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Abstract

Local Binary Patterns (LBP) have been used in a wide range of texture clas-

sification scenarios and have proven to provide a highly discriminative feature

representation. A major limitation of LBP is its sensitivity to affine transfor-

mations. In this work, we present a scale- and rotation-invariant computation

of LBP. Rotation-invariance is achieved by explicit alignment of features at the

extraction level, using a robust estimate of global orientation. Scale-adapted fea-

tures are computed in reference to the estimated scale of an image, based on the

distribution of scale normalized Laplacian responses in a scale-space represen-

tation. Intrinsic-scale-adaption is performed to compute features, independent

of the intrinsic texture scale, leading to a significantly increased discriminative

power for a large amount of texture classes. In a final step, the rotation- and

scale-invariant features are combined in a multi-resolution representation, which

improves the classification accuracy in texture classification scenarios with scal-

ing and rotation significantly.

Keywords: LBP, texture, classification, scale, adaptive, rotation, invariant,

scale-space

∗Corresponding Author; Full-Address: Department of Computer Sciences, University of
Salzburg, Jakob-Haringer Strasse 2, 5020 Salzburg, Austria; Tel.: (0043) 662 8044-6305, Fax:
(0043) 662 8044-172.

Email addresses: shegen@cosy.sbg.ac.at (Sebastian Hegenbart), uhl@cosy.sbg.ac.at
(Andreas Uhl)

Preprint submitted to Journal of Pattern Recognition February 27, 2015



1. Introduction

A major challenge in texture classification is dealing with varying camera-scales

and orientations. As a result, research focused on scale- and rotation-invariant

feature representations has been a hot topic in the last years. Feature extraction

methods providing such invariant representations, allow to be categorized into5

four conceptually different categories.

In a theoretically elegant approach, methods of the first category transform

the problem of representing features in a scale- and rotation-invariant manner

in the image domain, to a possibly easier, but equivalently invariant repre-

sentation in a suitable transform domain. Pun et al. [1] utilize the Log-Polar10

transform to convert scaling and rotation into translation, scale- and rotation-

invariant features are then computed using the shift invariant Dual-Tree Com-

plex Wavelet Transform (DT-CWT [2]). Jafari-Khouzani et al. [3] propose a

rotation-invariant feature descriptor based on the combination of a Radon trans-

form with the Wavelet transform. A general drawback of this class of methods15

is, that scaling can only be compensated at dyadic steps. As an improvement,

Lo et al. [4]use a Double-Dyadic DT-CWT combined with a Discrete Fourier

Transform (DFT) to construct scale-invariant feature descriptors at sub-dyadic

scales. The periodicity of the DFT is also exploited by Riaz et al. [5] to compute

scale-invariant features by compensating the shifts in accumulated Gabor filter20

responses.

In a more pragmatic approach, methods of the second category achieve scale-

and rotation-invariance either explicitly, by a re-arrangement of feature vectors,

or implicitly, by selection of suitable transform sub-bands. In general, meth-

ods in this class also rely on some sort of image transformation. Lo et al. [6]25

(using the DT-CWT), Montoya-Zegarra et al. [7] (using the Steerable Pyramid

Transform) as well as Han et al. [8] and Fung et al. [9] (both relying on Gabor

filters responses) are representative approaches of this category. In parallel to

the first concept, methods of this class are often limited in the accuracy and

amount of compensable scaling and rotation by the nature of the used image30
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transformation.

The obvious, but potentially most devious category, is based on a feature

representation with inherent scale- and rotation-invariance. The fractal dimen-

sion [10] as measure for the change in texture detail across the scale dimension,

is a promising candidate for such a representation. Geometric invariant feature35

representations based on the temporal series of outputs of pulse coupled neural

networks (PCNN) have been used by Ma et al. [11] and Zhan et al. [12]. As a

consequence of the inherent scale- and rotation-invariance however, this type of

features is likely to have a decreased discriminative power as compared to other

feature representations and often requires a generative, model based approach,40

such as Bag-Of-Words, to be competitive.

The fourth and last category of methods utilizes estimated texture prop-

erties to adaptively compute features with the desired invariants. Xu and

Chen [13] use geometrical and topological attributes of regions, identified by

applying a series of flexible threshold planes. Another large set of methods45

is based on the response of interest point detectors, such as the Laplacian of

Gaussian (LoG, Lindeberg [14]), the Harris-Laplace detector (Mikolajczyk et

al. [15]), Difference of Gaussian (DoG, SIFT [16]), Determinant of Hessian (DoH,

SURF [17]) or Wavelet modulus maxima (SIFER [18]) to construct invariant fea-

tures. Lazebnik et al. [19] apply affine normalization, based on the estimation50

of local shape and scale at detected interest points, to compute affine invariant

features. Hegenbart et al. [20] compute LBP in an affine-adapted neighborhood

while Li et al. [21] rely on local responses of the LoG to build a scale-invariant

LBP representation. Due to the sparse output of interest point detectors and

the stability of selected regions, a feature representation derived from interest55

points, might not be appropriate for all texture classification scenarios however.

Even more, the intrinsic-scale of a large number of textures is inappropriate for

a directly adapted computation of discriminative features, due to unsuitably

large or small scales. As a consequence, the SIFT, SURF and SIFER features

descriptors are primarily used for tasks in computer vision apart from texture60

classification. A variation of these methods without scale-selection, based on
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local descriptors, computed at a dense grid, is generally used for computing

features for the classification of textures.

In this work, we present a methodology which combines ideas from the sec-

ond (alignment of features) and the last category (scale-adaption) to construct65

a scale- and rotation-invariant LBP feature representation. The method inte-

grates seamlessly into the general computation of LBP, providing a high angular

resolution with a fine grained compensation of scaling. Rotation-invariance is

achieved by explicit alignment of features at the extraction level, based on a

robust global estimate of orientation, using information provided by multi-scale70

second moment matrices [22]. The distribution of scale normalized Laplacian re-

sponses, in a scale-space representation of an image, allows a reliable estimation

of the global image scale, which is used for a scale-adaptive feature computation.

