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ABSTRACT

In the light of recent security incidents, leading to compromise of services using single factor
authentication mechanisms, industry and academia researchers are actively investigating novel multi-
factor authentication schemes. Moreover, exposure of unprotected authentication data is a high risk
threat for organizations with online presence. The challenge is how to ensure security of multi-factor
authentication data without deteriorating the performance of an identity verification system? To solve
this problem, we present a novel framework that applies random projections to biometric data
(inherence factor), using secure keys derived from passwords (knowledge factor), to generate inherently
secure, efficient and revocable/renewable biometric templates for users' verification. We evaluate the
security strength of the framework against possible attacks by adversaries. We also undertake a case
study of deploying the proposed framework in a two-factor authentication setup that uses users'
passwords and dynamic handwritten signatures. Our system preserves the important biometric
information even when the user specific password is compromised - a highly desirable feature but
not existent in the state-of-the-art transformation techniques. We have evaluated the performance of
the framework on three publicly available signature datasets. The results prove that the proposed
framework does not undermine the discriminating features of genuine and forged signatures and the

verification performance is comparable to that of the state-of-the-art benchmark results.

© 2014 Elsevier Ltd. All rights reserved.

1. Introduction

The ubiquitous Internet connectivity has led to provision of an
ever increasing list of diverse online services ranging from financial
transactions to online gaming. With cloud computing on the rise,
geographically distant employees of organizations tend to access
and share the sensitive organizational resources online. This trend
has increased the stakes of user authentication process. An ever
increasing need to control the access to sensitive resources, through
user authentication process, demands that the data needs to be
stored on the server in a secure manner.

The three different types of elements (known as factors) that
can be used for authentication of a user's identity are the owner-
ship, knowledge and inherence factors. The traditional passwords
based approach belongs to the knowledge factor (something user
knows) and has been the prevalent method of authentication for
the last couple of decades. However, as the recent security
incidents have demonstrated, the single-factor authentication
(SFA) approach is insufficient [38,12,17]. The threats against poorly
protected authentication information are rising exponentially.
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The major leaks of the period 2012-2013 - include Twitter [38],
LinkedIn [21], IEEE.org [12], Dropbox [6] and Yahoo [17] - corroborate
the argument. Therefore, there is a requirement for adoption of multi-
factor authentication (MFA) schemes (e.g., Dropbox offered two-factor
authentication (TFA) in July 2012 [6]). A directive from US Federal
Financial Institutions Examination Council (FFIEC) also makes it
compulsory for the banks to use MFA in online transactions [14].
Biometrics based identity verification systems are unique from
the ownership factor (ATM, National ID Card, badges, etc.) and
knowledge factor (password, security questions, PIN number, etc.)
based authentication paradigms. Consequently, such systems free
the user from concerns like identity lost/theft, illegal distribution,
repudiation, expiry dates, bearing the identity all times or remem-
brance issues [33]. Human biometrics are characteristic of a user
(inherence factor) and can be used collectively with passwords for
MFA for highly secure systems. The verification performance
achieved through the analysis of human biometric traits has
reached up to a mature level. However, the security and privacy
of biometric templates for storage and communication is still a
challenging problem [54]. The possible vulnerabilities in the
existing biometric authentication systems have been explored in
various recent studies [7,1,19], thus advocating that the security of
biometric templates is an open research problem. It must be noted
that biometric data needs special attention for its security because
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standard encryption techniques (like RSA, DES and AES) cannot be
employed in this case [3]. Mainly, this is due to the reason that
template matching cannot be performed in encrypted domain
since intra-user variability is not preserved.

The current need is to design security mechanisms that make
use of multi-factor authentication in such a way that not only the
user privacy is preserved but the biometric authentication is also
accurate. A scheme for secure storage of user authentication
template can be evaluated over a set of necessary requirements
that ensures relatively foolproof template usage, handling and
accessibility [26,4]. These requirements are:

® Security: The secured template should not leak the original
authentication data and the user-specific factors. Privacy of
each user should remain intact when data of one user is
matched with other users.

® Performance: The performance of user authentication system
using secure template must not seriously degrade in compar-
ison to its non-secured counterparts. False reject rate (FRR) and
false accept rate (FAR) should be as low as possible.

® Renewability: The secured template and the user-specific fac-
tors must be easily cancellable in an event of compromise. It
should be possible to generate a new unique template when
the same authentication data is provided.

In view of the aforementioned challenges and requirements,
we present our template generation framework that applies
random projections to biometric data (inherence factor), using
secure keys derived from passwords (knowledge factor), to gen-
erate inherently secure, efficient and revocable/renewable bio-
metric templates for user verification. We discuss how compressed
sensing can weaken the security of randomly mapped biometric
data. We apply an arithmetic hash function to further secure the
mapping acquired after random projections. The key distinguish-
ing feature of this novel scheme KRP—AH (Keyed Random Projec-
tions and Arithmetic Hashing) is its strength against attacks
despite compromise of user specific key. Moreover, this scheme
does not require the random subspace mapping to be strictly
orthogonal as opposed to schemes that only consider orthogonal
random projections for mapping biometric data [31,52]. Since our
framework does not use error correcting codes or biohashing,
there is no need to restrict real valued biometric signals to binary
domain and this also helps in preserving security. The framework
performs user authentication by using a bi-stage scheme requiring
genuine biometric data and correct user specific key/password.

The rest of the paper is organized as follows. In Section 2, we
describe the related work in the area of biometrics security. We
formulate the mathematical constructs for the KRP—AH scheme in
Section 3. The proposed framework architecture for the TFA utiliz-
ing KRP—AH scheme is presented in Section 4. Our scheme uses a
novel operation named Arithmetic Hashing to strengthen the secur-
ity of biometric templates. We discuss the security strengths of the
framework against different attack scenarios in Section 5. To
empirically establish that the generated secure biometric templates
are still highly usable for authentication purposes, we evaluate the
proposed framework in a TFA setup by using user passwords and
dynamic handwritten signatures in Section 6. Unlike the traditional
feature transformation techniques [20,35,29,25], our system pre-
serves the important biometric information even when the user
specific password is compromised. We have identified a number of
local and global features related to dynamic signatures for template
generation, and we use both dynamic and static distance measures
to match the secure templates. We have evaluated the performance
of the framework over three publicly available dynamic hand-
written signature datasets. The results show that our proposed
framework does not undermine the discriminating features of

genuine and forged signatures and the verification performance is
at par with the reported benchmark results. Finally, we conclude
the paper with an outlook to future work.

2. Related work

The proposed scheme (KRP—AH) focuses on TFA by generating
secure templates derived from user-provided password and bio-
metric data. In this section, we discuss the related work in the
literature that attempts to solve the problem of securing biometric
data based authentication templates. Several schemes have been
proposed to protect the biometric templates. These schemes can
be broadly classified in to two categories: Biometric cryptosystems
and feature transformation schemes [3]. The general idea is to store
and process a variant of the original biometric so that an intruder
cannot extract exact biometric data if he/she gets hold of a user's
template.

