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a b s t r a c t 

We study the problem of clustering validation, i.e., clustering evaluation without knowledge of ground- 

truth labels, for the increasingly-popular framework known as subspace clustering. Existing clustering 

quality metrics (CQMs) rely heavily on a notion of distance between points, but common metrics fail to 

capture the geometry of subspace clustering. We propose a novel point-to-point pseudometric for points 

lying on a union of subspaces and show how this allows for the application of existing CQMs to the 

subspace clustering problem. We provide theoretical and empirical justification for the proposed point- 

to-point distance, and then demonstrate on a number of common benchmark datasets that our proposed 

methods generally outperform existing graph-based CQMs in terms of choosing the best clustering and 

the number of clusters. 
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. Introduction 

Clustering has long been one of the most fundamental tools for

ata exploration, and from the start researchers have studied how

o determine the quality of a clustering output in order to choose

arameters and compare algorithms. In contrast to the supervised

earning setting, clustering problems do not provide any labeled

ata that can be used as a “hold-out” set for cross-validation. The

roblem of clustering quality has been widely studied for the gen-

ral clustering problem [1–4] . However, existing methods are not

pplicable to the subspace clustering problem [5] , a more modern

nd widely applicable clustering framework in which the clusters

lso have low-dimensional structure. 

The key ideas in the clustering quality literature are those of

ntra-cluster cohesion and inter-cluster dispersion . These notions are

efined fundamentally based on some distance metric chosen ap-

ropriately for the application. This distance metric is applied be-

ween points in the dataset or between points and cluster centers,

here the centers are of the same dimension as the data points. 

The subspace clustering problem can be formulated as a gen-

ralization of PCA, where we seek a collection of low-dimensional

ubspaces that best fits our data; this is known as the Union of

ubspaces (UoS) model. We may think of these subspaces as the

luster centers, in which case there is a natural notion of point-to-

enter and center-to-center distances. However, quantifying point-
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o-point distance becomes problematic. Intuitively, we wish to de-

ne a metric d ( · , · ) such that the distance between points in the

ame subspace is small, whereas points on orthogonal subspaces

hould have maximum distance. For example, antipodal points al-

ays lie in a one-dimensional subspace, and we therefore desire

(x, −x ) = 0 . However, this property cannot be achieved by exist-

ng (pseudo) metrics such as the Mahalanobis distance. 

In this work, we present what is, to the best of our knowl-

dge, the first approach to internal clustering validation for the

oS model. We propose a novel pseudometric for points lying on

 union of subspaces, as well as several clustering quality metrics

o that the output of subspace clustering algorithms can be tuned

nd fairly compared on unsupervised datasets. 

. Problem formulation & related work 

Consider a collection of N unit-norm points X = { x 1 , . . . , x N }
n ambient space R 

D , and let X ∈ R 

D ×N denote the matrix whose

olumns are the elements of X . We define a K-clustering of X to

e a partition of X into K disjoint sets C = { c 1 , . . . , c K } , where we

ssume 1 < K < N to avoid trivial clustering. Let U 1 , . . . , U K denote

rthonormal bases for K subspaces S 1 , . . . , S K obtained by perform-

ng PCA on the points in clusters c 1 , . . . , c K , and let D = { d 1 , . . . , d K }
e the set of dimensions of these subspaces. An example of data

ying in two 2-dimensional subspaces is shown in Fig. 1 , where the

oints from subjects 5 and 23 of the Extended Yale Face Database

 [6] are shown after projecting onto their first three principal

omponents via robust PCA [7] . 

https://doi.org/10.1016/j.patcog.2020.107328
http://www.ScienceDirect.com
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Fig. 1. Data from the Extended Yale Face Database B is known to lie in a union 

of low-rank subspaces. Images from subjects 5 and 23 projected onto first three 

principal components are shown. 
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2.1. Subspace clustering 

Subspace clustering algorithms seek to partition X into K clus-

ters such that the data in each cluster lies near a low-dimensional

linear or affine subspace. This is done in an unsupervised manner,

i.e., without knowledge of the subspaces themselves. This model

has applications ranging from structure from motion to image and

handwritten character recognition [8–12] . 