Based on the estimation of the global scale, intrinsic-scale-adaption is applied

to compute features independent of the intrinsic texture scale. This assures75

the use of suitable LBP-radii, increasing the discriminative power of the feature

representation significantly for a large amount of texture classes. In a final step,

the rotation- and scale-invariant features are combined in a multi-resolution

representation to further improve the discriminative power.

1.1. Limitations of LBP with Image Scaling and Rotation80

The Local Binary Pattern method [23] represents textures as the joint distribu-

tion of underlying micro structures, modeled via intensity differences in a pixel

neighborhood. Such a neighborhood is defined in relation to a center pixel at

position (x, y) as a tuple of n equidistant points on a circle with a fixed radius

r. The position of neighbor number k is computed as85

ηr,n(k;x, y) =

⎛
⎝x+ r cos

(
2πk
n

)
y − r sin

(
2πk
n

)
⎞
⎠

T

.

(1)

A weighted sum, representing the pixel neighborhood, is computed and inter-

preted as binary label, based on a sign function sg(x) mapping to 1 if x ≥ 0
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and 0 else. For a position (x, y) in an image, the standard LBP, based on n

neighbors and radius r is computed as

LBPr,n(x, y) =

n−1∑
k=0

2k sg
(
I
(
ηr,n(k;x, y)

)− I(x, y)
)
. (2)

Finally, the distribution of patterns is represented by a histogram, which is then90

used, in conjunction with a meaningful distance function, as an LBP feature.

The LBP feature representation has been used in a wide range of texture

classification scenarios and has proven to be highly discriminative. A restriction

of LBP however, is its sensitivity to affine transformations. As a consequence of

the fixed-scale radius and the fixed sampling area dimension of the pixel neigh-95

borhood, the locally computed patterns implicitly encode the underlying micro

structures of a texture at a scale directly related to the camera-scale of an image.

As a result, the LBP feature representation is unable to compensate for differ-

ent camera-scales. Even more, a rotation of an image is reflected as a circular

shift in the individual patterns, which affects the distribution of patterns in a100

non-linear fashion. As a consequence, the standard LBP feature representation

requires either an implicit or explicit alignment of patterns, which is generally

done at the encoding level, to compensate for image rotations.

A widely used rotation-invariant encoding of LBP is based on the work of

Ojala and Mäenpää [24]. The authors construct a rotation-invariant represen-105

tation at the encoding level by implicit alignment of patterns, representing each

individual pattern as the minimal decimal interpretation of all possible bitwise

circular shifts of that specific pattern. A major limitation of encoding level

based approaches is the highly limited angular resolution. As a consequence,

Ojala et al. [24] suggest to combine their rotation-invariant encoding with uni-110

form LBP. This combination however, leads to an even smaller number of in-

dividual patterns and a possibly decreased discriminative power of the feature

representation. In the same work, the authors propose a multi-resolution rep-

resentation, which improves the discriminative power of the features, by adding

the capability of describing underlying micro structures at multiple scales. The115
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multi-resolution representation however lacks a scale-selection mechanism and

is therefore unable to compensate for image scaling.

Li et al. [21] were the first to compute scale-adapted LBP, based on the

estimation of local texture scale. The authors use a direct mapping from the

estimated local texture scale (in terms of the scale-space) to compute scale-120

adapted LBP-radii. Rotation-invariance is achieved, based on the methodology

proposed by Guo et al. [25], estimating a global orientation on the basis of the

computed LBP distribution and using bit alignment on a sub-uniform basis. Un-

fortunately, using the estimated local image scale as LBP-radius, significantly

reduces the reliability of the method. This is a result of computing the fea-125

tures in dependence of the intrinsic texture scale, which is inappropriate for a

large number of texture classes (in particular natural textures), due to either

very large LBP-radii (low discriminative power) or very tiny LBP-radii (limited

possibility of scale-adaption).

The proposed scale- and orientation-adaptive (SOA)-LBP, based on prior130

work [26, 27], addresses these limitations. The low angular resolution of encod-

ing level based rotation-invariant representations, is significantly improved by

alignment of patterns at the extraction level, using a robust estimate of global

texture orientation. The reliability of the feature representation is greatly en-

hanced by the means of intrinsic-scale-adaption, allowing the computation of135

highly discriminative features, independent of a texture’s intrinsic-scale.

2. Scale-Adaptive Local Binary Patterns

We compute a scale-invariant representation of LBP by appropriate selection of

LBP-radii (Section 2.2), based on a global estimate for image scale (Section 2.1).

To compensate for the changed spatial extent of image structures due to scaling,140

we perform Gaussian low-pass filtering in reference to the corresponding scale-

adapted LBP-radius, to sample neighbors at the correct scale (Section 2.3).
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2.1. Estimation of the Global Image Scale

We estimate the global scale of an image utilizing the distribution of scale-

normalized Laplacian responses in scale-space. Let f : R
2 �→ R represent a145

continuous signal, then the scale-space representation, parametrized in terms of

the standard deviation of the Gaussian, L : R2 × R+ �→ R is defined by

L(·;σ) = g(·;σ) ∗ f, (3)

with initial condition L(·; 0) = f . We denote σ ∈ R+ as the scale parameter (the

standard deviation of the Gaussian function g) and “∗“ represents a convolution

operation. The scale-space family L is the solution to the diffusion equation150

∂σL = σ

(
∂2L

∂x2
+

∂2L

∂y2

)
= σ�L. (4)

We construct the scale-space using an exponential spacing of scales σi = c
√
2
ki
, ki ∈

{−4,−3.75, . . . , 7.75, 8} and c = 2.1214. The value of c acts as a scaling fac-

tor and was initially chosen such that the center scale of the representation

corresponds to the LBP-radius 3. We later added a set of larger scales to

accommodate for the large intrinsic-scales of natural textures. By using an155

exponential spacing, we provide a fine grained estimation at small scales and

still cover a considerable amount of large scales. Note, that as a result of the

Gaussian filtering for computing suitable sampling support areas, estimation

errors at large scales are not as significant as errors at small scales. The used

scale-space parametrization provides a solid foundation for estimating scales in160

a large number of scenarios. A parametrization specifically optimized for a given

problem could potentially improve the accuracy in some cases however.

As a consequence of the sparse output of interest point detectors, scale esti-

mation based on such scale-space extrema has shown to be unreliable for a large

number texture classes. Figure 1 illustrates this by comparing the response dis-165

tribution of scale-space extrema with the proposed scale estimation function ξ.

