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We study the problem of clustering validation, i.e., clustering evaluation without knowledge of ground-
truth labels, for the increasingly-popular framework known as subspace clustering. Existing clustering
quality metrics (CQMs) rely heavily on a notion of distance between points, but common metrics fail to
capture the geometry of subspace clustering. We propose a novel point-to-point pseudometric for points

lying on a union of subspaces and show how this allows for the application of existing CQMs to the
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subspace clustering problem. We provide theoretical and empirical justification for the proposed point-
to-point distance, and then demonstrate on a number of common benchmark datasets that our proposed
methods generally outperform existing graph-based CQMs in terms of choosing the best clustering and

© 2020 Elsevier Ltd. All rights reserved.

1. Introduction

Clustering has long been one of the most fundamental tools for
data exploration, and from the start researchers have studied how
to determine the quality of a clustering output in order to choose
parameters and compare algorithms. In contrast to the supervised
learning setting, clustering problems do not provide any labeled
data that can be used as a “hold-out” set for cross-validation. The
problem of clustering quality has been widely studied for the gen-
eral clustering problem [1-4]. However, existing methods are not
applicable to the subspace clustering problem [5], a more modern
and widely applicable clustering framework in which the clusters
also have low-dimensional structure.

The key ideas in the clustering quality literature are those of
intra-cluster cohesion and inter-cluster dispersion. These notions are
defined fundamentally based on some distance metric chosen ap-
propriately for the application. This distance metric is applied be-
tween points in the dataset or between points and cluster centers,
where the centers are of the same dimension as the data points.

The subspace clustering problem can be formulated as a gen-
eralization of PCA, where we seek a collection of low-dimensional
subspaces that best fits our data; this is known as the Union of
Subspaces (UoS) model. We may think of these subspaces as the
cluster centers, in which case there is a natural notion of point-to-
center and center-to-center distances. However, quantifying point-
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to-point distance becomes problematic. Intuitively, we wish to de-
fine a metric d( -, - ) such that the distance between points in the
same subspace is small, whereas points on orthogonal subspaces
should have maximum distance. For example, antipodal points al-
ways lie in a one-dimensional subspace, and we therefore desire
d(x, —x) = 0. However, this property cannot be achieved by exist-
ing (pseudo) metrics such as the Mahalanobis distance.

In this work, we present what is, to the best of our knowl-
edge, the first approach to internal clustering validation for the
UoS model. We propose a novel pseudometric for points lying on
a union of subspaces, as well as several clustering quality metrics
so that the output of subspace clustering algorithms can be tuned
and fairly compared on unsupervised datasets.

2. Problem formulation & related work

Consider a collection of N unit-norm points X = {xq,..., Xy}
in ambient space RP, and let X € RP*N denote the matrix whose
columns are the elements of X. We define a K-clustering of X to
be a partition of X into K disjoint sets C = {cy, ..., cx}, where we
assume 1 < K < N to avoid trivial clustering. Let Uy, ..., Uk denote
orthonormal bases for K subspaces Sy, ..., Sk obtained by perform-
ing PCA on the points in clusters cy, ..., cg, and let D = {d4, ..., dg}
be the set of dimensions of these subspaces. An example of data
lying in two 2-dimensional subspaces is shown in Fig. 1, where the
points from subjects 5 and 23 of the Extended Yale Face Database
B [6] are shown after projecting onto their first three principal
components via robust PCA [7].
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Fig. 1. Data from the Extended Yale Face Database B is known to lie in a union
of low-rank subspaces. Images from subjects 5 and 23 projected onto first three
principal components are shown.

2.1. Subspace clustering

Subspace clustering algorithms seek to partition X into K clus-
ters such that the data in each cluster lies near a low-dimensional
linear or affine subspace. This is done in an unsupervised manner,
i.e, without knowledge of the subspaces themselves. This model
has applications ranging from structure from motion to image and
handwritten character recognition [8-12].

To accomplish this task, researchers leverage a variety of prop-
erties of data belonging to a union of subspaces. Perhaps the most
popular of these is the self-expressive property, which informally
states that points can be most efficiently represented as a lin-
ear combination of other points lying in the same subspace. Re-
searchers utilize this property by solving sparse regression prob-
lems of the form

min [|X — XZ|7 + A]1Z]
diag(Z) =0,

where ||Z|| is the ¢;-norm in Sparse Subspace Clustering (SSC) [8],
the nuclear norm in Low-Rank Representation (which omits the
constraint on Z) [13,14], and may include a combination of other
norms to account for noisy data or outliers. An affinity/similarity
matrix is then obtained as |Z| + |Z|T, after which spectral cluster-
ing is performed to obtain the clusters. SSC and its variants thus
require the selection of at least one hyperparameter A, as well as
a thresholding parameter in the case of the Alternating Direction
Method of Multipliers (ADMM) implementation of SSC. In [15], the
authors present a range of allowable values for A to guarantee cor-
rect clustering, but this range is based on data parameters such as
the inradius of each cluster, which cannot be known a priori, and
the result does not apply when a penalty for sparse outliers is in-
cluded.

An alternative approach to subspace clustering is that of the
Thresholded Subspace Clustering (TSC) algorithm [16], which lever-
ages the fact that points within the same subspace have large inner
product (on average) relative to points in different subspaces. TSC
is the simplest of all subspace clustering algorithms and proceeds
by forming the matrix |X"X| and thresholding each row and column
so that all but the top q entries are set to zero. Methods of select-

subject to

ing this threshold are provided in [16,17], but these rely heavily
on strict assumptions on the data (e.g,, that the data are generated
uniformly at random from the intersection of the unit sphere and
the subspace). Real-world datasets often violate these assumptions,
and in practice, the clustering of lowest error may not result from
selecting the threshold within the proposed ranges.