To accomplish this task, researchers leverage a variety of prop-

erties of data belonging to a union of subspaces. Perhaps the most

popular of these is the self-expressive property, which informally

states that points can be most efficiently represented as a lin-

ear combination of other points lying in the same subspace. Re-

searchers utilize this property by solving sparse regression prob-

lems of the form 

min 

Z 
‖ 

X − X Z ‖ 

2 
F + λ‖ 

Z ‖ 

subject to diag (Z) = 0 , 

where ‖ Z ‖ is the � 1 -norm in Sparse Subspace Clustering (SSC) [8] ,

the nuclear norm in Low-Rank Representation (which omits the

constraint on Z ) [13,14] , and may include a combination of other

norms to account for noisy data or outliers. An affinity/similarity

matrix is then obtained as | Z| + | Z| T , after which spectral cluster-

ing is performed to obtain the clusters. SSC and its variants thus

require the selection of at least one hyperparameter λ, as well as

a thresholding parameter in the case of the Alternating Direction

Method of Multipliers (ADMM) implementation of SSC. In [15] , the

authors present a range of allowable values for λ to guarantee cor-

rect clustering, but this range is based on data parameters such as

the inradius of each cluster, which cannot be known a priori, and

the result does not apply when a penalty for sparse outliers is in-

cluded. 

An alternative approach to subspace clustering is that of the

Thresholded Subspace Clustering (TSC) algorithm [16] , which lever-

ages the fact that points within the same subspace have large inner

product (on average) relative to points in different subspaces. TSC

is the simplest of all subspace clustering algorithms and proceeds

by forming the matrix | X 

T X | and thresholding each row and column

so that all but the top q entries are set to zero. Methods of select-
ng this threshold are provided in [16,17] , but these rely heavily

n strict assumptions on the data ( e.g., that the data are generated

niformly at random from the intersection of the unit sphere and

he subspace). Real-world datasets often violate these assumptions,

nd in practice, the clustering of lowest error may not result from

electing the threshold within the proposed ranges. 

One further approach to subspace clustering is based on the

 -subspaces (KSS) algorithm [18–20] , a generalization of K -means

hat seeks to minimize the sum of squared distances from points

o subspaces through alternating minimization. While KSS is com-

utationally efficient and only requires the selection of a single

uning parameter (the subspace dimension), its performance on

enchmark datasets is known to lag behind that of self-expressive

ethods. Recently, in [21] , the authors show that incorporating

obust subspace estimation via the Coherence Pursuit algorithm

22] can significantly improve the performance of KSS, though

his requires the selection of an additional tuning parameter. An-

ther recent approach to improving KSS is that of the Ensemble

 -subspaces (EKSS) algorithm [23] , which combines the results of

umerous KSS instances via the evidence accumulation framework

24] to achieve superior empirical performance and strong theoret-

cal guarantees. Like TSC, EKSS builds an affinity matrix and then

hresholds this matrix before applying spectral clustering. In this

ase, both the subspace dimension and the threshold parameter

ave significant impact on performance. 

.2. Internal clustering validation 

The trend illustrated above exists for all subspace clustering al-

orithms; hyperparameters, thresholds, and other variables must

e tuned in order to achieve strong performance. Hence, in order

o provide a principled, interpretable method for practitioners to

tilize these methods, we must define some measure of “goodness

f fit” for subspace clustering. The problem of evaluating clustering

esults in the absence of ground truth has been studied for decades

n the general clustering community and is known as internal clus-

ering validation [25] . It has applications ranging from image seg-

entation [26] to community analysis in graphs [2] to clustering

coustic signals [27,28] , among many others. 

In contrast to external clustering validation methods [29,30] , in-

ernal methods, known as clustering quality metrics (CQMs) seek to

easure clustering quality without access to ground-truth labels.

uch measures are designed to capture the “natural” goals of clus-

ering, the chief being that points within clusters should have high

imilarity or cohesion , while points in different clusters should have

ow similarity or high dispersion . 

Early examples of internal CQMs include the Dunn index [31] ,

avies-Bouldin index [32] , and the Silhouette index [33] . The Dunn

ndex is the ratio of dispersion to cohesion, where cohesion is

easured using the cluster diameter and dispersion using the min-

mum distance between points in different clusters. A number of

ariations on this index are proposed throughout the literature

nd defined in [1] , one of which we consider in this work (see

ection 4 ). The Davies-Bouldin index measures cohesion using the

ean distance from points to centroids and dispersion as the dis-

ance between centroids. The Silhouette index is based on the

normalized) difference between average intra-cluster pairwise dis-

ance and average inter-cluster pairwise distance. These and other

ore recent CQMs are studied extensively in the surveys [1,25] ,

ith the Dunn, Davies-Bouldin, Silhouette, and Calinsky-Harabasz

34] indices being among the top performers. A comprehensive list

f CQMs can be found in [3] . One major drawback to these meth-

ds for application to subspace clustering is that they often rely

n the pairwise distance between points. For points lying on a

ow-rank subspace, pairwise Euclidean distance is not indicative.

or example, the points x and −x clearly lie on the same one-
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3

imensional subspace but may be arbitrarily far apart. Further, the

otion of centroids must be revised before these methods can be

pplied. 