It can be observed, that the sparse nature of interest points significantly limits

the reliability of the scale estimation.

7



We therefore use the distribution of the responses of scale-normalized Lapla-

cians in the scale-space representation of an image I, (σ2 |�L(·;σ)|, denoted as170

�I(·;σ)), computed at all scales in the scale-space, to estimate a global image

scale. The scale estimation function ξ is

ξ(σi) =
∑
z

�I(z;σi), (5)

for z ∈ R
2 corresponding to a Cartesian coordinate on the pixel grid and σi

denoting a specific scale-level in the scale-space. To determine the global scale

of an image, the first local maximum of ξ is searched, which is then used as seed175

point for a least-squares Gaussian fit. By using the first local maximum we are

capable of consistently estimating the scale of textures exhibiting more than a

single dominant global scale. The quality of the estimation is improved by using

only data points within a certain offset from the seed point. We use 10 percent

of the number of scale-levels in the scale-space as positive and negative offset180

from the estimated first local maximum to fit the Gaussian function. This value

was found during development of the method and has proven to be very stable

for various image datasets. The mean value s̃ of the fitted Gaussian function

is interpreted as the dominant level in scale-space. The standard deviation u

of the fitted Gaussian is used as uncertainty of the estimation. For a given185

dominant scale-level in scale-space s̃i, the spatial scale si corresponds to the

scale parameter σi in L(·;σi) (the extent of a spatial structure at scale si is

Scale-Level

Response of
Distribution of Interest Points

Scale-Level Scale-Level

Figure 1: Normalized Response of ξ Compared to the Normalized Response Distribution of

Scale-Space Extrema.
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Figure 2: Estimated Scales-Levels s̃ with Uncertainty u for a Texture at Three Camera-Scales.

σi

√
2). Figure 2 illustrates the determination of a global scale by fitting a

Gaussian function (dashed red line) to the scale estimation response function ξ

(solid blue line).190

The scale estimation method is reliable for the majority of evaluated images

but fails completely for a small fraction (approximately 3%). We identify a failed

scale estimation by evaluating the uncertainty u. In our implementation, the

scale estimation is considered as failed if u, normalized by the number of scale-

levels, is greater than a certain threshold t. In such a case, scale-adapted radii195

can not be computed reliably. We therefore fall back to a default, computing

the standard LBP with a fixed radius. The value of t was chosen as 20
n for n

scale-levels (in our case t = 0.4082). The specific value for the threshold was

found during development and was consequently used across all experiments in

this work. Multiple experimental results suggest that this threshold is robust200

and should generalize well for a large set of different scenarios.

We evaluated the accuracy of the scale estimation for computing scale-

adapted LBP-radii, by estimating the global scale of all images in the KTH-

TIPS and Kylberg image sets (see Section 5.1) at all 9 scales. Images at the

default training scale (20) were then used as reference for computing the relative205

error of scale-adapted LBP-radii compared to the theoretically optimally scale-

adapted radius. Figure 3 presents the relative error (in percent) of scale-adapted
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LBP-radii, compared to the error of a fixed-scale LBP radius.

The results show, that the relative errors of scale-adapted LBP-radii are sig-

nificantly smaller as compared to the fixed-scale LBP-radius. This indicates that210

the computation of scale-adapted patterns should improve the scale-invariance

of the feature representation. Please note the general asymmetry of the relative

error, which can be observed for the fixed-scale LBP radii.

2.2. Intrinsic-Scale-Adaption of the LBP-Radius

The visualized scale of an image in the pixel domain is a function of the camera-215

scale, which is dependent on intrinsic- and extrinsic-camera parameters such as

the focal length, the camera-distance, the image sensor dimensions and res-

olution, as well as the intrinsic-scale of the texture. The intrinsic-scale of a

texture can be interpreted as the spatial extent of it’s dominant structures.

The estimation of the intrinsic-scale is only possible with full knowledge of all220

camera-parameters. Responses of the scale-normalized LoG attain a maximum

if its zeros are aligned with a circular shaped image structure. As a consequence,

scales estimated based on the LoG, correlate strongly with the visualized scale

of the dominant circular shaped structures of a texture. The estimated scale

of a texture (using our approach) is therefore highly related to the underlying225

intrinsic-scale.

Considering that the spatial extent of a circular structure is determined by

2−1.0 2−0.75 2−0.5 2−0.25 20.25 20.5 20.75 21.0

Relative Scale Difference

0

20

40

60

80

100
Standard LBP

KTH-TIPS

2−1.0 2−0.75 2−0.5 2−0.25 20.25 20.5 20.75 21.0

Relative Scale Difference

0

20

40

60

80

100
Standard LBP

Kylberg

Figure 3: Relative Error (in Percent) of Scale-Adapted LBP-Radii.
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Indiscriminate Scale-Adapted LBP Radii

Figure 4: Impact of Intrinsic-Scales on Scale-Adapted LBP-Radii.

it’s diameter, we model the visualized scale of an object using a two dimensional

pinhole camera model. For an object with intrinsic-scale ι at distance u to the

lens, the scale of the visualized object on the image sensor of a camera with230

focal length f is given as

s =
ιf

u
(6)

The effective scale of the visualized object in pixels is only dependent on the

image sensor format and resolution, which are intrinsic camera-parameters.

An entire category of methods utilizing local texture properties to compute

adapted, invariant features (such as Affine Invariant Regions [19] or Li-LBP [21])235

are affected negatively by the large variety of intrinsic-scales across texture

classes. This is a consequence of using the estimated scale (as combination

of the intrinsic- and camera-scale) directly to compute adapted features. Due

to unsuitably large or tiny intrinsic-scales for a considerable amount of tex-

ture classes, the estimated scales are likely to be inappropriate for computing240

scale-adapted features. Figure 4 illustrates how inappropriate intrinsic-scales

potentially lead to indiscriminative (too large) LBP-radii after scale-adaption.