One further approach to subspace clustering is based on the
K-subspaces (KSS) algorithm [18-20], a generalization of K-means
that seeks to minimize the sum of squared distances from points
to subspaces through alternating minimization. While KSS is com-
putationally efficient and only requires the selection of a single
tuning parameter (the subspace dimension), its performance on
benchmark datasets is known to lag behind that of self-expressive
methods. Recently, in [21], the authors show that incorporating
robust subspace estimation via the Coherence Pursuit algorithm
[22] can significantly improve the performance of KSS, though
this requires the selection of an additional tuning parameter. An-
other recent approach to improving KSS is that of the Ensemble
K-subspaces (EKSS) algorithm [23], which combines the results of
numerous KSS instances via the evidence accumulation framework
[24] to achieve superior empirical performance and strong theoret-
ical guarantees. Like TSC, EKSS builds an affinity matrix and then
thresholds this matrix before applying spectral clustering. In this
case, both the subspace dimension and the threshold parameter
have significant impact on performance.

2.2. Internal clustering validation

The trend illustrated above exists for all subspace clustering al-
gorithms; hyperparameters, thresholds, and other variables must
be tuned in order to achieve strong performance. Hence, in order
to provide a principled, interpretable method for practitioners to
utilize these methods, we must define some measure of “goodness
of fit” for subspace clustering. The problem of evaluating clustering
results in the absence of ground truth has been studied for decades
in the general clustering community and is known as internal clus-
tering validation [25]. It has applications ranging from image seg-
mentation [26] to community analysis in graphs [2] to clustering
acoustic signals [27,28], among many others.

In contrast to external clustering validation methods [29,30], in-
ternal methods, known as clustering quality metrics (CQMs) seek to
measure clustering quality without access to ground-truth labels.
Such measures are designed to capture the “natural” goals of clus-
tering, the chief being that points within clusters should have high
similarity or cohesion, while points in different clusters should have
low similarity or high dispersion.

Early examples of internal CQMs include the Dunn index [31],
Davies-Bouldin index [32], and the Silhouette index [33]. The Dunn
index is the ratio of dispersion to cohesion, where cohesion is
measured using the cluster diameter and dispersion using the min-
imum distance between points in different clusters. A number of
variations on this index are proposed throughout the literature
and defined in [1], one of which we consider in this work (see
Section 4). The Davies-Bouldin index measures cohesion using the
mean distance from points to centroids and dispersion as the dis-
tance between centroids. The Silhouette index is based on the
(normalized) difference between average intra-cluster pairwise dis-
tance and average inter-cluster pairwise distance. These and other
more recent CQMs are studied extensively in the surveys [1,25],
with the Dunn, Davies-Bouldin, Silhouette, and Calinsky-Harabasz
[34] indices being among the top performers. A comprehensive list
of CQMs can be found in [3]. One major drawback to these meth-
ods for application to subspace clustering is that they often rely
on the pairwise distance between points. For points lying on a
low-rank subspace, pairwise Euclidean distance is not indicative.
For example, the points x and —x clearly lie on the same one-
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dimensional subspace but may be arbitrarily far apart. Further, the
notion of centroids must be revised before these methods can be
applied.

The above CQMs are designed for traditional distance-based
clustering algorithms such as K-means. However, many modern
clustering algorithms rely only on the entries of an adjacency ma-
trix, whose (i, j)th entry A; € {0, 1} denotes whether two items in
the set are “connected,” or an affinity matrix, whose entries A; > 0
denote the strength of that connection. Such algorithms are re-
ferred to as graph-based methods and include single linkage, other
hierarchical methods, and spectral clustering (see [35, Ch. 14] for
a description of these methods). Empirical graph clustering quality
measures have existed for a number of years, and several compar-
isons of such metrics exist [2,36,37], with no CQM consistently out-
performing others when a large number of datasets are considered.
Two of the most widely used CQMs are coverage [38] and modular-
ity [39]. The former is defined as the ratio of intra-cluster connec-
tivity and total connectivity in the graph, and the latter measures
the strength of intra-cluster connectivity compared to the average
connectivity of each cluster. Since nearly all subspace clustering al-
gorithms produce an affinity matrix, graph-based CQMs present a
reasonable off-the-shelf approach to parameter selection. However,
these suffer from known drawbacks such as favoring sparse affin-
ity matrices [36]. Further, they ignore knowledge of the underlying
UoS structure in the data, which has been shown to provide sig-
nificant benefits in other clustering contexts [40].

In [41], the authors argue that lack of interpretability plagues
modern clustering algorithms and accounts for the widespread use
of K-means in spite of its known shortcomings. Subspace cluster-
ing falls victim to a similar problem, as relatively few people un-
derstand the concept of a union of subspaces, perhaps accounting
for its relative anonymity among practitioners.! For this paradigm
to gain popularity, the ability to select parameters is paramount,
and hence the need to compare clusterings resulting from different
subspace clustering algorithms is an important contribution that
has received no attention to this point.

3. Metrics for unions of subspaces

As stated above, we wish to design internal CQMs that take into
account the low-dimensional intrinsic structure of the data, rather
than relying solely on the elements of the affinity matrix formed
by an algorithm. One approach to leveraging this geometry is to
develop analogs to existing measures such as the Davies-Bouldin or
Dunn index. These and other CQMs rely on three key distances: (1)
point-to-centroid, (2) centroid-to-centroid, and (3) point-to-point.
The first two have natural interpretations under the UoS model,
which we state in Sections 3.1 and 3.2. In Section 3.3, we propose
a novel notion of pairwise distance for points lying on a union
of K subspaces and examine its properties. We overload the term
dist( -, - ) in this and following sections to represent all three
distances, with the definition being clear based on type.

3.1. Point-to-subspace distance

A widely-used notion of point-to-centroid distance under the
UoS model is that from a point to a subspace, i.e.,

dist(x, S) = ||x—UUTx||2, (1)

where U € RP*4 is an orthonormal basis for the subspace S. This
notion of distance is used in the KSS algorithm.

