176785 0.254943 0.157526

All values expressed in percentage change of SE.

up of hundreds of thousands of times but also required hundreds of
thousands of times less memory compared to a label vector based
algorithm, MCLA. As discussed earlier, if one needs to create a la-
bel vector from the final centroids created by BM and MM, it can be
done by loading data incrementally based on available buffer size.

Compared to label vector based ensemble merger algorithms, our
algorithm scales extremely well, in terms of time and space com-
plexity, as it does not depend upon the size of the data, and for most
cases the number of centroids is not likely to be large. Even for very
large dimensional data sets if k remains relatively small our algo-
rithm will be fast, provided f is not as large as the size of data.

10. Sensitivity estimation

Because the multiple partition combining algorithms are heuris-
tic solutions to the r-partite graph partitioning problem, they may
be sensitive to the order of selecting partitions in the ensemble. In
Ref. [5], it was not stated that MCLA could be sensitive to the or-
der in which the hyperedges, actually the vertices, are numbered in
the meta graph. Order matters because the METIS graph partition-
ing package is a randomized algorithm. In this section some results
from experiments designed to estimate sensitivity of the multiple
partition combining algorithms are reported.

Each experiment with multiple combining algorithms consisted
of 50 random initializations, where the order of selecting partitions
was random for each merging operation. We re-ran the experiment
32 times with the same set of centroids obtained from 50 random
initializations; each time the centroid combination order was ran-
dom to estimate how sensitive the algorithms were to the random
selection of order. Sensitivity was determined by computing the av-
erage of the absolute difference of quality in SE of each experiment
from its mean. As SE values vary by data sets, we normalized by
dividing by the mean and then multiplying by 100 to obtain a per-
centage. This will indicate how much the quality of partitions could
vary from their mean quality on average. Sensitivity is computed as:

Sensitivity= (1/n)
∑n

i=1 (|pi −mi|/mi)∗100, where n is 32, pi is the
average quality in SE of each experiment, and mi = ∑n

i=1 pi.
Because each of the 32 experiments involved 50 random initial-

izations, we used the three smaller data sets Iris, Isolet6, and Pen
Digits for the sensitivity estimation experiments. The value of r, the
ensemble size, chosen was maximum for each of the data sets, that
is, five for Iris, 10 for Isolet6, and 10 for Pen Digits. Tables 9 and 10
show the results expressed in percentage for the multiple partition
combining algorithms on each data set for hard and fuzzy ensembles,
respectively. The average sensitivity of the algorithms over all data
sets is also given. On average, for both hard- and fuzzy-ensemble ex-
periments, BM was the most sensitive compared to MM and MCLA.
In the hard-ensemble experiments, MCLA was the least sensitive,

P. Hore et al. / Pattern Recognition 42 (2009) 676 -- 688 687

while on the fuzzy-ensemble experiments MM was the least sen-
sitive. Except on Iris, on which BM was much more sensitive com-
pared to MM and MCLA, all three algorithms have small differences
among them. On average the sensitivity of all the three algorithms
was low, that is, for MM and MCLA much less than 0.5%, while for
BM slightly above 0.5%. Because on average BMs sensitivity was low
and also comparable to MCLA and MM, the order in which the par-
titions were matched in BM was not of significant importance.

11. Conclusions

In this paper we proposed methods for merging an ensemble of
clustering solutions in a scalable framework in terms of time and
space complexity. We evaluated our algorithms both under balanced
and unbalanced distributions. Under a balanced distribution, the cen-
troids based ensemble merger algorithms, bipartite merger (BM) and
Metis merger (MM), were shown to result in partitions compara-
ble to a label vector based ensemble merger algorithm, MCLA when
compared against clustering all the data at once, global clustering
(GC). BM, MM, and MCLA, were also compared against GC with BC
(base clustering), and SP (a single pass clustering algorithm for hard
ensembles only). On average the performance of BM and MM was
better than BC, and SP. Quantitative evaluation on average indicates
MM is slightly better than BM.

The centroid based ensemble merging algorithms provided parti-
tions of quality comparable to the label vector based ensemble merg-
ing algorithm, MCLA, while providing very large speed ups. The mem-
ory requirements of our algorithms were also hundreds of thousand
times less than MCLA. The speed of our algorithms coupled with
small memory requirements will allow them to scale to extremely
large data sets. In fact, they can be successfully applied to data sets
which are distributed by necessity since they are too large to fit in
any one main memory.