In this work, we propose a method to compute scale-adaptive LBP at suitable

and highly discriminative scales by the means of intrinsic-scale-adaption, which

allows scale-adaption based on the camera-scale without actual knowledge of the245

intrinsic-scale. Considering the quotient of two estimated image scales, either

the intrinsic-scales cancel each other out (the images are from the same texture
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class, hence ι1 ≈ ι2 = ι)

s1
s2

=
ιf

u1

u2

ιf
≈ u2

u1
(7)

and the quotient is therefore in terms of the camera-scale, or the intrinsic-scales

do not match (images are from different texture classes) and the quotient is250

basically random. By explicit computation of scale-adapted patterns, based

on the quotient between the estimated scale of an image and a trained-base-

scale, we are able to adapt for unsuitable intrinsic-scales implicitly. Note that

this approach assumes that the used cameras have comparable focal lengths,

sensor formats and resolutions and the intrinsic-scales within texture classes255

have moderate variance.

A trained-base-scale, acting as reference for the computation of intrinsic-

scale-adapted patterns, is assigned to each texture class in the training data.

In particular, we estimate the scales of each image in the training data and use

the median of all estimated scales within a texture class as the trained-base-260

scale of that class. The scale-adapted LBP-radius used for an image with an

estimated scale s, in reference to the trained-base-scale s̄l of texture class l, is

then computed as

λ(s, l, ρ) = ρ
s

s̄l
. (8)

We define ρ (referred to as base-radius) as the LBP-radius used at the trained-

base-scale s̄l. As a trade-off between discriminative power of the representation265

and the ability of adapting to a large variety of camera-scales, we set ρ = 3

as default. This allows for highly discriminative patterns in the case of small

relative scale differences and allows to compensate scale differences of up to a

factor of 3. Note the linearity of λ as a necessary property for scale-invariance.

By computing LBP-radii as a function of the quotient of the estimated image270

scale and a trained-base-scale, the scale-adaptive representation is independent

of the intrinsic-scale of the texture. As a consequence, highly discriminative

features at suitable LBP-radii can be computed for a much larger set of texture
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classes.

Our experiments have shown that scale-adapted LBP computed in refer-275

ence to a wrong trained-base-scale (the wrong texture class), exhibit appropri-

ately the same intra-class variability as compared to the inter-class variability of

features computed at matching trained-base-scales (the correct texture class).

This is a direct result of the basically random LBP-radii used to compute scale-

adapted patterns in such a case. As a consequence, we distinguish between the280

computation of training features and evaluation features.

The correct class is obviously known for images in the training data as part

of the available ground-truth. We therefore compute training features only in

relation to the trained-base-scale of the class of each specific image. Concerning

images for evaluation, the class labels are unknown. In this case, features are285

computed in reference to each texture class, with the corresponding trained-

base-scale. During classification, only features computed in reference to the

same trained-base-scale are compared (see Section 4).

By using this approach we assure, that features for training will be computed

at suitable discriminative scales, close to the base-radius ρ for a majority of290

images in the training data. Features for evaluation, computed in reference

to the correct trained-base-scale (the same class), benefit from intrinsic-scale-

adaption, while evaluation features computed in reference to the trained-base-

scale of a different texture class are uninformative due to inappropriate (random)

LBP-radii and are insignificant for a later classification.295

2.3. Adaptive Sampling Support Area Dimension

Scaling of an image changes the spatial extent of textural structures. Therefore

the number of pixels covering structural information changes as well. As a

consequence, the size of the sampling support area in the LBP neighborhood has

to be adapted accordingly. By applying a Gaussian filter, each pixel in the image300

implicitly encodes information about a circular neighborhood of appropriate

spatial scale. The radius of the Gaussian filter for a texture at estimated scale

13



s in relation to a texture class l using base-radius ρ is computed as

gr =
λ(s, l, ρ)π

n
, (9)

for n defining the number of LBP-neighbors. The Gaussian filter coefficients

are then computed such that P percent of the mass of the Gaussian function is305

covered within the interval [−gr; gr] (the kernel is truncated outside the interval

limits)

∫ gr

−gr

e
− x2

2σg2 dx = P

∫ ∞

−∞
e
− x2

2σg2 dx

2

∫ gr

0

e
− x2

2σg2 dx = Pσg

√
2π

σg =
gr√

2erf−1(P )
. (10)

We chose P to be 0.99 which corresponds to 99% of the mass of the Gaussian

function, a value that proved to be robust in a large number of classification

scenarios. As the sampling of a Gaussian function with very few sampling310

points potentially leads to a significant error, we use the error function (erf)

using a numerical approach based on Abramowitz and Stegun [28] to improve

the stability of sampling the one dimensional Gaussian filters centered at 0

G(x;σg) =
−erf

(
x−0.5
σg

)
− erf

(
x+0.5
σg

)
2

, (11)

which are then used in a separable convolution with the analyzed image.

2.4. Computation of Scale-Adapted Local Binary Patterns315

The position of LBP-neighbor k, in a scale-adapted computation, in reference

to texture class l and an estimated global image scale s, using base-radius ρ

with n neighbors is computed as

ηρ,nl,s (k;x, y) =

⎛
⎝x+ λ(s, l, ρ) cos

(
2πk
n

)
y − λ(s, l, ρ) sin

(
2πk
n

)
⎞
⎠

T

.

(12)
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A Gaussian filter G with the appropriate standard deviation σg (see Equa-

tion 10) is used to sample neighbors at the correctly adapted spatial scale. Fi-320

nally, the scale-adapted LBP is computed at position (x, y) with neighborhood

ηρ,nl,s based on the convolution of image I with G, (Ig = I ∗G), as

SA-LBPρ,n
l,s (x, y) =

n−1∑
k=0

2k sg
(
Ig
(
ηρ,nl,s (k;x, y)

)− Ig(x, y)
)
. (13)

The histogram of patterns computed in reference to the trained-base-scale of

texture class l is denoted as Hl and added to the SOA-LBP meta-descriptor of

the specific image (see Section 4).325

3. Orientation-Adaptive LBP

To compensate for the non-linear changes of the LBP distribution caused by a

rotation of an image, an explicit or implicit alignment of patterns is required.

This is generally performed at the encoding level, leading to a low angular reso-

lution. To improve the angular resolution, we perform pattern alignment at the330

extraction level, which integrates naturally with the scale-adaptive computation

of LBP and is based on an estimate of global image orientation.