The above CQMs are designed for traditional distance-based

lustering algorithms such as K -means. However, many modern

lustering algorithms rely only on the entries of an adjacency ma-

rix, whose ( i, j )th entry A ij ∈ {0, 1} denotes whether two items in

he set are “connected,” or an affinity matrix, whose entries A ij ≥ 0

enote the strength of that connection. Such algorithms are re-

erred to as graph-based methods and include single linkage, other

ierarchical methods, and spectral clustering (see [ 35 , Ch. 14] for

 description of these methods). Empirical graph clustering quality

easures have existed for a number of years, and several compar-

sons of such metrics exist [2,36,37] , with no CQM consistently out-

erforming others when a large number of datasets are considered.

wo of the most widely used CQMs are coverage [38] and modular-

ty [39] . The former is defined as the ratio of intra-cluster connec-

ivity and total connectivity in the graph, and the latter measures

he strength of intra-cluster connectivity compared to the average

onnectivity of each cluster. Since nearly all subspace clustering al-

orithms produce an affinity matrix, graph-based CQMs present a

easonable off-the-shelf approach to parameter selection. However,

hese suffer from known drawbacks such as favoring sparse affin-

ty matrices [36] . Further, they ignore knowledge of the underlying

oS structure in the data, which has been shown to provide sig-

ificant benefits in other clustering contexts [40] . 

In [41] , the authors argue that lack of interpretability plagues

odern clustering algorithms and accounts for the widespread use

f K -means in spite of its known shortcomings. Subspace cluster-

ng falls victim to a similar problem, as relatively few people un-

erstand the concept of a union of subspaces, perhaps accounting

or its relative anonymity among practitioners. 1 For this paradigm

o gain popularity, the ability to select parameters is paramount,

nd hence the need to compare clusterings resulting from different

ubspace clustering algorithms is an important contribution that

as received no attention to this point. 

. Metrics for unions of subspaces 

As stated above, we wish to design internal CQMs that take into

ccount the low-dimensional intrinsic structure of the data, rather

han relying solely on the elements of the affinity matrix formed

y an algorithm. One approach to leveraging this geometry is to

evelop analogs to existing measures such as the Davies-Bouldin or

unn index. These and other CQMs rely on three key distances: (1)

oint-to-centroid, (2) centroid-to-centroid, and (3) point-to-point.

he first two have natural interpretations under the UoS model,

hich we state in Sections 3.1 and 3.2 . In Section 3.3 , we propose

 novel notion of pairwise distance for points lying on a union

f K subspaces and examine its properties. We overload the term

ist( · , · ) in this and following sections to represent all three

istances, with the definition being clear based on type. 

.1. Point-to-subspace distance 

A widely-used notion of point-to-centroid distance under the

oS model is that from a point to a subspace, i.e., 

ist (x, S) = 

∥∥x − U U 

T x 
∥∥

2 
, (1) 

here U ∈ R 

D ×d is an orthonormal basis for the subspace S . This

otion of distance is used in the KSS algorithm. 
1 For example, there is not a single subspace clustering algorithm implemented 

n the widely-used scikit-learn Python package. 

t  

t  

n  
.2. Subspace-to-subspace distance 

Recall that under the UoS model, the subspaces take the place

f centroids. Hence, it is reasonable to assume that the centroid-

o-centroid distance should be replaced by the distance between

oints on the Grassmannian. Two key problems arise with this

pproach. First, there are multiple proper metrics on the Grass-

annian, including the sine of the maximum principal angle be-

ween subspaces (see [ 42 , Section 6.4.3] for a definition of princi-

al angles) and the � 2 -norm of principal angles between subspaces,

hich corresponds to the geodesic distance [43] . While these two

istances result in the same topological structure, they capture dif-

erent properties of the subspaces being considered. More impor-

antly, these distances are only defined for subspaces of the same

imension. Since this assumption is not a requirement of our data

odel or any recent subspace clustering algorithm, we seek a no-

ion of subspace-to-subspace distance that can handle subspaces

f varying dimension. A notion of nearness between subspaces,

nown as the subspace affinity , appears frequently in the analysis

f various algorithms [8,16,44] . The subspace affinity is formally

efined as 

ff(S i , S j ) = 

1 √ 

d i ∧ d j 

∥∥U 

T 
i U j 

∥∥
F 

(2) 