1 For example, there is not a single subspace clustering algorithm implemented
in the widely-used scikit-learn Python package.

3.2. Subspace-to-subspace distance

Recall that under the UoS model, the subspaces take the place
of centroids. Hence, it is reasonable to assume that the centroid-
to-centroid distance should be replaced by the distance between
points on the Grassmannian. Two key problems arise with this
approach. First, there are multiple proper metrics on the Grass-
mannian, including the sine of the maximum principal angle be-
tween subspaces (see [42, Section 6.4.3] for a definition of princi-
pal angles) and the ¢,-norm of principal angles between subspaces,
which corresponds to the geodesic distance [43]. While these two
distances result in the same topological structure, they capture dif-
ferent properties of the subspaces being considered. More impor-
tantly, these distances are only defined for subspaces of the same
dimension. Since this assumption is not a requirement of our data
model or any recent subspace clustering algorithm, we seek a no-
tion of subspace-to-subspace distance that can handle subspaces
of varying dimension. A notion of nearness between subspaces,
known as the subspace affinity, appears frequently in the analysis
of various algorithms [8,16,44]. The subspace affinity is formally
defined as

1
aff(S;, S;) = ——||UTU; (2)
1 J dl A d] || 1 ]||F
1 dind;
- ind ; cos2 6, (3)

where anb denotes the minimum between a and b, U; (U;) is an
orthonormal basis for S; (S;), || - || denotes the Frobenius norm,
and 6, denotes the Ith principal angle between the subspaces. The
subspace affinity is between 0 and 1, with aff(s;, S;) = 0 indicat-
ing the subspaces are orthogonal and aff(S;, ;) =1 if and only
if §; = ;. From (3), we see that the subspace affinity captures a
notion of nearness between subspaces that considers all principal
angles, rather than only the maximum. Further, it has been shown
through the analysis of various algorithms to be a key parameter
in measuring the difficulty of the subspace clustering problem. For
these reasons, we propose the use of the following pairwise dis-
tance between subspaces

dist(S;, Sj) = /1 —aff’ (S, S))

dind;
= |—F > sin 6,. (4)
di N dj =1

The above is closely related to the chordal distance considered in
the subspace packing problem [45]. In the case where d; =d; =d,
it is easy to see that (4) is a proper metric by noting that

dist’ (5.5 = 1~ U7,
= 5 (10l + Juj] -2 vt )
= %tr(U,-UiT +UUT - 20Ul UU))
_ %”UiUiT —uur 2.
3.3. Point-to-point distance
While the point-to-subspace and subspace-to-subspace dis-
tances are straightforward to define in terms of familiar quanti-

ties, to the best of our knowledge, there does not exist a useful
notion of pairwise distances between points lying on a union of
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subspaces. We now introduce a novel notion of distance between
points for this setting that satisfies a number of “common sense”
properties. Assume we are given a clustering C = {cy, ..., cx} with
bases Ui, ..., Uy corresponding to each cluster. Let Py denote the
orthogonal projection matrix onto the subspace corresponding to
the cluster containing the point x, and let P} = I — B;. Our proposed
point-to-point distance is

. 1
dist(x,y) = 5 (x"Pix+X"Pfx+y"Ply + Y Py

—2|x"Bly| - 2|x"Pry]) . (5)
It is easily verified that (5) is a pseudometric taking values be-
tween O and 1. Further, the distance can be efficiently computed
in O(N? +D?) time (O(N?) if the subspace bases are provided, as
with KSS and its variants). We now provide intuition for this dis-

tance with a number of observations.
First note that without the projection matrices P and Pyl, the

proposed distance becomes /1 — |xTy|, indicating that the dis-
tance between points is a function of their absolute inner prod-
uct. The absolute inner product has been utilized widely in sub-
space clustering methods [16,23,46] and is therefore a useful fea-
ture; however, we argue that even orthogonal points should have
small distance if they are believed to lie in the same subspace. On
the other hand, note that if we drop the absolute value on the last
two terms of (5), the distance becomes a Mahalanobis distance
with covariance matrix P + P;-. However, in this case, antipodal
points do not necessarily have distance zero as desired.

The proposed distance overcomes both of these issues. First, an-
tipodal points always have distance zero due to the final two terms
of (5). Second, if P, =P, and x = Px and y = By, then d(x,y) =0.
In other words, if x and y are assigned to the same cluster and the
subspaces are estimated perfectly, then d(x,y) =0 even when x
and y are orthogonal. The maximum value of (5) is 1, which occurs
when x and y are orthogonal to each other and each is orthogonal
to both the subspaces spanned by Py and Py. This instance may oc-
cur if the orthogonal points x and y are assigned to the same clus-
ter but neither lies in the subspace corresponding to that cluster,
ie, k=P =:Pand Plx=x and Pty =y.

To further motivate the proposed distance, consider the case
where the subspaces are perfectly modeled, which yields

1/2
deey) = 5 ([Pl + [Bv]3)

The above is small when each point lies near to the opposing
point’s subspace, indicating that points near the intersection of
subspaces will have small distance from each other. Further, con-
sider the case where the points are drawn randomly from their re-
spective subspaces, taking x ~ Ua and y ~ Vb, where P, = UUT and
P, =VVT and a, b ~ Unif($4-1). In this case, we have

E[dis? (x.y)] = %(1 - %HuW”i) = %distZ(Sx, S) (6)
indicating that randomly drawn points will have small distance
when their corresponding subspaces have small distance from each
other. While we do not analyze the case of imperfect subspace
modeling here, our empirical results (Section 5.2) indicate that the
average pairwise intra-cluster distance remains smaller than the
average inter-cluster distance even under significant errors in the
subspace modeling.