3.1. Estimation of the Global Image Orientation

A main requirement on the orientation estimation in the context of scale-

adaptive LBP, is robustness to varying image scales. We therefore utilize multi-335

scale second-moment-matrices (SMM [22]), computed at the global scale of an

image, to estimate a global image orientation. The SMM summarizes the pre-

dominant directions of the gradient in a specific area of an image. In contrast

to the single-scale SMM, the multi-scale SMM is defined over two scale parame-

ters, the local scale σi as well as the integration scale i. This allows to estimate340

the shape of visual structures at appropriate scales, as detected by the scale-

estimation algorithm. The integration scale parameter is chosen in relation to

the local scale (we use i =
√
2σi). The local scale parameter is selected as
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Figure 5: Estimated Orientations for a Texture at Three Orientations.

the global scale of the image, using the method described in Section 2.1. The

multi-scale SMM of an image at location z ∈ R
2 is then computed as345

μ(z;σi, i) =

∫
ξ∈R2

(∇I) (z − ξ;σi) (∇I)
T
(z − ξ;σi) g(ξ; i) dξ. (14)

We denote (∇I) (z;σi) as the gradient of the scale-space representation of image

I at scale σi and position z. An important property of SMMs in general, is posi-

tive definiteness. The two (non-negative) eigenvalues of an SMM, correspond to

the length of the axes of an ellipse (up to some constant factor). The orientation

of the eigenvectors correspond to the orientation of the dominant gradient and350

the orientation perpendicular to the dominant gradient respectively.

To estimate the global orientation of an image I, we compute multi-scale

SMMs at a dense grid, corresponding to pixel locations z ∈ R
2. The orientation

at a specific location is determined as the angle between the major axis of the

ellipse and the vertical axis of the coordinate system (the axes of the image).355

Due to the ambiguous orientation of the ellipse, we treat all angles modulus π.

Hence, the estimated orientation is unambiguous in [0;π]. We then estimate the

global orientation of an image, based on the distribution of local orientations,

computed at all coordinates of the sampled grid.

In parallel to the scale estimation method described in Section 2.1, this is360
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Figure 6: Absolute Errors (in Degrees) of the Orientation Estimation.

done by fitting a Gaussian function to the distribution of local orientations

in a least-squares optimization. To improve the accuracy of the estimation, we

remove data points with an offset greater than±15 degrees (a robust, empirically

found value, that was used successfully on various datasets) from the maximum

of the distribution, prior to the fitting process. Finally, the average value of365

the Gaussian is interpreted as the global orientation, which is used to align the

sampling points of the orientation-adaptive LBP.

Figure 5 illustrates the determination of the global orientation from the local

orientation distribution. The dashed red line represents the Gaussian function

fitted to the distributions of local orientations (solid blue line) of an image at370

three different orientations. The numbers centered at each figure present the

estimated global orientation of each image.

To evaluate the accuracy of the orientation estimation method, we computed

the absolute error of the estimated orientations (Figure 6) between a reference

image at the default training scale (20) and the same image at a different scale375

and random rotation between 30 and 330 degrees in steps of 30 degrees. The

error was evaluated from 891 (81*11) random samples at 8 relative scales using

the KTH-TIPS as well as the Kylberg image sets (see Section 5.1).

The results indicate that the orientation estimation method is robust in re-

spect of image scaling. We see across all scales, that the medians of the absolute380
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Figure 7: Orientation Estimation Error Compensation using Accumulated Pattern Distribu-

tions.

errors are within a range of 5 to 10 degrees. Experiments have shown that the

standard multi-resolution LBP representation can compensate alignment differ-

ences of up to 10 degrees, but fails for orientation differences above. In order

to improve the orientation-adaptive representation we apply an error compen-

sation technique based on the accumulation of LBP distributions at multiple385

orientations.

3.2. Orientation Estimation Error Compensation

We found, that a distribution of LBP with a small amount of misaligned pat-

terns (a systematic error) will be dominated by the majority of correctly aligned

patterns. As a consequence, we accumulate the distribution of LBP based on390

multiple orientations within an interval of ±Δo = 20 degrees of the estimated

global orientation o. Experiments show, that by using this approach an esti-

mated error of up to 20 degrees can be compensated without a significant loss

of discriminative power of the feature representation. Figure 7 illustrates this

error compensation technique.395

To improve the reliability of this scheme, we use thresholding to avoid heavy

fluctuation of bits due do interpolation artifacts. The modified sign function

sg(x) used in computing the individual patterns therefore requires x ≥ T to

map to 1. The value of T is selected adaptively based on the Gaussian filtered

image Ig , to accommodate for the adapted image properties, as the square root400

of the standard deviation of all pixel values in Ig.
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3.3. Computation of Orientation- and Scale-Adaptive LBP (SOA-LBP)

To compute SOA-LBP in reference to a texture class l, estimated global image

scale s, global orientation o, base-radius ρ and n neighbors, the position of

neighbor k is adapted as405

ηρ,nl,s,o(k;x, y) =

⎛
⎝x+ λ(s, l, ρ) cos

(
o+ 2πk

n

)
y − λ(s, l, ρ) sin

(
o+ 2πk

n

)
⎞
⎠

T

.

(15)

The actual computation of LBP then follows the scheme of the scale-adaptive

LBP as depicted in Section 2.4. To accommodate for the ambiguous orientation

of multi-scale SMMs, we compute two patterns with initial sample positions

at o and o + π respectively. Figure 8 illustrates the computation of scale- and

orientation-adaptive LBP schematically. The red sampling points indicate the410

initial sample positions.

4. SOA-LBP in a Multi-Resolution Feature Representation

The computation of multiple LBP-features (histograms) per image, each in ref-

erence to an individual trained-base-scale, requires the construction of a meta-

feature-representation for classification. We abstract the set of computed LBP-415

features per image as a single SOA-LBPmeta-descriptor and define a meaningful
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distance function between a pair of such descriptors. A meaningful distance ex-

ists only between LBP-features computed in reference to the same trained-base-

scale. As a consequence, we define the distance between LBP-features computed

at different trained-base-scales as ∞. Experimentation has shown, that LBP-420

features computed at incorrectly adapted scales generally yield a significantly

higher intra-class variability as compared to LBP-features computed at correctly

adapted scales. The distance between two meta-descriptors is therefore defined

as the minimum distance between all pairs of LBP-features abstracted by the

descriptors. For two SOA-LBP meta-descriptors M1 and M2, both representing425

a set of LBP-features, each computed individually in reference to a texture class

in the training data {H1, . . . , Hn}, the distance is defined as

D(M1,M2) = min{d(Hl, Hk) | Hl ∈ M1 ∧Hk ∈ M2}, (16)

with

d(Hl, Hk) =

⎧⎪⎪⎨
⎪⎪⎩
1−

N∑
i=1

min
(
Hl(i), Hk(i)

)
, if l = k

∞, if l 
= k.