 

√ √ √ √ 

1 

d i ∧ d j 

d i ∧ d j ∑ 

l=1 

cos 2 θl , (3) 

here a ∧ b denotes the minimum between a and b, U i ( U j ) is an

rthonormal basis for S i ( S j ), ‖ · ‖ F denotes the Frobenius norm,

nd θ l denotes the l th principal angle between the subspaces. The

ubspace affinity is between 0 and 1, with aff(S i , S j ) = 0 indicat-

ng the subspaces are orthogonal and aff(S i , S j ) = 1 if and only

f S i = S j . From (3) , we see that the subspace affinity captures a

otion of nearness between subspaces that considers all principal

ngles, rather than only the maximum. Further, it has been shown

hrough the analysis of various algorithms to be a key parameter

n measuring the difficulty of the subspace clustering problem. For

hese reasons, we propose the use of the following pairwise dis-

ance between subspaces 

ist (S i , S j ) = 

√ 

1 − aff
2 
(S i , S j ) 

= 

√ √ √ √ 

1 

d i ∧ d j 

d i ∧ d j ∑ 

l=1 

sin 

2 θl . (4) 

he above is closely related to the chordal distance considered in

he subspace packing problem [45] . In the case where d i = d j = d,

t is easy to see that (4) is a proper metric by noting that 

ist 
2 
(S i , S j ) = 1 − 1 

d 

∥∥U 

T 
i U j 

∥∥2 

F 

= 

1 

2 d 

(
‖ 

U i ‖ 

2 
F + 

∥∥U j 

∥∥2 

F 
− 2 

∥∥U 

T 
i U j 

∥∥2 

F 

)
= 

1 

2 

tr 
(
U i U 

T 
i + U j U 

T 
j − 2 U i U 

T 
i U j U 

T 
j 

)
= 

1 

2 

∥∥U i U 

T 
i − U j U 

T 
j 

∥∥2 

F 
. 

.3. Point-to-point distance 

While the point-to-subspace and subspace-to-subspace dis- 

ances are straightforward to define in terms of familiar quanti-

ies, to the best of our knowledge, there does not exist a useful

otion of pairwise distances between points lying on a union of
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Fig. 2. Two-dimensional embedding of points in Extended Yale Face Database B, 

subjects 13, 26, and 38 using multidimensional scaling on the proposed point-to- 

point distance. The proposed distance provides an indication of which points lie 

near the estimated subspace and groups outliers with similar forms of shadow. 
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subspaces. We now introduce a novel notion of distance between

points for this setting that satisfies a number of “common sense”

properties. Assume we are given a clustering C = { c 1 , . . . , c K } with

bases U 1 , . . . , U K corresponding to each cluster. Let P x denote the

orthogonal projection matrix onto the subspace corresponding to

the cluster containing the point x , and let P ⊥ x = I − P x . Our proposed

point-to-point distance is 

dist (x, y ) = 

1 

2 

(
x T P ⊥ x x + x T P ⊥ y x + y T P ⊥ x y + y T P ⊥ y y 

−2 

∣∣x T P ⊥ x y 
∣∣ − 2 

∣∣x T P ⊥ y y 
∣∣)1 / 2 

. (5)

It is easily verified that (5) is a pseudometric taking values be-

tween 0 and 1. Further, the distance can be efficiently computed

in O (N 

2 + D 

2 ) time ( O ( N 

2 ) if the subspace bases are provided, as

with KSS and its variants). We now provide intuition for this dis-

tance with a number of observations. 

First note that without the projection matrices P ⊥ x and P ⊥ y , the

proposed distance becomes 
√ 

1 − | x T y | , indicating that the dis-

tance between points is a function of their absolute inner prod-

uct. The absolute inner product has been utilized widely in sub-

space clustering methods [16,23,46] and is therefore a useful fea-

ture; however, we argue that even orthogonal points should have

small distance if they are believed to lie in the same subspace. On

the other hand, note that if we drop the absolute value on the last

two terms of (5) , the distance becomes a Mahalanobis distance

with covariance matrix P ⊥ x + P ⊥ y . However, in this case, antipodal

points do not necessarily have distance zero as desired. 

The proposed distance overcomes both of these issues. First, an-

tipodal points always have distance zero due to the final two terms

of (5) . Second, if P x = P y and x = P x x and y = P y y, then d(x, y ) = 0 .