Biometric cryptosystems combine biometrics with standard
cryptographic techniques to generate data that can be used as a
proof of user's identity. Error correcting codes are usually used to
deal with the intra-user variability of templates during enrollment
and verification process [30,55]. Biometric cryptosystems show
good performance by preserving the inter-user variability [34].
However, these systems pose a difficulty in generating revocable
templates that can be easily cancelled and reissued. In feature
transformation techniques, instead of storing the original bio-
metric data, transformation functions are applied on them. When
the applied transformation is invertible, we call it salting transform.
In case when an inversion is not possible, we call it non-invertible
transform. In either case, the transformation is dependent on a
randomly generated user specific key. These schemes have good
revocability; however, their performance generally decreases with
an increase in complexity level of transformation function. In the
following discussion, we will discuss a brief overview and short-
comings of existing feature transformation schemes.

Orthonormal random projections are studied in [20] to secure
biometric templates. A random multispace quantization technique is
proposed in [52] to secure face biometrics by applying orthogonal
random projections and biohashing. Similar to biohashing, palm-
hashing technique is presented in [29] to generate revocable
palmcode using Gabor filters. However the security of all these
salting transforms is dependent on the security of parameters that
define user specific transformation characteristics. As an example,
the above-mentioned techniques that employ random projections to
map users' data are dependent on user specific key or token. They
use key/token as a seed to generate random projections. When this
key is compromised, the security gets weak and the intruder can
recover original biometric either partially or completely.

The non-invertible transforms are applied in [28,25,56] for
template protection of face and finger print biometrics. Maiorana
et al. have used a signature transformation technique to secure
online signature templates that can be matched via HMM [35]. A
universal background model based approach is discussed in [4] for
dynamic signatures protection. The problem with these techniques
is their relatively low performance levels compared to salting
transforms. Moreover, it is difficult to quantify the level of security
provided by such techniques [3]. As an example, a revocable
transform is applied on finger print templates in [49] which can
be cracked by the technique proposed in [47].

Our method is inspired by the work of Feng et al. [13] that uses a
hybrid mechanism consisting of random projections, discriminability
preserving transform (DPT), and fuzzy commitment scheme to
secure face templates. Whilst the hybrid approach successfully
combines positives of biometric cryptosystems and feature transfor-
mation schemes, it is different from our approach in several ways.
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Firstly, our scheme combines salting and non-invertible transforms
to achieve a high level of security. This ensures easy revocability and
avoids the restrictions posed on security by binary templates. More-
over, our application area is different and requires special treatment
since DPT cannot work on variable length handwritten signature
samples. Our approach is also robust towards large intraclass
differences in signatures collected from the same person, for which
error correcting ability of biometric cryptosystems [55] is insufficient.

3. Keyed random projections and arithmetic hashing
(KRP—AH)

Having established the need for MFA and challenges involved
in secure storage of authentication data, we now propose a
scheme KRP—AH for generating secure, efficient and renewable
authentication templates. This scheme involves random projection
of biometric data using a random key derived from a user's
password, and arithmetic hashing of the resulted projections
(see Fig. 1). We formulate the mathematical constructs for the
keyed random projections and arithmetic hashing (KRP—AH)
scheme in the following subsections. The complete overview of
the proposed scheme is given in Fig. 2.

3.1. Notation

We will denote matrices with bold capital alphabets A and the
associated vectors as bold small alphabets a. Sample values of
vectors will be denoted by a; (ith value). Transpose and pseudo-
inverse of A are denoted as A" and A" respectively. Cardinality of
sets is represented by |-| while real and normally distributed
number sets are denoted by R and N respectively. I shows the
identity matrix and the sans-serif letter R is the matrix used for
mapping biometric data onto random subspace. Function AH(-)

1

1

1

1

1

1

Processed ! 1 Secured
Biometric Data , |~ Template

1
1

Fig. 1. KRP—AH scheme for secure template generation.

denotes one-way arithmetic hash operation. Attacker's tools i.e an
attack algorithm and maintained dictionary are represented as A
and D respectively. Pr(-) is used to denote the probability of an
event. First order and second order time derivatives of a time
series {x,} are represented as {X,} and {X,} respectively.

3.2. Mathematical prolegomena

3.2.1. Random projections for secured biometric templates

Random projections (RP) govern a mapping that project's high
dimensional data to a lower dimensional space with an assurance
that the pair-wise distances between points will be retained
within an agreed threshold (e). If (X%") is the biometric data
and R is a random matrix of dimensions k x d whose elements are
sampled from a known probability distribution, then the matrix
product RX is the randomly projected output.

Johnson and Lindenstrauss lemma (JL-lemma) [16] is one of the
most important results in the theory of random projections. It
states that n points in Euclidean space can be mapped to a much
lower dimensional Euclidean space without loosing the preserva-
tion of relative distances between points. Formally,

JL-Lemma. For any 0 <e <1 and any integer n, let k be a positive
integer such that k> 8¢~2 x In(n). Then for any set Z such that
|Z| =n in RY, there exists a Lipschitz mapping f: R? - R¥ such that for
alla,beZ

(1-ella=bl* < If(@—f(b)I <(1+e)lla—Db|?

Thus, JL-lemma puts a lower bound of k= 0(e~2 log n) on the
amount of dimensionality reduction while keeping the pair-wise
distortion bounded (i.e. <€) [16].

In the previous RP based template protection schemes, either R
is presumed to be an orthogonal matrix or it is converted into one
using familiar orthogonalization techniques like Gram-Schmidt
algorithm [52]. If transformed templates are denoted by U=RX

and V = RY, then the inner product is given as
U'v=X"Y - RRT=]

This means that the orthogonalization practice makes the system
weak against brute-force attacks. But a stacked version of ortho-
normal vectors (to be used as rows of a random matrix R) was
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oxo3m2800] 53
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Enrollment ) N il il e Permanent
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Fig. 2. Complete architecture of bi-stage two-factor user authentication framework using KRP—AH scheme.
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required for constituting a valid Lipschitz mapping: f(x) = Rx. We
may define a valid Lipschitz embedding as

Definition 1. A Lipschitz embedding f(x) = (1/~/k)Rx is said to be
a valid JL mapping (i.e. satisfying JL-lemma), if the elements of R
are chosen such that they are independent and identically dis-
tributed (i.i.d.) according to some distribution (D) and the prob-
ability of success in distance preservation is (n> —1)/n*> when R is
formulated this way.

Any random matrix with elements chosen from an i.i.d. normal
distribution N(0,c?) satisfies the conditions to be a valid JL-
transform [8]. We have used such matrices for RP. This makes
the system more secure since RR” I and the pair-wise distances
are also preserved. It is also important to mention that in this
work, we have applied random projections that result in the
reduction in number of features instead of data points. This helps
in obfuscation of actual features and leaves us with enough points
in each feature domain to carry out arithmetic hashing without
performance degradation.

3.2.2. Properties of random projections

We will now briefly outline some of the relevant properties of
random projections (further details can be found in [31]). These
properties will be useful in understanding the remaining part of
this section and the security discussion (Section 5). It must be
noted that we assume a valid Lipschitz mapping R whose
elements are i.i.d normally distributed with mean x=0 and
variance . Some properties of interest that R exhibits are:

1. In high dimensional space, vectors with random directions are
almost orthogonal, i.e. RRT =R'R o I.

. E[RTR] = ko?I and E[RRT] = ds2I where R has dimensions k x d.