Finally, consider the case where many points are drawn from a
subspace but corrupted by noise. Under this setting, the proposed
distance indicates the level of noise on a given point, as points
that are heavily corrupted will have large distance from those that
are nearer to the true subspace. We illustrate this final scenario
in Fig. 2, which shows the arrangement of points from the Ex-
tended Yale Face Database B. These points are known to lie near

;
| xx * ’:&‘
[ x w g g

Fig. 2. Two-dimensional embedding of points in Extended Yale Face Database B,
subjects 13, 26, and 38 using multidimensional scaling on the proposed point-to-
point distance. The proposed distance provides an indication of which points lie
near the estimated subspace and groups outliers with similar forms of shadow.

a union of 9-dimensional subspaces, each corresponding to images
of a different subject. We take cq, ..., cx to correspond to the true
clusters and find the best 9-dimensional basis for each cluster in
order to compute the distance between points in clusters 13, 26,
and 38. Fig. 2 illustrates the arrangement of after embedding the
points into R? using multidimensional scaling (MDS) [47] on the
proposed pairwise distance. Analyzing the original images shows
that the tightly-grouped points correspond to images with low
amounts of shadow, while those farther from the cluster centroids
correspond to heavily-shadowed images. In fact, we see that im-
ages with shadow on the left half of the face form one group of
outliers, and likewise for images with shadow on the right half.

4. Internal validation measures for subspace clustering

Armed with the notions of point-to-subspace, subspace-to-
subspace, and point-to-point distances defined in the previous sec-
tion, we are now ready to define a variety of CQMs for the problem
of subspace clustering. We define two quality measures based on
the KSS cost function as well as three analogs of existing CQMs
adapted to the UoS model. All CQMs require three inputs: the
data X = {xq,...,xy}, the estimated clusters C = {cy,...,cx}, and
a set of subspace dimensions D = {dy, ..., dx}. We define S, to be
the di-dimensional subspace obtained by performing PCA on the
points in cluster cy.

The first CQM we consider is that of the KSS cost, which is de-
fined as

1K
mKss(X, C, D) = = Z Z diStz(X,‘, Sk).

N
k=1 Xi€C

The KSS cost is suggested as a method for selecting among the
best of several runs of KSS in [9]. However, it is not appropriate
for attempting to determine the number of subspaces or the un-
derlying subspace dimensions, since it is a monotonically decreas-
ing function of both of these parameters. In the language of exist-
ing CQMs, the KSS cost is a measure of cohesion only, rather than
a balance between cohesion and dispersion. Existing approaches
such as the gap statistic [48] attempt to quantify an “elbow” in
the within-cluster cohesion (e.g., as computed by myss) in order to
select the number of clusters. However, the gap statistic requires
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the additional computation of the cohesion for a reference dataset,
increasing computational complexity. An alternative method based
on examining the singular values of the graph Laplacian was pro-
posed in [13]. However, this method requires selecting yet another
tuning parameter and is only applicable to algorithms that rely on
an affinity matrix. Further, our empirical results on selecting the
number of clusters indicated that both the gap statistic and the
Laplacian-based method failed to reliably determine the correct
number of clusters across multiple algorithms, even on synthetic
data. We therefore propose the following CQM, which we refer to
as Normalized KSS Cost (NKSS)

1& dist® (x;, Sp)
‘)(v7 C, D) = — - n L .
Mpgss ( ) N Z Z min dlSt(Sj, Sp)?

k=1 Xi€Cy

For both mygs and myyss, smaller values correspond to better clus-
terings. In the case where all subspaces are orthogonal, we have
dist(Sj, S¢) =1 for all j, k, and mygss = myss. However, as the
subspace dimension increases, the subspaces “fill up the space,”
incurring a penalty. This is made clear by noting that for two
d-dimensional subspaces drawn uniformly at random from the
Grassmannian, distz(s,-,sj)~ Dng [21, Lemma 3]. Similarly, in-
creasing the number of subspaces decreases the expected mini-
mum pairwise distance between subspaces, increasing the normal-
ization penalty.

We also consider three existing CQMs that rely on the distances
defined in the previous section. Since there are numerous existing
CQMs based on pairwise distances between points and centroids,
we choose three of the best performers in the extensive survey
[1].2 The first is a variant of the Dunn Index (DI) [31], referred to
as Generalized Dunn Index 41 (gD41) in [1], which measures co-
hesion using the maximum cluster diameter and dispersion using
the minimum distance between any pair of subspaces.

min; dist(S;, Sx)

mp;(X,C,D) = - .
oi( ) MaXc[x) MAXy, x;eq, diSt(X;, X;)

Higher values correspond to better clusterings for the Dunn Index.

Another popular CQM that is shown to perform well in the sur-
vey [1] is the Silhouette Index (SI) [33], which measures cohesion
using the mean pairwise distance between points in the same clus-
ter and dispersion as the smallest average distance from a point to
all points in another cluster.

181 b(i) — a(i)

mg(X,C,D) = — — _—

si( )=% g Ne chk max(a(i), b(i))
where

. 1 .
a(1)=m > dist(x;, x)),

XjECX#X;

and

1
b(i) = min — dist(x;, X;).
1=k N, x,% s

Higher values correspond to better clusterings for the Silhouette
Index.

Finally, we consider the Calinski-Harabasz (CH) index [34],
which measures cohesion using the average distance from points
to their respective subspaces and dispersion using the average dis-
tance from each subspace to the best subspace of the same dimen-
sion for the entire dataset,

N-K YK Ndist(Sy, Sx)

mey(X,C, D) = s
o ) k-1 Zf:] ineck dist(x;, Sk)

2 We experimented with thirteen total existing CQMs studied in [1] and chose
the top three performers to report here.

where Sy denotes the subspace spanned by the entire dataset.
Higher values correspond to better clusterings for the Calinski-
Harabasz Index.