Under unbalanced distributions, our algorithms are also capable
of detecting and removing spurious clusters from the ensemble to
provide a robust framework, and MM outperformed MCLA in almost
all cases. In this work, our focus was to show that using the same BC
solutions a centroid based ensemble was competitive or better than
a label vector based ensemble. It is not always necessary to create
an ensemble from a disjoint data set, but we did it to restrict the
ensemble size as a way of scaling the clustering process for the full
data set. Future experiments could be done to create an ensemble in
a different way, that is, from the full data set or overlapped examples
to see how they affect quality compared to GC, average BC solutions,
and SP clustering algorithm. Future work could also include parti-
tioning the ensembles using different graph partitioning packages or
methods, where grouping may be controlled more effectively. How-
ever, the purpose in this work was to show, using identical subsets
whose clustering results were represented by low resolution (cen-
troids) and by high resolution (label vector) approaches, that com-
parable final partitions can be obtained with much lower time and
space complexity for the centroids based approaches.

Acknowledgements

This research was partially supported by the National Institutes
of Health under grant number 1 R01 EB00822-01 and by the De-
partment of Energy through the ASCI PPPE Data Discovery Program,
Contract number: DE-AC04-76DO00789. The code for bipartite
matching (Hungarian method), depth first search, and minimally
weighted spanning were obtained from http://reptar.uta.edu/.

References

[1] S. Eschrich, J. Ke, L.O. Hall, D.B. Goldgof, Fast accurate fuzzy clustering through
data reduction, IEEE Trans. Fuzzy Syst. 11 (2) (2003) 262–270.

[2] A.K. Jain, R.C. Dubes, Algorithms for Clustering Data, Prentice-Hall, Englewood
Cliffs, NJ, USA, 1988.

[3] P. Hore, L. Hall, Scalable clustering: a distributed approach, in: FUZZ-IEEE 2004,
pp. 143–148.

[4] P. Hore, L. Hall, D. Goldgof, A cluster ensemble framework for large data sets,
in: IEEE International Conference on Systems, Man, and Cybernetics, 2006.

[5] A. Strehl, J. Ghosh, Clusters ensembles—a knowledge reuse framework for
combining multiple partitions, J. Mach. Learn. Res. 3 (2002) 583–617.

[6] A. Topchy, A.K. Jain, W. Punch, A mixture model for clustering ensembles, in:
Proceedings of the SIAM International Conference on Data Mining, SDM, 2004,
pp. 379–390.

[7] A.P. Topchy, M.H.C. Law, A.K. Jain, A.L. Fred, Analysis of consensus partition in
cluster ensemble, in: ICDM, 2004, pp. 225–232.

[8] B. Long, Z.M. Zhang, P.S. Yu, Combining multiple clusterings by soft
correspondence, in: ICDM, 2005, pp. 282–289.

[9] X.Z. Fern, C.E. Brodley, Solving cluster ensemble problem by bipartite graph
partitioning, in: ICML, 2004.

[10] B. Fischer, J.H. Buhmann, Path-based clustering for grouping of smooth curves
and texture segmentation, IEEE Trans. Pattern Anal. Mach. Intell. 25 (4) (2003)
513–518.

[11] S. Dudoit, J. Fridlyand, Bagging to improve the accuracy of a clustering
procedure, Bioinformatics 19 (9) (2003) 1090–1099.

[12] A. Topchy, A.K. Jain, W. Punch, Combining multiple weak clusterings, in:
Proceedings of the IEEE International Conference on Data Mining, 2003,
pp. 331–338.

[13] A.L.N. Fred, Finding consistent clusters in data partitions, in: F. Roli, J. Kittler
(Eds.), International Workshop on Multiple Classifier Systems, Lecture Notes in
Computer Science, vol. 2364, 2002, pp. 309–318.

[14] A. Topchy, A.K. Jain, W. Punch, Clustering ensembles: models of consensus
and weak partitions, IEEE Trans. Pattern Anal. Mach. Intell. 27 (12) (2005)
1866–1881.