3. For row-wise projections, let X**™ and Y?*™ are transformed
by R¥*? to, U= (1/vks)RX and V = (1/vks)RY then, E[UV]=
XTY. Similarly for column wise projections: E[UVT] = XY,

4. Each entry ¢;; of matrix product RTR is approximately Gaussian
with E[e,-,,-] = do‘z, Var[e,-’,-] = 2d(74, Viand E[ew] = O, Var[el—J] = d0'4,
Vi, jli#]j.

5. The error (u’'v—xTy) of the inner product matrix generated by
Gaussian random projections and original data matrices has the
statistical properties: E[u'v—x'Ty]=0 and Varju'v—xTy]=
(1/k) (Zixiz Yivi+ (Zixfyi)z) .

- In case when elements of R are chosen from an i.i.d N(0, 1) or
from U(-1,1), then

N

P(lu"v—x"Ty| >¢) <4 x exp (—i—;(ez —63)>

After reduction of number of features of original data by
random projections R, the statistical dependencies among the
observations will be maintained (from properties 3 to 6). The other
way around, if the data owner compresses the observations, the
relationship between the features of two signatures will be
preserved (from properties 1 and 2). We can directly apply
biometric template matching techniques on the perturbed data
U and V without knowing the original sensitive biometric infor-
mation. If intruder has only the perturbed data U or V, it cannot
determine the values of the original data values in X or Y. This is
due to the reason that the system of equations constituted in this
case is an under-determined system with infinite possible solu-
tions. As the amount of dimension reduction (d —k) is decreased,
alternatively increasing k, the amount of error introduced by the

projections decreases (see properties 5 and 6). Therefore there
exists a trade off between system performance and security level.

It is worth mentioning that there is a close relationship
between JL-lemma and Restricted Isometric Property (RIP)
through which an intruder can make use of the sparsity of
biometric signal. In case, when a valid JL transform f(-) is an
operation that projects data onto random subspace using random
matrix R, we can define RIP as in [27].

Definition 2. A matrix R : R? - R¥ is said to possess (t,e)—RIP of
order t and level e € (0, 1) if for all t-sparse x e R? their exists the
following relation:

(1—e)lIxlI3 < IRx[I3 < (1 +e)lIx]13

The intruder can make use of RIP which resolves the problem of
finding solution to a system of under-determined linear equations,
u=Rx, where x is sparse. This is because the NP hard 7,
minimization problem turns into a basis pursuit compressed sen-
sing problem when RIP holds. This t-sparse solution is given by’

X = argmin||z||;
Rz=u

#1 minimization is a convex optimization problem and can be
efficiently solved using linear programming methods. Gaussian and
Bernoulli matrices have (t,e)—RIP with high probability if
k>t x log(d)/e*. It can be shown that if the matrix R satisfies
concentration inequality for JL-Lemma then it is highly probable
that it would also satisfy (t,e)-RIP for t < c'e?k/log(d) [5]. This
concentration inequality can be expressed as

Pr((1—e)lIxl13 < IRx[I3 < (1+e)[IX]13) > 1—2 exp(—cke?)

In our case, this relation is satisfied for R whose elements are
chosen identically and independently from N(O,s?). The same is
true for error between two vectors projected using R with elements
having N(0, ¢2) distribution [31].

Krahmer and Ward [27] have proved a converse result that
given R satisfying RIP, it can be shown that it is possible to embed
it into a low dimensional space by applying JL lemma and taking
into account some bounds [27]. This allows the application of
theoretical results from compressed sensing to the JL low dimen-
sional embeddings. When the signals are sparse, there exists a
possibility of reconstruction from a few samples that may not be
able to reconstruct the original signal in naive sense. Furthermore,
using random projections alone may partially leak biometric infor-
mation in case of an attack (this scenario is discussed in detail in
Section 5).

3.2.3. Arithmetic hashing

To solve the above-mentioned security issues with biometric
templates, we have employed an ‘easy to compute’ and ‘difficult to
invert’ one way function. Given a function f, there exists an
algorithm A that takes an input x, computes it for reasonable
finite time T and outputs the result f{x). Suppose there is another
algorithm B that takes f{x) as input, computes it for finite amount
time T’ and tries to guess the correct output i.e. f'(f(x)) =x. For a
one way function, the probability of guessing x should be negli-
gibly small so that correct inversion would be a rare event [44]. For
a very large number of runs ‘n’, the probability of occurring correct
inversion x is very small:

P = < |

“l- 11 is the #' norm in Banach space and | -|, is the #? norm in
Lebesgue space.
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The one way function we have employed is a first order
difference followed by a decimation operation in which every
second element is dropped. So effectively this operation becomes
equivalent to the difference operation on consecutive pairs such
that no pair is overlapped and hence can be termed as ‘curtailed
difference operation’. The intuition of this technique lies in the fact
that signals do not loose discrimination ability when their rate of
change is calculated, rather such a calculation is often helpful in
increasing the discriminating ability of signals. However, a deriva-
tive step by no way increases the security of original signal since a
simple integration (summation) step can recover the original signal.
The decimation step is put next to difference so that the links
between pairs are dropped and the original signal cannot be fully
recovered. Note that the factor by which we decimate the randomly
projected biometric signal is also not known to the intruder.

For the case of quickly varying time series signals (such as
randomly projected handwritten signature), AH function avoids the
exact recovery of original signal by an intruder. Moreover, this
operation preserves the discriminative ability of signals and the
verification performance is not degraded (see Section 6.5.3 for results).
The main reason why performance remains unaffected is the distance
preserving transformation (Section 3.2.1) followed by the differential
and decimation (low-pass) filters which keep the distinctive features
of time-varying signals. An example of AH function applied to
signature data and the resulting recovered signal is shown in Fig. 3.
For the security analysis, Fig. 4 shows the error distribution for the
signal recovered after an AH operation. We consider two cases to
simulate signal recovery. For the first case, it is assumed that the
attacker knows the operations involved in AH but do not know the
exact parameters e.g., decimation rate. For this scenario, we take 200
genuine signatures from each of the three signature datasets (SVC'04,
SUSig'07 and SigComp'11) and try to recover them with different
possible choices of parameters. For each signal, we use an interpola-
tion factor in the range (0, 20), samples used for interpolation in the
range (2, 20) with steps of 2 and normalized cutoff frequency in the
range (0.25, 0.75) with steps of 0.05. This makes a total of 1.26 x 10°
runs and the distribution of mean square error (MSE) distribution is
shown in Fig. 4(a). For the second case, we assume that the attacker
knows all details about the AH function. We now try to recover the

original signal for all the genuine signatures in the three signature
datasets. The resulting MSE distribution is shown in Fig. 4(b). Note that
the error is measured in comparison to the randomly projected
signatures and the intruder will still have to recover the randomly
projected data even after cracking the AH function.

4. Architecture of bi-stage two-factor user authentication
framework based on KRP—AH scheme

Based on the proposed KRP—AH scheme for secure template
generation, we now present a complete framework for two-factor
user authentication. The framework performs its operation in two
separate stages: the enrollment phase and verification phase.