5. Empirical results

In this section, we compare the proposed CQMs to existing
CQMs on a variety of synthetic and real datasets. We first evaluate
the proposed point-to-point distance to show its empirical bene-
fits over other existing notions of distance. We then evaluate the
ability of each CQM to determine the true number of clusters on
synthetic data drawn from a UoS. Finally, we evaluate the perfor-
mance of the CQMs on three common benchmark datasets in the
subspace clustering literature.

Along with the CQMs described in Section 4, we also consider
four graph-based CQMs that are shown to perform well in the sur-
veys [36,37,49]: coverage [38], modularity [39], permeance [50],
and communitude [51].

When evaluating the various CQMs, we consider six subspace
clustering algorithms: SSC [8], SSC-OMP [52], EnSC [53], GSC [44],
TSC [16], and EKSS [23]. These algorithms are shown to be scalable,
theoretically justified, and perform well on benchmark datasets.
Further, they represent a wide range of tuning parameters, includ-
ing optimization hyperparameters, thresholding parameters, sub-
space dimension, and number of nearest neighbors. Each algorithm
is run for between 50 and 200 hyperparameter configurations (de-
pending on number of tuning parameters and computation time)
with parameters chosen linearly from these ranges. See Table 1
for a summary of these parameters and their considered ranges.
We evaluate the proposed CQMs on synthetic data as well as three
of the most common benchmark datasets in the subspace cluster-
ing literature: the Hopkins-155 dataset [54], the cropped Extended
Yale Face Database B [6,55], and the COIL-20 [56] object database,
with preprocessing steps performed as in [23].

Recall that our proposed CQMs and subspace-based metrics re-
quire the underlying subspace dimensions as input. First, we note
that allowing each cluster to have a different subspace dimension
results in an explosion of the parameter space. Instead, it is com-
mon to set all clusters to have dimension equal to some maximum
estimated subspace dimension during clustering and then estimate
individual subspace dimensions once the clusters have been iden-
tified. For GSC and EKSS, which take subspace dimension as an in-
put parameter, we use the same (maximum) subspace dimension
during both clustering and evaluation with the CQMs, allowing us
to perform model selection on subspace dimension. For algorithms
such as SSC and its variants, which do not require subspace dimen-
sion as an input, we select the CQM subspace dimension based on
accepted values from the literature, taking d =9 for Yale and COIL
and d =3 for Hopkins, as in [40]. Although omitted due to lack
of space, our initial empirical investigation suggests that our pro-
posed subspace-based CQMs have roughly equal performance over
a wide range of subspace dimensions, and the automatic selection
of this parameter (e.g., via explained variance or Bayesian methods
[57]) is an interesting topic for future work.

5.1. Evaluation metric

A variety of metrics for evaluating and comparing CQMs are
proposed throughout the literature. Often, CQMs are used to se-
lect a parameter with a true value, such as the number of clus-
ters, in which case it is common to evaluate the ability to select
this value correctly. Alternatively, Spearman’s rank correlation co-
efficient [58] may be used to measure how well the ranking of
clusterings according to a given CQM compares to an external val-
idation measure, such as the Jaccard coefficient [29] or Adjusted
Rand index [30]. We use a variation on this approach.
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Table 1

Subspace clustering algorithms considered and their corresponding parameters with ranges considered.
Algorithm Parameter 1 Description Parameter 2 Description
SSC-ADMM p € [0.1, 10] thresholding parameter « € [5, 2000] hyperparameter
SSC-OMP kmax € {1, 50} maximum coefficients - -
EnSC X €[0.01, 0.99] hyperparameter o € [3,100] hyperparameter
GSC kmax € {1, 20} # neighbors d e {1, 20} subspace dimension
TSC q € {2, 100}U{N} thresholding parameter - -
EKSS q € {2, 100}U{N}  thresholding parameter d e {1, 20} subspace dimension

First, the most widely used external validation measure for sub-
space clustering is the clustering error, which is computed by
matching the true labels and the labels output by a given clus-
tering algorithm,

& =100| 1 - max % Z Qe ).
i.j

where 7 is any permutation of the cluster labels, and Q°“t and
Q've are the output and ground-truth labelings of the data, re-
spectively, where the (i, j)th entry is one if point j belongs to clus-
ter i and is zero otherwise. We define the oracle error as the low-
est clustering error among all parameter configurations considered
(see Table 1) and emphasize that this error can only be determined
in light of the ground-truth labels. Hence, the goal of any CQM is
to discover the parameter configuration(s) that result in the oracle
error without knowledge of the true labels.

As a validation metric for the various CQMs, one could compute
the Spearman correlation between the clusterings sorted according
to true error (smallest to largest) and best clustering according to
each CQM, as is done in [49]. However, it is less important that
the order of clusterings returned by a CQM match the oracle or-
der exactly than that the top few clusterings (according to each
CQM) be ones of low error. For this reason, we propose the fol-
lowing ratio of area under the curves (R-AUC) metric. Consider a set
of p clusterings—i.e., outputs of a clustering algorithm on p differ-
ent configurations of hyperparameters—to be evaluated by a CQM
m, and let &, € RP be the vector of clustering errors resulting from
the p clusterings sorted from best to worst according to m. Further,
let e« be the vector of errors sorted according to the true (oracle)
clustering error. Let Ay, denote the area under the normalized cu-
mulative sum of &y, i.e.,

1 p i
2 2 em(i).

An =
i -
i=1 8111(1) j:1 i=1
where ¢;,(j) denotes the jth element of the vector ¢,,. Let A« be
similarly defined, and note that smaller values of Ay, correspond to
better orderings of the clusterings. The R-AUC is then
Am

R-AUC = e (7)

The R-AUC > 1, with a lower ratio implying better performance.