(17)

In our implementation the histogram-intersection is used as a measure for sim-

ilarity. A notable drawback of using the meta-descriptor abstraction is, that430

it does not easily integrate with all classification methodologies. We therefore

restrict the experimentation in this work to a classification method that allows

for a straight forward integration (a standard k-nearest neighbors classifier).

Ojala and Mäenpää [24] suggest to compute multiple LBP-features, each at

separate fixed LBP-radii, to improve the discriminative power of the feature435

representation. Multi-resolution LBP-features are then created from a set of

standard LBP-features by concatenation.

We combine the rotation- and scale-invariant SOA-LBP in a multi-resolution

feature representation, to improve the general discriminative power, by reduc-

ing the required amount of low-pass filtering for adapting the sampling area440

and adding the capability of describing underlying micro structures at multiple

scales.
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Algorithm 1: Selection of Valid Multi-Resolution Feature Subsets.

Data: Let H1
l and H2

l be the sets of multi-resolution LBP-features
(histograms) computed in reference to texture class l at the base-radii
ρ = {ρ1, ρ2, ρ3} for two images with estimated scales s1 and s2.

H1
l = {h1

l,ρ1
, h1

l,ρ2
, h1

l,ρ3
} and H2

l = {h2
l,ρ1

, h2
l,ρ2

, h2
l,ρ3

}
Result: Valid subsets V1,V2 of features from H1

l and H2
l .

V1 = H1
l and V2 = H2

l

foreach ρi ∈ ρ do
r1 = λ(s1, l, ρi) // intrinsic-scale-adapted LBP-radius of h1

l,ρi

r2 = λ(s2, l, ρi) // intrinsic-scale-adapted LBP-radius of h2
l,ρi

if min(r1, r2) < 1 or
max(r1, r2) > 5.44 or
max(r1, r2) /min(r1, r2) > 3 then

V1 = V1 \ h1
l,ρi

V2 = V2 \ h2
l,ρi

end

end

Experimental results on various image texture sets suggest, that the discrim-

inative power of the multi-scale LBP representation starts to decrease at scales

larger than LBP-scale 3 (this corresponds to a radius larger than 5.44 pixels).445

We therefore consider radii within the interval [1; 5.44] to be the most discrimi-

native. To compute scale-adaptive patterns at multiple resolutions, we use a set

of distinct base-radii for intrinsic-scale adaption ρ = {ρ1, ρ2, ρ3} = {1.5, 3, 4.5},
instead of relying on a single base-radius. Hence, a multi-resolution SOA-

LBP representation computed in reference to texture class l consists of the450

set of SOA-LBP-features computed at each of the base-radii and is denoted as

Hl = {hl,ρ1 , hl,ρ2 , hl,ρ3}.
The specific values for the base radii were chosen to guarantee a high discrim-

inative feature representation for texture image at small scale differences and

a minimum amount of required low-pass filtering during scale-adaption for tex-455

tures at larger scale differences. The values were chosen to augment the default

base-radius of 3 in equal steps within the interval of the most discriminative

radii.
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Considering the small radius ρ1 = 1.5 as well as the large radius ρ3 = 4.5 it

is likely that either the lower- or the upper-bound on discriminative LBP-radii460

is violated for a considerable amount of images, which effectively reduces the

discriminative power of the multi-resolution representation. We therefore adap-

tively select the best subset of SOA-LBP-features for constructing the multi-

resolution representation during each computation of the distance between two

SOA-LBP meta-descriptors (see Algorithm 1).465

Once the best subset of SOA-LBP-features is identified for a pair of meta-

descriptors, the final multi-resolution representation is constructed by simple

concatenation of the normalized histograms. Note, that as a consequence of

considerably different intrinsic-scales, or a failed scale estimation, the possibility

of V1 = V2 = ∅ exists. In such a case, it is likely that the two SOA-LBP-470

features represent different texture classes. We consider such a pair of features

as incomparable in a scale-adaptive sense and define the distance as ∞.

5. Experiments

We evaluate the proposed SOA-LBP in reference to a set of scale- and orientation-

invariant methods, representative for all categories discussed in Section 1. To475

assess the reliability of the intrinsic-scale-adaption for a large number of tex-

tures, we rely on three different images sets for experimentation. We specifi-

cally study the scale-invariance properties (Section 5.4) as well as the effects

of combined scaling and rotation (Section 5.5). We finally present a runtime

performance analysis of the SOA-LBP (Section 5.6) in relation to the compared480

methods.

5.1. Image Data

We perform the experimentation on three image sets with appropriate character-

istics. Table 1 summarizes the most important information about the used data.

485

CURET. The CURET image set contains data with different viewing and il-

lumination conditions. In a four-class classification scenario, textures at two
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Database Classes Images per Scale Scales Training Scale

CURET 4 184 2 Mixed

KTH-TIPS 9 81 9 20

Kylberg 25 500 9 20

Table 1: Information on the Image Sets used for Experimentation.

different scales are available as 200× 200 pixel images. The scale difference of

the textures is reported to be approximately 1.7. As a consequence of the sig-

nificant amount of signal noise in the CURET data, this image set provides an490

interesting opportunity to evaluate the effects of noise on the proposed method.

KTH-TIPS. The KTH-TIPS [29] image set consists of images from 10 different

materials captured at 9 individual relative scales between 2−1.0 and 21.0 with 9

samples per material. Due to the dimension of the original images of material495

”cracker“ (the texture would only fill half of the images at certain scales), we

could not use this class for simulating rotations and consequently removed the

class in all experiments, leading to a classification scenario with only 9 classes.