4.1. Enrollment phase

During the enrollment phase a user presents his/her biometric data
which is acquired in the form of a matrix, D. We can express it as a
random matrix because its elements may assume any probability
distribution pp(D) depending on the nature of biometric involved and
the type of user. This data is then passed through a feature extraction
module Fpq(-) that converts raw data into useful information. The
resulting processed data in feature space is P = Fpq (D). For the
protection of these feature vectors, they are passed on to secure
biometric module F.(-) that projects it onto random subspace. These
random projections are dependent on the seed value provided by the
password based key derivation function PBKDF2 (Fjg(-)). This func-
tion takes the key/password (k), cryptographic salt, number of
iteration (1) and desired derived key length (Z4) as an input to
generate a derived key (h). So,

h = Figp(K, salt, nier, £ )
S = Feec(P; h)

It can be assumed that the function F,4 is non-invertible or at least
it is difficult to do so. However, the security of S is partially
dependent on h. In case k is compromised, the bio-metric template
will not be fully exposed, rather only the minimum norm solution

a b
10000 o
8000 4000
6000 3000
4000 2000
c d

3000
6000

2500
5000

2000 |
4000 1500 |
3000 1000

Fig. 3. Arithmetic hashing hinders the recovery of original signal: the left column shows original signals and the right column shows signals recovered by interpolation (up-
sampling) followed by integration of the output from AH function. Handwritten signature for demonstration is taken from sample data in SVC dataset (a) x-axis data of
signature, (b) signal (a) recovered after AH, (c) y-axis data of signature and (d) signal (b) recovered after AH.
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Fig. 4. The MSE distribution for three signature datasets (SVC'04, SUSig'07 and SigComp'11). We compare Gaussian distributions fitted over data (shown in red) with the
respective histograms (shown in black). The error is measured after the normalization and re-scaling to match height and width of signals and to remove any DC component.
(a) The reconstruction error distribution when attacker has partial information about AH and (b) the reconstruction error distribution when attacker has full information
about AH. (For interpretation of the references to color in this figure caption, the reader is referred to the web version of this article.)

will be released. From this solution a partial leak of biometric
information is possible. To solve this problem, an arithmetic hash
AH() operation is introduced which is easy in computation and from
which recovery of original biometric data is almost impossible
(details of which will be discussed in Section 5). This enhancement
in security level comes with a corresponding decrease in perfor-
mance. We will show in Section 6.5 that this associated loss in
performance is not significant in case of handwritten dynamic
signature verification.

The vector S is secured through AH() to generate S,. This
secured data S,, derived key h along-with the specifics required
in F4 are composed in the form of a template:

T = {Ss, h, salt, e, i}

This template is either stored in memory or sent to a remote
location as per requirement, while the data used in intermediate
steps (D, P, S) is securely discarded.

4.2. Verification phase

When a query is made by the same user, a similar series of
operations are performed as in enrollment. A set of raw data
values D’ of the same biometric are provided again by the user for
authentication. We can assume that this data belong to some
probability distribution pp (D). This data is then passed through
the feature extraction module Fp(-) which outputs the processed
vector in feature space P’ = Fpq (D). Next, this feature vector is
secured by projecting it onto random space by the function Fgec(-).
These random projections take the derived key h’ produced by the
function Fy4(-) as the seed value and outputs a secured version S'.
A second level of security is added by applying AH(-) to generate S,
from S'. Again, the actual, feature and secured data (D', P', §') are
discarded while a template 7" is retained.

Biometrics of different users can be modeled as statistically
independent variables such that given data of two users — Dy and
D, - joint probability can be expressed as pp, p,(D1,D2)= pp, (D)
Pp,(D2). In contrast, when a second sample D’ of same biometric from
same user is provided, we can write joint probability distribution
function as py p(D’, D) = pp p(D'|D)pp(D). Here py p(D'|D) accounts
for the variation of second sample of biometric data D’ from the
originally provided biometric D. When F.(-) is applied on data, we
want to retain this inevitable variation between genuine biometric
samples within reasonable bounds (|py p(D'|D)— ps s(S'|S)| < ¢) such
that the inter-user variability remains exploitable by the template
matching techniques. This condition is ensured by the JL-lemma
which is discussed earlier in Section 3. Therefore, instead of dealing
with pp p(D’, D) we will be concerned with pg s(S',S). For legitimate

users we will have a joint probability distribution defined by
Ps s(S,S) =g s(S'1S)Ps(S)-

The matching function Fmq(-) performs a comparison between
7 and 7. For successful authentication, the user provided key/
password (K'), cryptographic salt, number of iterations (nj,,) and
desired derived key length (¢,) must strictly match with their
corresponding copies stored in the original template. Along with
this, there must exist a close match between copies of secured
biometric data i.e. pg s, (S;/S:) ~ 1 and h' = h. In this way, a highly
secured TFA scheme, combining knowledge and inherence factor,
is successfully implemented.

5. Attack scenarios and security analysis of proposed
scheme (KRP—AH)

In this section, we enumerate some important attack scenarios
and conduct a security analysis against these attacks. This analysis
helps us to understand better how the proposed KRP—AH is
resistant to security and privacy leaks even when highly critical
partial information is leaked. Note that the security level is
proportional to the ability to recover the actual biometric signal.
A successful security mechanism will protect the privacy of a
genuine subject by concealing its original biometric data from an
intruder as well as the verification server.

5.1. Key is disclosed along-with random projections

Consider a system configuration such that the randomly projected
data is denoted by U=RX. For now, suppose that the biometric
security system does not involve a one way arithmetic operation (AH).
As an example, Fig. 5 shows dynamic signatures when mapped from
d=39 dimensional space to lower dimensional space of k=20. It can be
seen that actual signature data has got obscured under such a mapping.

Given an event of key compromise (secured by F4), an
adversary will be able to know the actual realization of random
matrix R. This encompass the notion that the dimensionality of R
and its probability distribution is also known to eavesdropper.
When R is fat i.e. the number of rows in R is less than the number
of its columns (R**¢ : k < d) for every vector xeX and ueU, we
have an under-determined system of linear equations u=Rx
which has infinitely many solutions. To find the complete solution
we start from ‘minimum norm solution’ that seeks to find solution
x* such that ||x*|, is minimized. We have x* = R"w, where w is
the solution of a solvable system w = (RR") ~'u. Here, (RR") " !is a
non-singular matrix of full rank (k) because of the independence
of rows in R. The minimum norm solution is given by x* =R'u,
with R being the pseudo-inverse of full rank, fat R. In the system
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b

Fig. 5. Obfuscation of original signature data through random projection. (a) Original signature, (b) random projection of (a), (¢) original signature and (d) random projection

of (c).

of linear equations u=Rx any solution of x will have the form
X*=Xo—Yy* such that y* belongs to null space of R, N(R) i.e.
Ry* = 0 which has dim(NV(R)) = d — k degrees of freedom [46]. This
implies that for any vector z, the product z-Ry*=z-0=0. As
mentioned in [31], it proves that if an adversary gets knowledge of
the random matrix R, it is not possible to know exactly each of the
value in vector X, for each system of linear equations u = Rx.