5.2. Empirical evaluation of proposed point-to-point distance

We begin by demonstrating that the proposed point-to-point
distance (5) outperforms existing distances in terms of providing
an embedding by which points lying on a UoS are well sepa-
rated. Fig. 3 compares the resulting two-dimensional embedding
of points from a union of five 7-dimensional subspaces of R100 us-
ing t-SNE [59] on the pairwise distance matrix formed using the
Euclidean distance, the inner product-based distance dist(x,y) =

(1- |xTy|)]/2, and the proposed distance (5), where we assume
the subspaces are modeled perfectly. The figure demonstrates that

(a) Euclidean

- »

(b) Inner Product

. -

(c) Proposed

Fig. 3. t-SNE embedding of points drawn from a union of five 7-dimensional sub-
spaces of R1%0 using (a) Euclidean, (b) inner product, (c) proposed pairwise distance.

the proposed metric is the only one that results in points that are
clearly separated according to subspace membership.

As stated above, the separation shown in Fig. 3 is obtained as-
suming the subspaces are modeled perfectly, which is unlikely to
be the case in practice. We now study the impact of mismodel-
ing the subspaces by considering the distance gap between inter-
cluster and intra-cluster distances. In general, a CQM will want
the inter-cluster distances to be large and intra-cluster relatively
smaller. Let the average difference between these inter-cluster and
intra-cluster distances be called the “distance gap.” In Fig. 4, we
display the distance gap as a function of both the estimation error
in the subspaces (i.e., in Px and Py) and the distance between the
true subspaces the points are drawn from. We consider the case
of two ten-dimensional subspaces of R190 drawing 1000 points
uniformly at random from the unit sphere intersected with each
subspace. The subspace estimates &; and S, are each generated
to have the same distance from their respective true subspaces,
displayed on the vertical axis. The horizontal axis indicates the
distance between the true subspaces S; and S,. For a fixed dis-
tance between the true subspaces S; and S,, the figure demon-
strates a significant distance gap even when there is nontrivial es-
timation error in the subspaces. For example, in the case where
dist(S;1, Sp) = 0.5, the distance gap is still greater than 0.13, even
when dist(S;, §;) = 0.5. By comparison, if we were to use the inner
product-based distance (as in Fig. 3(b)), the resulting distance gap
would be 0.05. Hence, the integration of both the arrangement of
points and the subspace estimates results in a metric that robustly
differentiates points lying on a UoS.
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Fig. 4. Distance gap as a function of subspace estimation error (vertical axis) and
distance between the true subspaces (horizontal axis) computed using the proposed
metric (5). The larger the distance gap, the better clustered is the dataset. Points
are drawn from two ten-dimensional subspaces of R'%°. Using the proposed metric,
points in different subspaces are well separated even under significant subspace
estimation error.

Table 2

Comparison of CQMs using Euclidean distance and proposed
subspace-based distance from Section 3. Values indicate the aver-
age R-AUC across all six algorithms (lower better).

Euclidean Proposed

Dataset DI SI CH DI SI CH

Synthetic 1.09 1.95 1.49 1.12 1.08 1.08
Hopkins-155 145 488 3.13 148 1.13 1.23
Yale B 1.08 1.19 106 110 1.12 1.05
COIL-20 1.08 1.13 1.16 1.06 1.14 1.04
Iris 1.13 1.15 113 125 117  1.27
Balance 1.07 1.08 1.09 1.09 1.05 1.07
Sonar 1.03 1.04 1.03 1.04 1.05 1.04

5.3. CQM comparison: proposed vs. euclidean distance

Next, we evaluate the impact of utilizing the proposed metrics
from Section 3 on the DI, SI, and CH CQMs. For each dataset, we
run each of the six algorithms in Table 1 for a grid of parame-
ters in the range specified. Aside from the benchmark datasets de-
scribed above, we also consider synthetic data drawn from a union
of K = 5 subspaces, each having dimension d = 5, drawn uniformly
at random in ambient space D = 100. We draw N, = 100 points
from each subspace and corrupt them with Gaussian noise with
variance o2 = 0.05. We generate ten instances of data according to
this arrangement and report the average value. Table 2 shows the
average R-AUC (taken over all algorithms) for each of these three
CQMs using both Euclidean distance (left columns) and our pro-
posed subspace-based distances (right columns). For the Hopkins
dataset, where the UoS structure is known to be strong, the use
of subspace-based metrics has an especially large impact on the
performance of both the SI and CH, yielding a R-AUC of roughly
1/4 and 1/3, respectively, of the Euclidean-based variants. On other
datasets, the improvement in R-AUC is more mild, though the re-
sulting error selected by the subspace-based CQMs is typically sig-
nificantly lower than that of the Euclidean-based CQMs. We con-
firm this finding in Table 3, where we display the average differ-
ence between the error selected by the various CQMs and the ora-
cle error. In this case, a value of zero would indicate that the CQM
selected the best possible clustering among all configurations for
each algorithm. The table displays the dramatic benefit of utiliz-

Table 3

Average difference between best and oracle clustering error (%) according
to CQMs using Euclidean distance and proposed subspace-based distance
from Section 3. Average is taken across the six algorithms listed in Table 1.

Euclidean Proposed

Dataset DI SI CH DI SI CH
Synthetic 0.85 2724 1995 0.56 7.57 0.37
Hopkins-155  9.81 2456 19.56 6.73 3.94 3.93
Yale B 1237 5469 26.11 2466 3547  8.90
COIL-20 9.46 2797 4215 1226 2420 6.55
Iris 9.89 1722  4.44 18.11 17.11 12.00
Balance 1632 1509 11.68 9.97 1024 931
Sonar 11.06  8.01 8.09 10.58 12,58  12.58

ing the proposed metric for datasets known to have strong UoS
structure. For example, on Hopkins-155, the Euclidean-based SI se-
lects errors that are an average of 24.56% greater than the min-
imum error, while the proposed subspace-based SI results in er-
rors that are only 3.94% above the oracle. For the DI, the choice
of metric appears to have less impact; however, we will show in
Section 5.5 that the DI performs poorly overall when compared to
the proposed KSS and NKSS CQMs. For completeness, we also con-
sider the Balance, Iris, and Sonar datasets from the UCI Machine
Learning Repository [60], none of which is expected to exhibit UoS
structure. Our results show that the subspace-based CQMs perform
on par with their Euclidean counterparts, even showing a mild im-
provement in some cases (e.g., for the Balance dataset). Hence, our
proposed subspace-based metrics result in significant benefits in
the case where the underlying UoS structure is strong and do not
appear to be harmful even in the case where there is no such
structure.