[15] M. Al-Razgan, C. Domeniconi, Weighted clustering ensembles, in: SDM, 2006.
[16] T. Lange, J.M. Buhmann, Combining partitions by probabilistic label aggregation,

in: Proceeding of the 11th ACM SIGKDD International Conference on Knowledge
Discovery in Data Mining, 2005, pp. 147–156.

[17] A. Gionis, H. Mannila, P. Tsaparas, Clustering aggregation, in: ICDE, 2005,
pp. 341–352.

[18] A.L.N. Fred, A.K. Jain, Combining multiple clusterings using evidence
accumulation, IEEE Trans. Pattern Anal. Mach. Intell. 27 (6) (2005) 835–850.

[19] B. Minaei-Bidgoli, A. Topchy, W.F. Punch, Ensembles of partitions via data
resampling, in: ITCC, 2004, pp. 188–192.

[20] P. Viswanath, K. Jayasurya, A fast and efficient ensemble clustering method, in:
ICPR, 2006, pp. 720–723.

[21] H. Spath, Cluster Analysis Algorithms for Data Reduction and Classification,
Ellis Horwood, Chichester, UK, 1980.

[22] I. Davidson, A. Satyanarayana, Speeding up KMeans clustering using bootstrap
averaging, in: Proceedings of the IEEE ICDM 2003 Workshop on Clustering
Large Data Sets, 2003, pp. 16–25.

[23] F. Farnstrom, J. Lewis, C. Elkan, Scalability of clustering algorithms revisited,
SIGKDD Explorations 2 (1) (2000) 51–57.

[24] V. Ganti, J. Gehrke, R. Ramakrishnan, Mining very large databases, Computer
(1999) 38–45.

[25] T. Zhang, R. Ramakrishnan, M. Livny, BIRCH: an efficient data clustering method
for very large databases, in: Proceedings of the ACM SIGMOD International
Conference on Management of Data, ACM Press, New York, 1996, pp. 103–114.

[26] V. Ganti, R. Ramakrishnan, J. Gehrke, A.L. Powell, J.C. French, Clustering large
datasets in arbitrary metric spaces, in: Proceedings of the 15th International
Conference on Data Engineering, IEEE CS Press, Los Alamitos, CA, 1999,
pp. 502–511.

[27] P. Bradley, U. Fayyad, C. Reina, Scaling clustering algorithms to large databases,
in: Proceedings of the 4th International Conference on Knowledge Discovery
and Data Mining, AAAI Press, Menlo Park, CA, 1998, pp. 9–15.

[28] P. Domingos, G. Hulten, A general method for scaling up machine learning
algorithms and its application to clustering, in: Proceedings of the 18th
International Conference on Machine Learning, 2001, pp. 106–113.

[29] N.R. Pal, J.C. Bezdek, Complexity reduction for large image processing, Trans.
Syst. Man Cybernet. Part B (2002) 598–611.

[30] T.W. Cheng, D.B. Goldgof, L.O. Hall, Fast fuzzy clustering, Fuzzy Sets Syst. (1998)
49–56.

[31] P. Mitra, C.A. Murthy, S.K. Pal, Density-based multiscale data condensation, IEEE
Trans. Pattern Anal. Mach. Intell. 24 (6) (2002) 734–747.

[32] J. Liu, J.P.Y. Lee, L. Li, Z.-Q. Luo, K.M. Wong, Online clustering algorithms for
radar emitter classification, IEEE Trans. Pattern Anal. Mach. Intell. 27 (8) (2005)
1185–1196.

[33] I.S. Dhillon, D.S. Modha, A data-clustering algorithm on distributed memory
multiprocessors, in: Proceedings of the Large-scale Parallel KDD Systems
Workshop, ACM SIGKDD, 1999, pp. 245–260.

[34] J. Ghosh, S. Merugu, Distributed clustering with limited knowledge sharing,
in: Proceedings of the 5th International Conference on Advances in Pattern
Recognition, 2003, pp. 48–53.

[35] J. Ghosh, A. Strehl, S. Merugu, A consensus framework for integrating distributed
clusterings under limited knowledge sharing, in: Proceedings of the National
Science Foundation (NSF) Workshop on Next Generation Data Mining, 2002,
pp. 99–108.