Biometric signals can be represented in the sparse form, for
example as a product of training dictionary matrix and the residual
sparse signal i.e. u= A« or performing an #' regularization [45]. If
an intruder gets access to a large number of genuine secured
templates then a training dictionary A can be formed easily. Finding
sparse solution to such a problem is a well founded problem in
compressed sensing [11]. It must be noted that in the given case, the
¢, norm solution that gives pseudo-inverse is not feasible because it
usually does not lead to sparse solution. The sparsest solution (¢
normalization) is non-deterministic polynomial-time (NP) hard. RIP
described in Section 3.2 helps in finding a stable sparse solution of
an ill-posed system of linear equations. When RIP is satisfied,
minimum #; norm solution of an under-determined system of
linear equations is also the sparsest solution [9]:

a = argmin||e||;
(14

Algorithms like greedy search and convex relaxation techniques are
usually used to solve such problems. Donoho et al. [10] have recently
proposed a stage-wise orthogonal matching pursuit (OMP) method for
general sparse solution. However, such methods play with the sparsity
of signals, which is usually absent in biometric signals (especially in
the case of handwritten signatures).

Actual biometric data usually does not contain feature vectors
containing many strict zeros. As discussed earlier, template protection
using random projections for biometrics like facial images of sparse
nature is not a secure method. The intruder can maintain a dictionary

of training samples from a number of users to correctly identify the
unique user and obtain original biometric when dimension of random
projections and user specific key are known. To resolve this issue, the
simple hash function (AH) is proposed by us which is used to obtain
an irreversible template that can be adequately used for verification
purposes. The performance of two-factor verification system using AH
is not much undermined as evaluated in Section 6.5.3. Having said that
this analysis is valid in the case when hashed key is compromised.
When key is secure, it does not matter whether data is sparse or not
because it will be secured in either case [48].

5.2. Characteristics of random projections are disclosed

Another important question from security point of view is the
case of partial leak of information regarding the type of random
projections. Suppose the adversary gets knowledge of the dimen-
sions k x d of R, and the probability distribution from which the
elements of R are chosen independently. On the basis of this
knowledge another random matrix R can be generated. By
inverting the R (i.e. finding pseudo inverse ﬁT) and multiplying
with the randomly projected vector u, an estimate of original bio-
metric data X can be made. When R is a full row rank matrix, R'
can be defined by left inverse. Otherwise, Singular Value Decom-
position (SVD) is used to find R. In further discussion we will be in
need of the characteristics of pseudo inverse (R").

Lemma 1. Given a random matrix R*¢ whose elements come from
an independent and identically distributed normal pdf with mean
0 and variance o2 : N(0, 62), then the pseudo inverse R’ of R will have
the statistical distribution: N(u,+,,+), where

o2

(Iril12)?

2
ur =0, o=
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Proof. For R' to be a valid pseudo inverse of R, it must satisfy the
four Penrose conditions:

RR'R=R,R'RR" =R’ 1)

RRN=RR", (R'R’=RR )

Let r; e R then from Eq. (1), the pseudo inverse rIT is given by

T T
F_ 0L

T = =
RGN O

where (r;, ;) is the dot product,
llrill> = Z ri

The expected value of r:.’ is

Er1=0, - Er]=0

and the effect of linear transformation of r; on variance is
(IIril12)
Corollary 1. Alongside the Moore-Penrose pseudo inverse, Lemma 1

also holds for the case of generalized inverse and reflexive generalized
inverse of matrix R.

var(r?) = o

Proof. This result comes directly from the fact that both the
generalized inverse and reflexive generalized inverse satisfy first
relation in Eq. (1). ©

Lemma 2. Given a random matrix R**¢ whose elements come from
an independent and identically distributed standard normal pdf:
N(0, 1), then the pseudo- inverse R’ of R will have the statistical
distribution: N(O, arf) where (7 can be approximated by

aff%%, d>k

for significantly large values of d.

Proof.

d
E[||r,-||2}=5[2 r,?j}zdazzd '.'62:1(||1',-||2)2ch2 o
j

If R = R, left multiplication of the pseudo inverse R' with u will

produce I. We will like to investigate the case when R #R.
u=Rx, Rlu=R'Rx

If we define 6, as the {m, njth element of If%TR then,

k
Smn = Zf;irin vm,n, l<man<d
i=1

The estimate of x denoted by X equals,

ug =E[Xm] = Z E[6mnXn] =0
which is due to the fact that §,, and x, are mdependent
E[6mnXn] = E[6mn]E[Xn]. Here, E[6mn]=0 because R and R are
independent with zero mean.

Variance of X can be expressed as

E[((X —pux)1=E[(®)*] "~ uz=0

E[(X)*] = E[X - X] = E[X'X] =E [( 3 xo 3 5mdx,)]

i=1 j=1

Var[X] =

R'R is a square matrix with dimension d x d. Therefore
E[(X)*] =0 when i#j and

d
E[X)’]=ko’c? ¥ X
i=1

when i=j.* Subzstituting the value of variance of pseudo inverse R,
o :"2/(||l‘i||2) , we have

E[(Xm)’] = 5 x

(||rl||2)2 =
where, (||r,-||2) ~d* and d > k which leaves the X with all values
close to zero.

Remark 1. When the characteristics of random projection are
disclosed, an intruder can try to recover the original biometric
using the pseudo inverse R'. However, our mathematical analysis
(Lemmas 1 and 2) shows that the recovered signal will only have
all approximately zero values.

5.3. Brute force attack

We have discussed the strengths and vulnerabilities of random
projections in detail. Now, we will see how the security scenario
shape up when the transformation AH() is applied on S. This
transformation can be expressed as

AH(S) = [AH(S)...AH(S,)...AH(s})]"
*(l+1) AH(SZI+1)_SZH—1 S2i+2 Vie[O,n]

The transformation AH() operates on the output of random
projection block and computes result that is half of the number
of data points in input data. Let the number for data points in all
s,, Where # €[1,k], is n. Each data value is t digit wide. So, if we
want to reconstruct the correct s, from it's transformed version sZ,
we have infinite equally probable options. We can express this as
the case when an intruder gains information about the s¥ and
would like to reconstruct actual data so that some values of
genuine biometric X, may be found. For a successful attack vector
s, must be present on the attacker's dictionary of possible secured
biometric vectors. We consider the worst case that the attacker
has gained access to every thing stored in the memory i.e. h, R and
the characteristics of Fpeqt, Fidrr Fseco AH. The adversary then
employs an algorithm A to built a dictionary of possible outcomes
given s:

D= A(S7. 0, R, Py, Dy, Fsec()s Ffear (), Frar (1), AH())

For every entry in the D we have a chance of 10~2" for guessing
correctly s, i.e. the probability of existence of s, in D will be as low
as 102%™ and the probability of existence of all feature vectors k
in D is (kx10%M) -1,

5.4. Birthday attack and effect on performance

Although the AH(-) function increases security, it is associated
with a corresponding decrease in accuracy. We want to analyze
what opportunities does it offer to an intruder to break the
systems security. This scenario can be described by posing a
question: given the near non-invertibility of AH(-), can the attacker
deceive the biometric verification system using some other than
the original biometric template as the query template? This can be
assessed by calculating the probability of output collision for the

2 For two independent random variables x and y we have var(xy)=
var(x)var(y)+var(X)E[y]* +var(y)Ex}*> and for an iid distribution var(Xix;) =
Yivar(x;).
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hash function AH(-). This type of vulnerability is known as the
birthday attack due to its inherent similarity with the statistical
problem of finding people in a group having identical birth dates.