5.4. Selecting the number of clusters

We next consider the problem of selecting the number of clus-
ters K on synthetic data as well as the Hopkins, Yale, and COIL
datasets. For the synthetic data, we generate data from K = 7 sub-
spaces of dimension d =5 drawn uniformly at random from the
Grassmannian in ambient dimension D = 100. For k=1, ..., K, we
draw N, = 100 points from the subspace spanned by U, as x; ~
N(O, UkUkT), corrupt them with independent and identically dis-
tributed Gaussian noise with variance o2 = 0.05, and then normal-
ize the points to have unit norm. We generate ten instances of data
according to this arrangement and report the average values below.

For each dataset, we run each algorithm listed in Table 1 over
a range of 10 values of K and select the best clustering accord-
ing to each CQM. The resulting average absolute deviation from
the true value of K is given in Table 4, and the average R-AUC
(across algorithms) is given in Table 5. For the synthetic data, the
KSS cost uniformly chooses the wrong K, choosing K = 8 for all al-
gorithms and trials, while the normalization in NKSS selects the
correct value in all instances. However, examination of the R-AUC
shows that the KSS cost does a better job of selecting low-error
clusterings, even though the number of clusters may be wrong.
The SI also selects the correct value for all algorithms and trials,
while modularity and communitude selected K correctly for all but
SSC-OMP and EKSS. In the case of EKSS, inspection of the affinity
matrices reveals that both CQMs favored sparse affinity matrices, a
phenomenon noted in [36]. For the benchmark data, both the KSS
cost and NKSS are among the top performers in terms of absolute
deviation and R-AUC, while the CH achieves the best R-AUC scores
for several datasets despite having larger deviations from the true
number of clusters. This highlights the fact that selecting the “cor-
rect” number of clusters does not always result in the lowest clus-
tering error.
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Table 4

Ability of various CQMs to select the correct number of clusters. Values indicate the average abso-
lute deviation between the true and estimated number of clusters. Lowest values in each row are

bolded.
Dataset KSS Cost NKSS DI SI CH Cov Mod Per Comm
Synthetic 1.00 0.00 057 000 475 422 013 202 0.10
Hopkins-155  0.02 0.53 0.63 064 038 070 0.08 033 0.5
Yale B 1.00 1.00 183 1.00 1.00 167 1.00 3.00 1.00
COIL-20 1.00 1.00 1.50 1.83 1.00 367 067 067 1.67
Table 5
Ability of various CQMs to select the correct number of clusters. Values indicate the average R-AUC
across all six algorithms (lower better).
Dataset KSS Cost  NKSS DI SI CH Cov Mod Per Comm
Synthetic 1.03 1.13 1.91 1.21 154 190 117 152 1.25
Hopkins-155  1.23 1.17 117 112 111 114 1.27 117 120
Yale B 1.10 1.14 149 108 104 136 1.25 1.61 1.15
COIL-20 1.03 1.03 152 149 103 197 116 113 131

Table 6

Ability of various CQMs to select tuning parameters on synthetic UoS data. Algorithm values (rows 2-7) indicate the
average best clustering error (%) according to various CQMs. Oracle denotes the best overall clustering error. Final

row shows the average R-AUC (lower better).

Algorithm Oracle KSS Cost  NKSS DI SI CH Cov Mod Per Comm
SSC-ADMM 1.90 1.90 1.98 220 2016 196 54.66 40.64 46.98  49.50
SSC-OMP 4.54 4.54 4.86 482 454 4.54 56.12 56.12 6.04 56.12
EnSC 2.28 2.28 2.44 270 240 234 270 2.70 6.30 2.70
GSC 0.50 2.02 2.02 2.08 3.82 202 2670 214 2.12 27.52
TSC 0.56 0.66 0.78 094 0.76 076  1.68 1.68 0.80 1.68
EKSS 0.38 0.82 0.94 076 2390 074 0.72 0.70 0.62 41.22
Average R-AUC 1 1.08 1.07 112 1.08 1.08 1.25 1.19 1.30 1.25

Table 7

Ability of various CQMs to select tuning parameters on Hopkins-155 dataset. Algorithm values (rows 2-7) indicate the
average best clustering error (%) according to various CQMs. Oracle denotes the best overall clustering error. Final row

shows the average R-AUC (lower better).

Algorithm Oracle KSS Cost  NKSS DI SI CH Cov Mod Per Comm
SSC-ADMM 1.07 3.31 4.25 4.89 2.81 2.59 18.15 16.01 1352  18.61
SSC-OMP 25.25 33.10 33.55 3343 3191 31.77 40.87 43.06 3630 4224
EnSC 9.75 13.88 1525 1646 1297 1252 21.85 25.80 2291 23.66
GSC 2.07 4.83 5.95 6.77 6.24 4.74 19.98 26,53 1023 22.67
TSC 11.82 16.25 17.79 1994 16.21 16.50 2215 2745 25.04 25.36
EKSS 0.26 6.15 8.21 9.13 3.70 5.67 17.96  30.08 18.24  28.65
Average R-AUC 1 1.38 1.41 1.48 113 1.23 3.18 333 2.68 3.10

Table 8

Ability of various CQMs to select tuning parameters on Yale B dataset. Algorithm values (rows 2-7) indicate the best
clustering error (%) according to various CQMs. Oracle denotes the best overall clustering error. Final row shows the

R-AUC (lower better).