In other words, if x and y are assigned to the same cluster and the

subspaces are estimated perfectly, then d(x, y ) = 0 even when x

and y are orthogonal. The maximum value of (5) is 1, which occurs

when x and y are orthogonal to each other and each is orthogonal

to both the subspaces spanned by P x and P y . This instance may oc-

cur if the orthogonal points x and y are assigned to the same clus-

ter but neither lies in the subspace corresponding to that cluster,

i.e., P x = P y =: P̄ and P̄ ⊥ x = x and P̄ ⊥ y = y . 

To further motivate the proposed distance, consider the case

where the subspaces are perfectly modeled, which yields 

d(x, y ) = 

1 

2 

(∥∥P ⊥ y x 
∥∥2 

2 
+ 

∥∥P ⊥ x y 
∥∥2 

2 

)1 / 2 

. 

The above is small when each point lies near to the opposing

point’s subspace, indicating that points near the intersection of

subspaces will have small distance from each other. Further, con-

sider the case where the points are drawn randomly from their re-

spective subspaces, taking x ~ Ua and y ~ Vb , where P x = U U 

T and

P y = V V T and a, b ∼ Unif (S d−1 ) . In this case, we have 

E 

[
dist 

2 
(x, y ) 

]
= 

1 

2 

(
1 − 1 

d 

∥∥U 

T V 

∥∥2 

F 

)
= 

1 

2 

dist 
2 
(S x , S y ) (6)

indicating that randomly drawn points will have small distance

when their corresponding subspaces have small distance from each

other. While we do not analyze the case of imperfect subspace

modeling here, our empirical results ( Section 5.2 ) indicate that the

average pairwise intra-cluster distance remains smaller than the

average inter-cluster distance even under significant errors in the

subspace modeling. 

Finally, consider the case where many points are drawn from a

subspace but corrupted by noise. Under this setting, the proposed

distance indicates the level of noise on a given point, as points

that are heavily corrupted will have large distance from those that

are nearer to the true subspace. We illustrate this final scenario

in Fig. 2 , which shows the arrangement of points from the Ex-

tended Yale Face Database B. These points are known to lie near
 union of 9-dimensional subspaces, each corresponding to images

f a different subject. We take c 1 , . . . , c K to correspond to the true

lusters and find the best 9-dimensional basis for each cluster in

rder to compute the distance between points in clusters 13, 26,

nd 38. Fig. 2 illustrates the arrangement of after embedding the

oints into R 

2 using multidimensional scaling (MDS) [47] on the

roposed pairwise distance. Analyzing the original images shows

hat the tightly-grouped points correspond to images with low

mounts of shadow, while those farther from the cluster centroids

orrespond to heavily-shadowed images. In fact, we see that im-

ges with shadow on the left half of the face form one group of

utliers, and likewise for images with shadow on the right half. 

. Internal validation measures for subspace clustering 

Armed with the notions of point-to-subspace, subspace-to-

ubspace, and point-to-point distances defined in the previous sec-

ion, we are now ready to define a variety of CQMs for the problem

f subspace clustering. We define two quality measures based on

he KSS cost function as well as three analogs of existing CQMs

dapted to the UoS model. All CQMs require three inputs: the

ata X = { x 1 , . . . , x N } , the estimated clusters C = { c 1 , . . . , c K } , and

 set of subspace dimensions D = { d 1 , . . . , d K } . We define S k to be

he d k -dimensional subspace obtained by performing PCA on the

oints in cluster c k . 

The first CQM we consider is that of the KSS cost, which is de-

ned as 

 KSS (X , C, D) = 

1 

N 

K ∑ 

k =1 

∑ 

x i ∈ c k 
dist 

2 
(x i , S k ) . 

he KSS cost is suggested as a method for selecting among the

est of several runs of KSS in [9] . However, it is not appropriate

or attempting to determine the number of subspaces or the un-

erlying subspace dimensions, since it is a monotonically decreas-

ng function of both of these parameters. In the language of exist-

ng CQMs, the KSS cost is a measure of cohesion only, rather than

 balance between cohesion and dispersion. Existing approaches

uch as the gap statistic [48] attempt to quantify an “elbow” in

he within-cluster cohesion (e.g., as computed by m KSS ) in order to

elect the number of clusters. However, the gap statistic requires
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e  
he additional computation of the cohesion for a reference dataset,

ncreasing computational complexity. An alternative method based

n examining the singular values of the graph Laplacian was pro-

osed in [13] . However, this method requires selecting yet another

uning parameter and is only applicable to algorithms that rely on

n affinity matrix. Further, our empirical results on selecting the

umber of clusters indicated that both the gap statistic and the

aplacian-based method failed to reliably determine the correct

umber of clusters across multiple algorithms, even on synthetic

ata. We therefore propose the following CQM, which we refer to

s Normalized KSS Cost (NKSS) 