If t is the digit length of each sample of the vector outcome of
AH(-) then there are q = 10" possible values for every sample sj“).
After r instances of hash values, the probability of no collision

will be
9q-1@q=2)..(q-r=1)__ ¢
q q(q—n!
The higher values of g and lower r make the event of collision

highly rare. The probability of atleast one collision among r
instances is

P no_coll =

q'
q(g—n!

This relation can be expanded as (1 —x) factors that are related to
their exponential form as (1—x) <e~*. Hence,

P one_coll = 1

1
Pone_coll >1 76xp<72fq(r x (Tf‘l)>

For any value p of Py, .oy we have number of instances given by

/ 1
r= 2qu1n<q>

In our case, collision of one value by no means suffices the need of
attacker. Rather the whole correct sequence of {si} must be
generated so that the desired sequence {s,} can be obtained. This
is implied as representing the possible outcomes as q= 10",
Here 5 is the strictness factor that decides the level of match
between actual secured biometric and the item on the intruder's
dictionary. Again, from the attacker's point of view the task is not
yet finished. In order to generate all feature vectors the process in
obtaining each s, will have to be repeated k times, so the
corresponding number of instances required (r) will be expressed as

r=< 2qum<T59>

As an example if we choose 5 to be 75%, n=3 x 10%, t =5, k=20
then g~ 1 x 10% and r~ 10%° [44].

k

5.5. Linkage attacks

Biometric template security systems can also become a victim
of linkage attacks [37]. In this case, the adversary makes use of the
leaked information when two different templates generated from
the same biometric are compared. This comparison can be made
either with or without (i.e. in x domain or in s* domain respec-
tively) inversion of the secured template. If only random projec-
tions are applied, partial recovery of original biometric data is
possible and the intruder may enhance his/her knowledge by
comparing partially recovered data (X; and X,) from two instances
of secured biometric (s{ and s%). However, after the application of
AH(-) recovery of original data is highly infeasible, as shown in the
security analysis of previous section. Therefore a comparison can
be undertaken only in the transformed domain of s¥ vectors. Since
the transformed domain does not retain original biometric data,
the best an intruder can get is a check to ascertain whether both
templates belongs to the same user or not,

P(M(s*,8%) < e)

where M(-) is the matching function and e is the margin of
permissible dissimilarity.

6. Case study: using dynamic handwritten signatures as
biometric in KRP—AH framework

We have presented a secure authentication template generation
scheme (KRP—AH) and built a TFA framework around it. We have
also discussed possible attack situations and the performance of our
system. In this section, we perform empirical validation of our claim
that our proposed framework does not significantly undermine the
discriminating features of genuine and forged signatures. To establish
that the generated secure biometric templates are still highly usable
for authentication purposes, we evaluate the proposed framework in
a TFA setup using user passwords and dynamic handwritten signa-
tures. Unlike the traditional feature transformation techniques, our
system preserves the important biometric information even when
the user specific password is compromised. We have identified a
number of local and global features related to dynamic signatures for
template generation, and we use Dynamic Time Warping and
Mahalanobis Distance for matching of secure templates. We have
evaluated the performance of the framework over two publicly
available dynamic handwritten signature datasets. The results show
that our proposed framework does not undermine the discriminating
features of genuine and forged signatures.

6.1. Geometric normalization

To achieve good classification performance, all signatures are
preprocessed to reduce the impact of undesired deviations (in
geometry, size and spatial translation of different signature instances)
on verification results. We have applied normalization by removing
the spatial translation and angular rotation. The center of mass of
signature contours are aligned as follows:

1 N
COM = {xmean,ymean} :N Z] {anyn}
n=

{Xshif s Yshir } = {Xn — Xmean, ¥n — Ymean} VYN € [1,N]

where N is the number of samples of signature data and x and y are
the coordinates in cartesian plane. The average path tangent angle of
complete signature contour is calculated and the amount of rotation
is removed. In this way, the axis of least inertia gets aligned and
average path tangent angle becomes zero:

1 X ..
gavg:N 21 tan_l(yn/xn)
n=

Here, y, and X, are the first order time derivatives of sequences
{Vn}1xn and {xp};,n respectively.

6.2. Feature extraction

Signature verification can be considered as a two-class pattern
recognition problem, where the authentic user is one class and all
the forgers conform the second class. Feature extraction max-
imizes the discriminative capability of both classes. The features
that we have extracted can be grouped into two major types:
(i) local features and (ii) global features. The features in which a
value is extracted for each sample point in the input domain are
called as local features. Global features are the ones in which feature
value is extracted for a whole signature, based on all sample points
in the input domain [50,22].

6.2.1. Local features

The signatures used in our study are sampled at 100 Hz using a
WACOM Intuos tablet (SVC2004 Dataset) or Interlink Electronics
ePad-ink tablet (SUSig 2007 Dataset) and at 200 Hz using WACOM
Intous3 tablet (SigComp 2011 Dataset). The local features are



S.H. Khan et al. / Pattern Recognition 48 (2015) 458-472 467

Table 1

Local features: they capture dynamical information about handwritten signature
signals. Top five rows list self-evident local features while the last four rows show
features (left column) along with their definition (right column).

Time stamp (t)

Absolute speed (|sy])
Absolute acceleration (|ay|)
Pen pressure (p,)

Azimuth angle (az,)

Spatial co-ordinates ({Xn,¥,}ny2)
Directional speed (s, sh)
Directional acceleration (a%, ;)
Pressure deviation (Ppax — Pmin)
Pen elevation (el,)

(en| =60 = dif(\/kﬁ +y‘ﬁ)

|Gcn| =S$n.0n, ¥ e[1,N]
Hn:tan”(%) Vne[l,N]

n

Tangential acceleration

Centripetal acceleration
Path tangent angle

Log radius of curvature 50 = log <Z_n> vne[.N]
n

extracted at 100 Hz sampling frequency, which are listed in
Table 1. In addition to these features, we also include first and
second order time derivatives in the feature set. Derivatives are of
paramount importance when the need is to capture distinctive
characteristics of dynamic signals [50]. Instead of simple difference
calculation for discrete signals, we have used second order
regression to find derivatives [15]:

Zizz ]i(0n+i_0n—i)

On = >
2.2 i

3

6.2.2. Global features

Thirty five global features are calculated for each signature.
These are listed in Table 2. The global feature ‘Average Jerk’ is the
averaged rate of change of acceleration da/dt:

N
Jjerkayg =% 21 a, Vvne[l,N].
n=

6.3. Distance measurement

The authentication decision is made by calculating two sepa-
rate distance measures from local and global feature vectors of
authentic and probe templates. It is necessary to treat the local and
global feature vectors separately during distance measurement
since local features are time varying signals in which each sample
has a relation with adjacent samples. Therefore normal distance
measurements like Euclidean, Manhattan, etc. cannot be applied
for local features.

These distance measures are then fed to a random forest
classifier that predicts the class to which the probe biometric
belongs i.e. a genuine signature or an attempt of forgery. The
choice of forest classifier is made due to its realtime performance
and high accuracy. Fig. 6 shows this procedure as an access request
scenario, where either the requested access is granted or denied
depending upon the authenticity of the presented biometric. We
now briefly discuss both distance calculation algorithms.