Sub-images of size 128×128 pixels were extracted from the center of each image

to be consistent with the orientation evaluation experiments.500

Kylberg. The Kylberg texture set [30] consists of 28 materials captured at

a single camera-scale. The data set contains rotated versions of each image

at 30 degree steps within a range of 0 to 330 degrees. The large image size

(576× 576 pixels each) allows to simulate signal scaling without relying on up-505

sampling, which leads to a reduced amount of unwanted interpolation artifacts.

We simulated scaling to match the scales of the KTH-TIPS set such that the

scale of the original images is interpreted as the maximum scale 21.0 (KTH-

TIPS scale 1). Sub-images of size 128× 128 pixels were then extracted from the

center of the re-scaled images to build the image sets. We created two distinct510

sets for experimentation, a training set consisting of 20 unique texture patches
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(types a and b) per material and an evaluation sets comprised of 20 unique

texture patches (types c and d) per class. Please note that the texture classes

rice1 and rice2 as well as stone1, stone2 and stone3, respectively show minimal

visual distinction in textural appearance. As a consequence we removed the515

texture classes rice2, stone2 and stone3 to improve the interpretability of the

experiments, leading to a classification scenario with 25 classes.

5.2. Compared Feature Extraction Methods

We compare the proposed SOA-LBP to a set of methods, representative for

the four categories of scale- and rotation-invariant methods, as discussed in520

Section 1. We believe that the conceptual properties used by these methods

will allow us to establish a comprehensive overview. The used methods are

Category I. DT-CWT with Log-Polar Transform (Log-Polar [1]).

Category II. Dominant Scale (Dominant Scale [7]).

Category III. Fractal Analysis using Filter Banks (MFS MR8 [10]) and Inter-525

secting Cortical Model (ICM [11]).

Category IV. Affine Invariant Regions (Affine Regions [19]) and Fisher vector

encoding of dense SIFT descriptors (Dense SIFT [31]). We also compared the

method to a standard, multi-resolution LBP with 3 scales (LBP [24]) and the

proposed scale-invariant LBP representation of Li et al. (Li-LBP [21]).530

5.3. Evaluation Protocol and Presentation of Results

We implemented the experiments in a scale-constrained cross-validation scheme

to accommodate for the rather small size of the KTH-TIPS image set. The

scheme is based on two distinct sets for training and evaluation. Images for

training were always selected from a fixed scale (the default training scale, see535

Table 1), while the scales for evaluation varied according to the specific exper-

iment. This approach allows to study the characteristics of each method in

reference to signal scaling at various scale differences.

Cross-validation was then performed by an iterated random selection (con-

sistent among all methods) of subsets from the training set (75%) and the eval-540

24



uation set (25%). A standard k-nearest neighbors classifier was used for clas-

sification of features extracted from the specific image subsets. The maximum

k-value corresponds to the number of images in each class of the training set

(at maximum 20). The reported results represent the mean accuracy over all

k-values, averaged in a scale-constrained cross validation with 100 iterations.545

We report statistical significance on a per-figure basis to improve the read-

ability. Two-tailed Wilcoxn rank-sum tests were performed at a significance

level α = 0.001, to assess the null-hypothesis, that the population median of the

cross-validation results obtained with the proposed methodology (SOA-LBP)

is equal to the medians of all corresponding methods presented in the specific550

figure. An arrow pointing upwards (↑) indicates, that the null-hypothesis could

always be rejected and the SOA-LBP performed significantly better as compared

to all corresponding methods in the figure. An arrow pointing to the right (→)

indicates, that the null-hypothesis could not be rejected at least once but no sig-

nificant difference could be identified. Finally an arrow pointing downwards (↓)555

indicates that at least one method performed significantly better as compared to

the proposed method. Note that the markers of each plot are slightly displaced

on the x-axis to improve the readability of the error-bars, which represent the

standard deviations of the individual cross-validation results.

We present the results based on the CURET image set using asymmetric560

bar charts (Figure 12). Each side of a bar represents the classification accuracy

of a single experiment. The slope of the bar gives an indication of the scale-

invariance of each method. The dashed lines represent the average classification

accuracies of both experiments. The arrows indicate statistical significance in

relation to the SOA-LBP (e.g. an arrow pointing downwards indicates, that565

the specific method performed significantly worse as compared to the proposed

methodology).

5.4. Studying the Effects of Image Scaling

The first set of experiments is aimed specifically at studying the characteristics

of each evaluated method in regard to image scaling. In these experiments,570
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we only use the scale-invariant representation of methods that allow a selective

use of rotation-invariant features. This includes LBP, Li-LBP, SOA-LBP and

Dominant Scale. We present the results of the experiments based on the KTH-

TIPS, Kylberg and CURET image sets without rotation in Figures 9, 10, 11

and 12. Images at scale 20 were used for training, images at all other available575

scales were used for evaluation (KTH-TIPS and Kylberg).

Based on the CURET data, we follow the experimental setup used by Varma

et al. [32]. Two separate training sets were constructed. The first training set

consists of textures at both scales, while the second training set is based on

textures at a single scale. The evaluation set contains textures at both scales.580

The difference between the two experiments give an indication for the scale-

invariance of each method.

Considering the experiments on the KTH-TIPS image set, we observe that the

SOA-LBP performs comparably to the majority of evaluated methods, at eval-

uation scales close to the training scale. No method performed significantly585

better as compared to the proposed methodology however, which indicates that

the multi-resolution SOA-LBP feature representation is competitive in scenar-

ios with minimal to no scaling. In case of large scale differences (starting at

20.75, 2−0.75) between the training and evaluation data, the SOA-LBP signifi-

cantly outperforms all evaluated methods.590

In parallel to the experiments on the KTH-TIPS data, the SOA-LBPs per-
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Figure 9: Classification Accuracy (y-axis) for Evaluation Scales (Scaling only).
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Figure 10: Classification Accuracy (y-axis) for Evaluation Scales (Scaling only).

formance is significantly better as compared to all evaluated methods at large

scale differences considering the Kylberg experiments. In contrary to the pre-

vious experiments however, this behavior is already recognized at relative scale

differences of 20.5 and 2−0.5. The results indicate, that the used multi-resolution595

representation provides highly discriminative features in the more challenging

classification problem provided by the Kylberg set, even at tiny scale differ-

ences (20.25, 2−0.25). The only method that performed significantly better as

compared to SOA-LBP was the standard multi-resolution LBP at relative scale

20.25, which is caused by a small amount of erroneously estimated image scales of600

the proposed method. Interestingly, the Li-LBP method performed significantly

worse even for small scale differences as compared to the standard LBP as well

2−1.0 2−0.75 2−0.5 2−0.25 20.25 20.5 20.75 21.0

Relative Scale of Evaluation Data

30

40

50

60

70

80

90

100

SOA-LBP
MFS MR8 (III.)
ICM (III.)
Affine Regions (IV.)