 NKSS (X , C, D) = 

1 

N 

K ∑ 

k =1 

∑ 

x i ∈ c k 

dist 
2 
(x i , S k ) 

min j 	 = k dist (S j , S k ) 2 
. 

or both m KSS and m NKSS , smaller values correspond to better clus-

erings. In the case where all subspaces are orthogonal, we have

ist (S j , S k ) = 1 for all j, k , and m NKSS = m KSS . However, as the

ubspace dimension increases, the subspaces “fill up the space,”

ncurring a penalty. This is made clear by noting that for two

 -dimensional subspaces drawn uniformly at random from the

rassmannian, dist 
2 (S i , S j ) ≈ D −d 

D [ 21 , Lemma 3]. Similarly, in-

reasing the number of subspaces decreases the expected mini-

um pairwise distance between subspaces, increasing the normal-

zation penalty. 

We also consider three existing CQMs that rely on the distances

efined in the previous section. Since there are numerous existing

QMs based on pairwise distances between points and centroids,

e choose three of the best performers in the extensive survey

1] . 2 The first is a variant of the Dunn Index (DI) [31] , referred to

s Generalized Dunn Index 41 (gD41) in [1] , which measures co-

esion using the maximum cluster diameter and dispersion using

he minimum distance between any pair of subspaces. 

 DI (X , C, D) = 

min j 	 = k dist (S j , S k ) 
max k ∈ [ K] max x i ,x j ∈ c k dist (x i , x j ) 

. 

igher values correspond to better clusterings for the Dunn Index. 

Another popular CQM that is shown to perform well in the sur-

ey [1] is the Silhouette Index (SI) [33] , which measures cohesion

sing the mean pairwise distance between points in the same clus-

er and dispersion as the smallest average distance from a point to

ll points in another cluster. 

 SI (X , C, D) = 

1 

K 

K ∑ 

k =1 

1 

N k 

∑ 

x i ∈ c k 

b(i ) − a (i ) 

max (a (i ) , b(i )) 
, 

here 

 (i ) = 

1 

N k − 1 

∑ 

x j ∈ c k x j 	 = x i 
dist (x i , x j ) , 

nd 

(i ) = min 

l 	 = k 
1 

N l 

∑ 

x j ∈ c l 
dist (x i , x j ) . 

igher values correspond to better clusterings for the Silhouette

ndex. 

Finally, we consider the Calinski-Harabasz (CH) index [34] ,

hich measures cohesion using the average distance from points

o their respective subspaces and dispersion using the average dis-

ance from each subspace to the best subspace of the same dimen-

ion for the entire dataset, 

 CH (X , C, D) = 

N − K 

K − 1 

∑ K 
k =1 N k dist (S k , S X ) ∑ K 

k =1 

∑ 

x i ∈ c k dist (x i , S k ) 
, 
2 We experimented with thirteen total existing CQMs studied in [1] and chose 

he top three performers to report here. 

c  

i  

R

here S X denotes the subspace spanned by the entire dataset.

igher values correspond to better clusterings for the Calinski-

arabasz Index. 

. Empirical results 

In this section, we compare the proposed CQMs to existing

QMs on a variety of synthetic and real datasets. We first evaluate

he proposed point-to-point distance to show its empirical bene-

ts over other existing notions of distance. We then evaluate the

bility of each CQM to determine the true number of clusters on

ynthetic data drawn from a UoS. Finally, we evaluate the perfor-

ance of the CQMs on three common benchmark datasets in the

ubspace clustering literature. 

Along with the CQMs described in Section 4 , we also consider

our graph-based CQMs that are shown to perform well in the sur-

eys [36,37,49] : coverage [38] , modularity [39] , permeance [50] ,

nd communitude [51] . 

When evaluating the various CQMs, we consider six subspace

lustering algorithms: SSC [8] , SSC-OMP [52] , EnSC [53] , GSC [44] ,

SC [16] , and EKSS [23] . These algorithms are shown to be scalable,

heoretically justified, and perform well on benchmark datasets.

urther, they represent a wide range of tuning parameters, includ-

ng optimization hyperparameters, thresholding parameters, sub- 

pace dimension, and number of nearest neighbors. Each algorithm

s run for between 50 and 200 hyperparameter configurations (de-

ending on number of tuning parameters and computation time)

ith parameters chosen linearly from these ranges. See Table 1

or a summary of these parameters and their considered ranges.

e evaluate the proposed CQMs on synthetic data as well as three

f the most common benchmark datasets in the subspace cluster-

ng literature: the Hopkins-155 dataset [54] , the cropped Extended

ale Face Database B [6,55] , and the COIL-20 [56] object database,

ith preprocessing steps performed as in [23] . 