6.3.1. Dynamic time warping

DTW is based on dynamic programming and allows us to find a
‘best path’ that maximizes the local match between two aligned
times series. The resulting similarity index calculated by the
technique gives us a measurement that signifies the quality of
match. DTW effectively minimizes the shifting in time and
elastically transforms the time axis. Since we have time varying
signature signals, we can use DTW as a metric to decide whether
to accept or reject the query signature.

Table 2
Global features: they capture holistic information of handwritten signature signals.
Each box contain a single feature definition.

Number of data points (N)
Avg. x velocity

Max velocity

Signature height (H)
Spread ratio (N/W)
Variance of velocity
Variance of y velocity
Sign changes in dy/dt
Max x velocity

Average acceleration
Average y acceleration
Variance of x acceleration
Average pressure
Average elevation
Variance of pressure
Max. acceleration

Average velocity

Avg. y velocity

Avg. vel./max. vel.
Signature width (W)
Aspect ratio (W/H)
Variance of x velocity
Sign changes in dx/dt
Average jerk

Max y velocity

Average x acceleration
Variance of acceleration
Variance of y acceleration
Average azimuth
Maximum pressure
Point of max. pressure
Pen up samples (N,)

No. of points with positive x-velocity/N,,
No. of points with negative y-velocity/N,
Deviation in pressure (Pmax — Pmin)

Matching

[ ) ]

Fig. 6. Matching module.

If we have two random vectors which represent time series
belonging to two different signature instances, X=[X1,Xo,...,
xf]" e RN and Y =1[y,,¥,, ..., yr]" € RN where d is the total
number of local dynamic features, Ny and N, are the number of
data points in equally sampled X and Y respectively. A distance
matrix U is built to store local pairwise distances between X and Y.

Ue RN -y = x| —y/ I

whereie[1:Ny],je[l:Ny]. DTW warps X and Y such that the cost
or distance function is minimized over alignment path (see Fig. 7):

P=FpwX,Y)= argpmin( %4:1 1% —y;% H>
m m=

The warping path P =[p;,p,, ...,Py]" is calculated that consists
of a pair of path vectors p,, = [p%,, pln] € RM*?, where p%, € [1 : NyJ™!
and p, [1: Ny]™'. The steps m e [1 : M] and M are the number of
steps that are required to align two sequences in the minimum
distance sense. X and Y can be aligned in a number of ways,
exponential in Ny and N,, however dynamic programming provides
an efficient approach (O(NxNy)) to reach the desired minimum cost
path using Bellman equations.

The warping path P must start and end with the bounded
points of two signatures. During alignment steps, time ordering of
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Fig. 7. Local pairwise distances between two secure signatures templates.

sequences is retained and jumps are taken in accordance with
some predefined policy &(-). We have tested the system with two
types of policy functions: unconstrained policy (&,) and greedy
policy (&). & encompasses 5 steps:

S A+ L), G+ 1D, (+1,j+1),(+2,j+1),(+1,j+2)}
while the &, consists of 3 steps:
&y A+ 1,j4+1),(+2,j+1),(+1,j+2)}

Equal weights are assigned to all movements in both &, and &, We
tested with both policy functions and found them identical in
relation to the verification performance.

6.3.2. Mahalanobis distance

This distance measure is used for distance calculation between
global feature vector of each signature. This choice is based on the
premise that different global features are distributed with differ-
ent statistical properties (variances and means). For each user k we
have,

Gi = [glng: s 8l “-’gK]a

Distance calculation is based on correlations between variables
and is scale invariant as desired in our application,

d! = /(g — )" o (& —m0)
An averaging function is applied on distance vector; d" =[d{,

dj,...,dJ] which does not create a bias in verification decision
due to normalization characteristic of Mahalanobis distance,

where k e[1,K]

K "
Aj= Y dl/K, 1ijell, no. of users], ke[1,K].
k=1

6.4. Decision making

A decision level fusion of both distance measurement algo-
rithms (DTW for local and Mahalanobis distance for global
features) is performed using a Random Forest classifier (RFC). This
classification algorithm creates an ensemble of trees and then
decides the input class using the votes from each tree. RFC
provides us with very fast (~2.8 ms for each signature on
average) decision support and works well when enough signature
samples are available for training.

6.5. Performance evaluation
Now, we present the empirical results of our case study. First,

we describe the datasets used in our experiments. Then, we define
the performance metrics used for evaluation. Afterwards, we

present the actual performance evaluation results in term of the
performance metrics.

6.5.1. Datasets

For the purpose of evaluation of our scheme, we have run tests
on three publicly available dynamic signature datasets. On the
whole, these datasets comprise of ~ 8100 signatures, of which
there are ~ 3600 forged and ~ 4500 are genuine signatures. The
important statistics of these datasets are briefly described below.

SVC 2004: This dataset was collected as a part of First Interna-
tional Signature Verification Competition (SVC), 2004. The data set
contains signatures for two tasks, each containing data for 100
users. However, the data of only 40 users is released publicly for
each of the two tasks. Each user data is further divided into 20
genuine and 20 skilled forgeries. For first task, data of only x and y
coordinates, pen-up/pen-down and time stamp are included. The
second task data contains some extra dynamic information includ-
ing pressure, elevation and azimuth angles indicating pen orienta-
tion. SVC 2004 is a widely used benchmark database for testing
on-line signature verification systems [57].

SUSig 2007: The SUSig dataset contains signatures of 100
different users. Among them, there are 29 female and 71 male
subjects. This dataset is divided into two parts, visual sub-corpus
and blind sub-corpus. There are 20 genuine signatures collected
from each user in visual sub-corpus while 10 forgeries are also
included for each user. In blind sub-corpus, 10 genuine and 10
forgeries are there for each user. Data for each signature include
x—y co-ordinates, pressure and pen-up/pen-down events with
time stamp. To collect skilled forgeries, an animated signing
simulation module is used [24].

SigComp 2011: This dataset was released as part of Signature
Verification Competition (SigComp 2011) for online skilled for-
geries. It consists of two sub-corpses, containing Chinese and
Dutch handwritten signatures respectively. The dynamic signature
data includes x, y and z coordinates and do not contain pressure
signal. Chinese dataset contains 1339 online signatures in total
while 2356 signatures are present in dutch datset. Chinese sub-
corpus includes data from 20 users and dutch subcorpus includes
data from 64 users. All signatures are collected at 200 Hz using
WACOM Intuos3 A3 Wide USB Pen Tablet [32].

6.5.2. Performance metrics
We can define measures of performance in probabilistic terms.
The probability of FAR is

Peag = Pri{AH(F sec(F fear (Y))), Frar (Ky)}
~ {AH(Fsec(F fear (X)), Frar(Kx)}

where Y and X are copies of same biometric from two different
users. When we have a second copy X of same bio-metric trait
from the same user, we may define FRR as

PFRR = Pr[{AH(fsec(ffeat(X)))a -def(k)"()}
#* {AH(fsec(-Ffeat(x)))a fkdf(kx)}]

We choose the Equal Error Rate (EER) point as the operating
point of our framework. As the name suggests, EER is the point on
Receiver Operating Characteristic (ROC) curve where FAR and FRR
rates are equal. The performance results of our framework are
presented using this metric.