KTH-TIPS

2−1.0 2−0.75 2−0.5 2−0.25 20.25 20.5 20.75 21.0

Relative Scale of Evaluation Data

10
20
30
40
50
60
70
80
90
100

SOA-LBP
MFS MR8 (III.)
ICM (III.)
Affine Regions (IV.)

Kylberg

Figure 11: Classification Accuracy (y-axis) for Evaluation Scales (Scaling only).
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Figure 12: Classification Accuracy of the Experiments on the CURET Data.

as the proposed method. We assume this characteristic is caused by the direct

mapping from estimated scale to the LBP-radius (the average intrinsic-scale of

the Kylberg set is higher as compared to the KTH-TIPS data) in combination605

with a missing, more powerful, multi-resolution representation.

The experiments on the CURET data indicate a high degree of scale-invariance

of the SOA-LBP. Only the Li-LBP method performed significantly better in the

experiment without required scale-invariance (mixed training scales). The re-

sults on the CURET set show, that the SOA-LBP is suited for classification in610

noisy scenarios, outperforming the majority of evaluated methods.

The experiments indicate, that the proposed SOA-LBP provides significantly

improved classification accuracies in scenarios with large scale differences. The

use of intrinsic-scale-adaption allows the computation of discriminative features

for a variety of different textures, while the multi-resolution representation pro-615

vides highly competitive features even in scenarios with tiny scale differences.

5.5. Studying the Effects of Combined Image Rotation and Scaling

The effects of combined rotation and scaling are studied in the second set of

experiments. Feature extraction is based on rotated versions of the Kylberg and

the KTH-TIPS image sets. Images at scale 20 without rotation were used for620

training, images at all other available scales were used for evaluation. Subsets of

the evaluation sets (KTH-TIPS 891 and Kylberg 1250 images), rotated in steps
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of 30 degrees, in angles between 30 and 330 degrees, were randomly selected

(consistently among all methods) for classification. Only methods providing a

scale- and orientation-invariant feature representation where evaluated. LBP625

was used with the rotation-invariant encoding based on uniform patterns [24].

Li-LBP was used with the proposed sub-uniform patterns [21]. The results are

presented in Figures 13 and 14.

We observe, that the rotation of the images decreased the general accuracy

of all methods as compared to the previous experiments. The results show the630

same trends as recognized in the scaling-only experiments however. Again, the

proposed SOA-LBP provides significantly improved classification rates at large

scale differences between training and evaluation data and performs highly com-

petitive in scenarios with tiny scale differences. The results indicate, that the

proposed orientation-adaptive computation is superior as compared to encoding-635

level based approaches used by LBP and Li-LBP. Interestingly, the Li-LBP

method performed worse as compared to the standard LBP method on the Kyl-

berg data even at large scale differences. We assume this is caused by the com-

bination of unsuitable LBP-radii (due to the missing intrinsic-scale-adaption)

combined with the less discriminative sub-uniform encoding.640

The experiments show that the proposed orientation-adapted computation

integrates seamlessly into the scale-adaptive LBP. The results are consistent

with the previous experiments (scaling only) and indicate that the extraction-
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Figure 13: Classification Accuracy for Evaluation Scales (Scaling and Rotation).
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Figure 14: Classification Accuracy for Evaluation Scales (Scaling and Rotation).

level alignment improves the discriminative power of the features.

5.6. Runtime Performance Analysis645

To study the computational demand of the proposed method, we analyze the

required runtime of all considered methods in a multi-threaded Java implemen-

tation (JDK 8), running on an Intel i5-2500k processor at 4.29GHz (using a

higher frequency multiplier than the default). Due to the nature of the Java

programming language (JIT-compilation and garbage collection), we report the650

computational demand per image as an average of the required computation

time for 729 images from the KTH-TIPS data set, in a repeated (20 iterations)

experiment (Figure 15). Please note, that the presented performance should not

be considered an exact benchmark, as not all methods have undergone equal

amounts of optimization, but is meant to give the reader an idea of the compu-655

tational complexity of the proposed methodology.

The results show, that the SOA-LBP is considerably slower as compared to the

lightweight LBP or the Li-LBP method, which is caused by the increased de-

mand of computing the scales-space, performing scale- and orientation-estimation

and the extra amount of feature computation (performing intrinsic-scale-adaption).660

Considering the improved classification accuracy in environments with varying

scales and orientations however, we think that the average computational de-

mand of 63 ms per image is an adequate trade-off. This is even emphasized as
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the method ranks in the lower middle range among all methods.

6. Conclusion665

We presented a generic methodology to compute a scale- and rotation-invariant

feature representation based on LBP, by suitable adaption of the LBP neighbor-

hood. The use of intrinsic-scale-adaption, allowed the computation of features,

independent of the intrinsic-scale of textures and increased the reliability of

the method significantly. This has been shown in experiments based on three670

different image sets representing a variety of scenarios. The SOA-LBP was sig-

nificantly superior to all evaluated methods in case of large scale differences.

The proposed multi-resolution feature representation was more than competi-

tive in scenarios with tiny scale differences. Experimentation based on the noisy

CURET data showed, that the proposed methodology provides discriminative675

and reliable features in difficult scenarios.

Although the computational complexity of the SOA-LBP is significantly

higher as compared to the very lightweight LBP, we regard the improved clas-

sification accuracies in scenarios with scaling and rotation, as an acceptable

trade-off for many classification tasks. The proposed methodology is easily ap-680

plied to a wide variety of LBP based methods [26, 27], providing a robust scale-

and rotation-invariant feature representation.
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