Recall that our proposed CQMs and subspace-based metrics re-

uire the underlying subspace dimensions as input. First, we note

hat allowing each cluster to have a different subspace dimension

esults in an explosion of the parameter space. Instead, it is com-

on to set all clusters to have dimension equal to some maximum

stimated subspace dimension during clustering and then estimate

ndividual subspace dimensions once the clusters have been iden-

ified. For GSC and EKSS, which take subspace dimension as an in-

ut parameter, we use the same (maximum) subspace dimension

uring both clustering and evaluation with the CQMs, allowing us

o perform model selection on subspace dimension. For algorithms

uch as SSC and its variants, which do not require subspace dimen-

ion as an input, we select the CQM subspace dimension based on

ccepted values from the literature, taking d = 9 for Yale and COIL

nd d = 3 for Hopkins, as in [40] . Although omitted due to lack

f space, our initial empirical investigation suggests that our pro-

osed subspace-based CQMs have roughly equal performance over

 wide range of subspace dimensions, and the automatic selection

f this parameter (e.g., via explained variance or Bayesian methods

57] ) is an interesting topic for future work. 

.1. Evaluation metric 

A variety of metrics for evaluating and comparing CQMs are

roposed throughout the literature. Often, CQMs are used to se-

ect a parameter with a true value, such as the number of clus-

ers, in which case it is common to evaluate the ability to select

his value correctly. Alternatively, Spearman’s rank correlation co-

fficient [58] may be used to measure how well the ranking of

lusterings according to a given CQM compares to an external val-

dation measure, such as the Jaccard coefficient [29] or Adjusted

and index [30] . We use a variation on this approach. 
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Table 1 

Subspace clustering algorithms considered and their corresponding parameters with ranges considered. 

Algorithm Parameter 1 Description Parameter 2 Description 

SSC-ADMM ρ ∈ [0.1, 10] thresholding parameter α ∈ [5, 2000] hyperparameter 

SSC-OMP k max ∈ { 1 , 50 } maximum coefficients – –

EnSC λ ∈ [0.01, 0.99] hyperparameter α ∈ [3, 100] hyperparameter 

GSC k max ∈ { 1 , 20 } # neighbors d ∈ {1, 20} subspace dimension 

TSC q ∈ {2, 100} ∪ { N } thresholding parameter – –

EKSS q ∈ {2, 100} ∪ { N } thresholding parameter d ∈ {1, 20} subspace dimension 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3. t-SNE embedding of points drawn from a union of five 7-dimensional sub- 

spaces of R 100 using (a) Euclidean, (b) inner product, (c) proposed pairwise distance. 
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First, the most widely used external validation measure for sub-

space clustering is the clustering error, which is computed by

matching the true labels and the labels output by a given clus-

tering algorithm, 

ε = 100 

( 

1 − max 
π

1 

N 

∑ 

i, j 

Q 

out 
π(i ) j Q 

true 
i j 

) 

, 

where π is any permutation of the cluster labels, and Q 

out and

Q 

true are the output and ground-truth labelings of the data, re-

spectively, where the ( i, j )th entry is one if point j belongs to clus-

ter i and is zero otherwise. We define the oracle error as the low-

est clustering error among all parameter configurations considered

(see Table 1 ) and emphasize that this error can only be determined

in light of the ground-truth labels. Hence, the goal of any CQM is

to discover the parameter configuration(s) that result in the oracle

error without knowledge of the true labels. 

As a validation metric for the various CQMs, one could compute

the Spearman correlation between the clusterings sorted according

to true error (smallest to largest) and best clustering according to

each CQM, as is done in [49] . However, it is less important that

the order of clusterings returned by a CQM match the oracle or-

der exactly than that the top few clusterings (according to each

CQM) be ones of low error. For this reason, we propose the fol-

lowing ratio of area under the curves (R-AUC) metric. Consider a set

of p clusterings—i.e., outputs of a clustering algorithm on p differ-

ent configurations of hyperparameters—to be evaluated by a CQM

m , and let ε m 

∈ R 

p be the vector of clustering errors resulting from

the p clusterings sorted from best to worst according to m . Further,

let ε∗ be the vector of errors sorted according to the true (oracle)

clustering error. Let A m 

denote the area under the normalized cu-

mulative sum of εm 

, i.e., 

A m 

= 

1 ∑ p 
i =1 

ε m 

(i ) 

p ∑ 

j=1 

j ∑ 

i =1 

ε m 

(i ) , 

where εm 

( j ) denotes the j th element of the vector εm 

. Let A 

∗ be

similarly defined, and note that smaller values of A m 

correspond to

better orderings of the clusterings. The R-AUC is then 

R-AUC = 

A m 

A ∗
. (7)

The R-AUC ≥ 1, with a lower ratio implying better performance. 