6.5.3. Experiments and verification results

On both of these datasets, training is performed on 5 genuine
signatures. The best signature is chosen as a reference signature
depending upon the minimum distance with all other genuine
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Table 3
Evaluation of authentication performance.

Datasets k KRP () AH () EER (%)
SVC 2004 30 v x 3.40
v v 4.84
20 v X 437
v v 6.21
SUSig 2007 30 v x 3.68
v v 4.47
20 v x 415
v v 5.05
SigComp 2011 30 v X 5.26
v v 6.03
20 v x 6.69
v v 7.28

signatures in the training set. During the testing phase, perfor-
mance is evaluated against only skilled forgeries. Each of the
signature from probe bio-metric set is matched with the reference
genuine signature and the decision about its authenticity is made.
We have used 10-fold cross validation to assess how the predictive
model will perform in actual practice, irrespective of the type of
training set.

The results for our experiments on SVC, SUSig and SigComp
datasets are shown in Table 3. The system is tested with different
values of k (accounting for the amount of dimensionality reduc-
tion) to observe how the level of compression affects verification
results. A decrease in performance is noted when the amount of
compression is increased, which is consistent with the results
found in [52]. However the level of degradation is not much
significant when compared to the amount of dimension reduction
(i.e. 77% and 51% in case of k=30 and k=20 respectively). The
effect of applying AH(.) is also studied while evaluating system
performance. Due to the trade-off between security and perfor-
mance levels, a decrease in system efficiency is expected after the
arithmetic hashing. However, the decline is not large if we keep in
view the benchmark results reported on these data-sets (SVC: EER
averaged on both tasks; 6.2+8.59% [51], SUSIG: EER equals
4.08 +19.1% [23] and SigComp: EER avergaed on both Chinese
and Dutch sub-corpses; 5.24 [32]). The ROC curves are plotted
in Fig. 8.

We observe that the EER of our system is maximum when both
KRP and AH are used. However even for low value of k=20, the
maximum EER is comparable to the previous state-of-the-art
results on signature datasets. This low error rate demonstrates
that unlike the traditional feature transformation techniques, our
system preserves the important biometric information even when
the user specific password is compromised. This validates our
hypothesis that KRP—AH framework does not significantly under-
mine the discriminating features of genuine and forged signatures.

Table 4 reports the comparisons when different transformation
functions are used in place of AH. For Discriminability Preserving
Transform (DPT) [13], each feature is divided into 3 windows (w).
The verification accuracy is reported by matching signatures using
normalized hamming distance. For Convolution Function Trans-
form (CFT) [35], 120 distinguishing points (d) are chosen for each
signature and matching for transformed signatures is performed
using DTW. It turns out that when DPT and CFT are used in place of
AH, the verification accuracy is severely degraded.

7. Discussion

There are a plethora of biometric verification schemes used in
industry. We specifically focus on the security of handwritten

signatures because they are widely acceptable, easily revocable and
are now more suitable than ever due to the increasing availability of
touch screen (or stylus) based computing devices. However, it turns
out that there are very few industrial methods which provide
mechanisms for securing biometric templates of handwritten signa-
tures. In the following discussion, we outline some industrial solutions
and provide a comparison with our scheme:

1. American Health Information Management Association
(AHIMA) outlines the use of online hand-written signatures
but does not give any hint about whether and how the
biometric template security will be ensured. Rather they
recommend cryptographic signature (a digital/electronic key)
as a good alternative to handwritten signature due to its
security strength [2].

2. Malik et al. [36] report an industrial solution to the problem of
on-line signature verification using Anoto digital pen. Their
approach extracts a number of features and employ GMM for
classification. The signature templates in the form of GMM
descriptions are stored on the electronic cards and thus provide
secure storage. However, at the test time a genuine signature is
directly used for comparison and is thus vulnerable to attacks.
Moreover, their approach is not robust to birthday attacks
where they can reach to similar GMM descriptions (esp. when
the number of Gaussians is low) with different feature values.

3. WonderNet [43] is an online service which enables users to
sign documents using handwritten signatures. However, no
mechanism to secure biometric templates is mentioned.

4. Right Signature [40] is another signature service which is
integrated with EverNote to digitally sign documents. Because,
they focus on authenticating documents and not on verifying
users based on their signatures, no template level security is
provided. They use standard cryptographic techniques such as
256 bit EV SSL encryption. Note that we want to do signature
level matching for which standard encryption techniques are
not suitable because they do not retain intra-person variations
(Section 1). Other similar services available include DocuSign
[39], Silanis e-Signatures [41]. However, none of them provide
template level security for handwritten signatures.

5. SOFTPRO [42] provides a signature verification service based on
DTW, which is similar to local feature matching part of our
verification framework. However, they also do not mention any
security measure to protect biometric data against any possible
data leak.

6. A recent system [53] uses simple dynamical features of on-line
signatures and handwriting for verification purposes. But again, no
security measures are discussed to protect signature templates.

In comparison to the above-mentioned methods, our approach
provides template-level security for handwritten signatures and
proposes a verification scheme to validate query biometrics in the
transformed domain. Regarding the authentication set-up, our
approach can be used to validate personal cards (e.g. smart cards)
that provide crucial functions (e.g. financial transactions) or carry data
worthy of protection (e.g. private medical data). The transformed
genuine biometric template will be stored on the card to ensure
security. Note that such biometric information is already in use (e.g.,
Spanish police uses handwritten signature biometrics stored on
National ID cards to verify person's identity; Henniger and Miiller
[18] report extensive real life card matching experiments using hand-
written signatures). However unlike our approach, the stored bio-
metric templates are not secured and an attacker can recover original
signature from stored features.

Finally, our approach is also perfectly suitable to be deployed as
a software based service (SaaS) on cloud. In this way, enterprises
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Fig. 8. ROC results for the SVC'04, SUSIG'07 and SigComp'11 datasets. (a) Using KRP (SVC), (b) using KRP (SUSig), (c) using KRP (SigComp), (d) using KRP-AH (SVC), (e) using

KRP-AH (SUSig) and (f) using KRP-AH (SigComp).

Table 4
Comparison of verification accuracy on SVC 2004 dataset when different transfor-
mation functions are used.

Transform KRP KRP-AH KRP-DPT [13] KRP-CFT [35]
k=30 k=30 d=120 w=3
EER (%) 3.40 484 18.99 1523

will be able to store and authenticate private data of their clients
in a secure manner.

8. Conclusion

In this paper, we have presented a secure and efficient framework
that employs a novel scheme comprising random projections of
biometric data (inherence factor) using secure keys derived from
passwords (knowledge factor) to generate inherently secure, efficient
and revocable/renewable biometric templates for user verification. We
have discussed the security strength of the framework against possible

attacks. We perform a case study of the proposed framework in a TFA
setup using user provided passwords and dynamic handwritten
signatures. Unlike the traditional feature transformation techniques,
our system preserves the important biometric information even when
the user specific password is compromised. We have evaluated the
performance of the framework over three publicly available signature
datasets. The results show that our proposed framework does not
significantly undermine the discriminating features of genuine and
forged signatures.
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