[36] E. Januzaj, H.-P. Kriegel, M. Pfeifle, Towards effective and efficient distributed
clustering, in: Proceedings of the International Workshop on Clustering Large
Data Sets, 3rd IEEE International Conference on Data Mining, 2003, pp. 49–58.

http://reptar.uta.edu/

688 P. Hore et al. / Pattern Recognition 42 (2009) 676 -- 688

[37] M. Klusch, S. Lodi, G. Moro, Distributed clustering based on sampling local
density estimates, in: Proceedings of the 18th International Joint Conference
on Artificial Intelligence, 2003, pp. 485–490.

[38] H. Kriegel, P. Kroger, A. Pryakhin, M. Scubert, Effective and efficient distributed
model-based clustering, in: ICDM, 2005, pp. 258–265.

[39] H. Jin, M.-L. Wong, K.-S. Leung, Scalable model-based clustering for large
databases based on data summarization, IEEE Trans. Pattern Anal. Mach. Intell.
27 (11) (2005) 1710–1719.

[40] R. Nock, F. Nielsen, On weighting clustering, IEEE Trans. Pattern Anal. Mach.
Intell. 28 (8) (2006) 1223–1235.

[41] G. Karypis, V. Kumar, Multilevel algorithms for multi-constraint graph
partitioning, Technical Report TR 98-019, Department of Computer Science,
University of Minnesota, 1998.

[42] G. Karypis, V. Kumar, Multilevel k-way partitioning scheme for irregular graphs,
J. Parallel Distributed Comput. 48 (1) (1998) 96–129.

[43] G. Karypis, V. Kumar, A fast and high quality multilevel scheme for partitioning
irregular graphs, in: International Conference on Parallel Processing, 1995,
pp. 113–122.

[44] H.W. Kuhn, The Hungarian method for the assignment problem, Naval. Res.
Logist. Q. 2 (1955) 83–97.

[45] R. Duda, P. Hart, D. Stork, Pattern Classification.
[46] C.J. Merz, P.M. Murphy, UCI Repository of Machine Learning Databases,

Department of CIS, University of CA, Irvine, CA 〈http://www.ics.uci.edu/∼
mlearn/MLRepository.html〉.

[47] KDD Cup 1998 Data 〈http://kdd.ics.uci.edu/databases/kddcup98/kddcup98.
html〉.

About the Author—PRODIP HORE has received the M.S. degree in Computer Science from the University of South Florida in 2004 and the Ph.D. in Computer Science and
Engineering in 2007. He is currently employed by Fair Isacc.

About the Author—DMITRY GOLDGOF has received the M.S. degree in Computer Engineering from the Rensselaer Polytechnic Institute in 1985 and the Ph.D. degree in
Electrical Engineering from the University of Illinois at Urbana-Champaign in 1989.
He is currently Professor in the Department of Computer Science and Engineering and a member of H. Lee Moffitt Cancer Center and Research Institute where during
2002–2003 he held a position of Professor in Bioinformatics and Cancer Control.
Previously, Dr. Goldgof held visiting positions at the Department of Computer Science at the University of California at Santa Barbara and at the Department of Computer
Science at University of Bern in Switzerland. Dr. Goldgof's research interests include motion and deformation analysis, image analysis and its biomedical applications,
bioinformatics, and pattern recognition.

About the Author—LAWRENCE HALL is a Professor of Computer Science and Engineering at University of South Florida. He received his Ph.D. in Computer Science from
the Florida State University in 1986 and a B.S. in Applied Mathematics from the Florida Institute of Technology in 1980. His research interests lie in distributed machine
learning, data mining, pattern recognition and integrating AI into image processing.

http://www.ics.uci.edu/~mlearn/MLRepository.html
http://www.ics.uci.edu/~mlearn/MLRepository.html
http://kdd.ics.uci.edu/databases/kddcup98/kddcup98.html
http://kdd.ics.uci.edu/databases/kddcup98/kddcup98.html

	A scalable framework for cluster ensembles62626262
	Introduction
	Related work
	Ensemble merging
	Bipartite merger
	Metis merger

	Filtering bad centroids
	Experimental setup
	Data sets used
	Results for ensembles created from a balanced distribution
	Hard-ensemble experiments
	Fuzzy-ensemble experiments
	Experimental summary

	Performance under unbalanced distributions and the effect of filtering
	Analysis of time and space complexity
	Sensitivity estimation
	Conclusions
	Acknowledgements
	References