Algorithm Oracle  KSS Cost ~ NKSS DI SI CH Cov Mod Per Comm
SSC-ADMM  9.83 9.83 23.68 3137 84.09 3269 8084 7627 7627  84.09

SSC-OMP 13.28 13.28 2759 3035 3816 2759 7915 7915 79.15  79.15

EnSC 18.87 31.58 2899 5892 4285 3158 2130 2130 6336 21.30

GSC 20.27 31.87 31.87 3187 21.71 2278 6998 6998 6998  69.98

TSC 22.20 22.20 2220 4124 3927 2220 4934 4934 4934 4934

EKSS 16.00 17.02 2294 5465 8721 17.02 81.62 5037 3549 8495

R-AUC 1 1.04 1.03 1.10 1.12 1.05 1.10 1.08 1.11 1.10

5.5. General parameter selection

Finally, we consider the problem of selecting arbitrary algo-
rithm parameters, including optimization hyperparameters, thresh-
olding parameters, and number of neighbors, on the three bench-
mark datasets described above. For each dataset, we run each of
the six algorithms listed in Table 1 for a grid of parameters in the
range specified. We provide the oracle parameters, i.e., those re-

sulting in the lowest clustering error, in Table 10 at the end of this
section.

Tables 6-9 show the resulting errors obtained and R-AUC for
each CQM on the Synthetic, Hopkins, Yale, and COIL datasets,
respectively, where Synthetic refers to the dataset described in
Section 5.3. While no single CQM stands out as the best performer
across all datasets, several useful observations can be made. First,
the proposed CQMs that explicitly account for existing UoS struc-
ture consistently outperform those that are based solely on the
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Table 9

Ability of various CQMs to select tuning parameters on COIL-20 dataset. Algorithm values (rows 2-7) indicate the
best clustering error (%) according to various CQMs. Oracle denotes the best overall clustering error. Final row shows

the R-AUC (lower better).

Algorithm Oracle  KSS Cost ~ NKSS DI SI CH Cov Mod Per Comm
SSC-ADMM  13.19 15.28 1750 3368 4722 1632 6368 1319 57.15 63.68
SSC-OMP 27.29 27.29 2729 36.67 87.92 2729 6472 2729 36.67 64.72
EnSC 8.26 8.47 17.36  21.60 46.67 1736 8.26 8.26 21.67 8.26

GSC 2.99 12.50 1250 1250 1028 1250 61.32  3.40 10.62  68.96
TSC 15.62 17.22 2062 1660 1688 15.83 2146 1625 2333 2146
EKSS 14.03 31.39 31.39 3389 17.64 3139 4771 4035 27.99  48.96
R-AUC 1 1.06 1.05 1.06 1.14 1.04 1.08 1.05 1.11 1.08

Table 10

Parameter configuration resulting in the lowest clustering error for each
algorithm on each dataset. Description of parameters for each algorithm
is given in Table 1. For Hopkins-155 dataset, the mode of each parameter

is displayed.

Algorithm Synthetic ~ Hopkins-155 Yale B COIL-20
SSC-ADMM (1.0, 5.0) (0.1, 226.67)  (0.10, 670) (0.8, 5)
SSC-OMP 2 2 2 2

EnSC (3, 0.01) (98, 0.01) (3, 0.88) (3,0.99)
GSC (14, 1) (2, 1) (12, 5) (11, 9)

TSC 3 3 8

EKSS (87, 5) (2,3) (18, 7) (7,12)

affinity matrix, reinforcing the notion that geometric structure in
the data should be leveraged when it is known to exist. Second,
the KSS Cost is a strong performer across all three datasets, though
it should be noted that this is in light of a fixed number of clusters
K, and in the case of algorithms that do not have subspace dimen-
sion as input, a fixed subspace dimension d. In the case of GSC and
EKSS, where the subspace dimension is selected, KSS Cost selects
d = 20 for both the Yale and COIL datasets. However, these still cor-
respond to clusterings of low error, as indicated in the table. Third,
the CH obtains strong performance across all datasets, while the
SI is the best CQM on the Hopkins dataset but performs poorly on
Yale and COIL. Upon closer inspection, we found that the SI favored
clusterings in which one or two clusters contain the overwhelming
majority of the points.

Based on the above observations, the results indicate that when
the number of clusters is unknown, the NKSS and SI provide the
most reliable performance, though practitioners should take care
to verify that the SI does not select clusterings with unwarranted
class imbalance. In the case where the number of clusters is known
in advance, the KSS Cost and CH provide the most reliable indica-
tions of clustering quality.

6. Conclusions & future work

In this work, we present the first comprehensive study of in-
ternal clustering validation for the problem of subspace clustering.
We propose a novel point-to-point distance designed to capture
the salient features of points lying on a union of subspaces, and
we demonstrate empirically that this pseudometric has favorable
properties. We then propose a variety of measures of clustering
quality that can be used to select the “best” configuration of pa-
rameters for any subspace clustering algorithm. Our results show
that while no single CQM is clearly dominant, measures such as
the proposed normalized KSS cost and Silhouette Index can be
used to select the number of clusters, while the KSS cost and
Calinski-Harabasz index provide strong results on selecting the al-
gorithm parameters.

As this is a first approach to the clustering validation problem
for subspace clustering, we believe that it will enable researchers

and practitioners to develop new CQMs based on the proposed dis-
tances. Finally, the proposed point-to-point metric resembles a Ma-
halanobis distance, as noted in Section 3.3. In light of this fact, it
would be interesting to incorporate our distance into the problem
of metric learning with pairwise constraints, as in [61], which may
open a new avenue for the development of subspace clustering al-
gorithms.
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