5.2. Empirical evaluation of proposed point-to-point distance 

We begin by demonstrating that the proposed point-to-point

distance (5) outperforms existing distances in terms of providing

an embedding by which points lying on a UoS are well sepa-

rated. Fig. 3 compares the resulting two-dimensional embedding

of points from a union of five 7-dimensional subspaces of R 

100 us-

ing t-SNE [59] on the pairwise distance matrix formed using the

Euclidean distance, the inner product-based distance dist (x, y ) =(
1 −

∣∣x T y ∣∣)1 / 2 
, and the proposed distance (5) , where we assume

the subspaces are modeled perfectly. The figure demonstrates that
he proposed metric is the only one that results in points that are

learly separated according to subspace membership. 

As stated above, the separation shown in Fig. 3 is obtained as-

uming the subspaces are modeled perfectly, which is unlikely to

e the case in practice. We now study the impact of mismodel-

ng the subspaces by considering the distance gap between inter-

luster and intra-cluster distances. In general, a CQM will want

he inter-cluster distances to be large and intra-cluster relatively

maller. Let the average difference between these inter-cluster and

ntra-cluster distances be called the “distance gap.” In Fig. 4 , we

isplay the distance gap as a function of both the estimation error

n the subspaces (i.e., in P x and P y ) and the distance between the

rue subspaces the points are drawn from. We consider the case

f two ten-dimensional subspaces of R 

100 , drawing 10 0 0 points

niformly at random from the unit sphere intersected with each

ubspace. The subspace estimates ˆ S 1 and 

ˆ S 2 are each generated

o have the same distance from their respective true subspaces,

isplayed on the vertical axis. The horizontal axis indicates the

istance between the true subspaces S 1 and S 2 . For a fixed dis-

ance between the true subspaces S 1 and S 2 , the figure demon-

trates a significant distance gap even when there is nontrivial es-

imation error in the subspaces. For example, in the case where

ist (S 1 , S 2 ) = 0 . 5 , the distance gap is still greater than 0.13, even

hen dist (S i , ˆ S i ) = 0 . 5 . By comparison, if we were to use the inner

roduct-based distance (as in Fig. 3 (b)), the resulting distance gap

ould be 0.05. Hence, the integration of both the arrangement of

oints and the subspace estimates results in a metric that robustly

ifferentiates points lying on a UoS. 
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Fig. 4. Distance gap as a function of subspace estimation error (vertical axis) and 

distance between the true subspaces (horizontal axis) computed using the proposed 

metric (5) . The larger the distance gap, the better clustered is the dataset. Points 

are drawn from two ten-dimensional subspaces of R 100 . Using the proposed metric, 

points in different subspaces are well separated even under significant subspace 

estimation error. 

Table 2 

Comparison of CQMs using Euclidean distance and proposed 

subspace-based distance from Section 3 . Values indicate the aver- 

age R-AUC across all six algorithms (lower better). 

Euclidean Proposed 

Dataset DI SI CH DI SI CH 

Synthetic 1.09 1.95 1.49 1.12 1.08 1.08 

Hopkins-155 1.45 4.88 3.13 1.48 1.13 1.23 

Yale B 1.08 1.19 1.06 1.10 1.12 1.05 

COIL-20 1.08 1.13 1.16 1.06 1.14 1.04 

Iris 1.13 1.15 1.13 1.25 1.17 1.27 

Balance 1.07 1.08 1.09 1.09 1.05 1.07 

Sonar 1.03 1.04 1.03 1.04 1.05 1.04 
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Table 3 

Average difference between best and oracle clustering error (%) according 

to CQMs using Euclidean distance and proposed subspace-based distance 

from Section 3 . Average is taken across the six algorithms listed in Table 1 . 

Euclidean Proposed 

Dataset DI SI CH DI SI CH 

Synthetic 0.85 27.24 19.95 0.56 7.57 0.37 

Hopkins-155 9.81 24.56 19.56 6.73 3.94 3.93 

Yale B 12.37 54.69 26.11 24.66 35.47 8.90 

COIL-20 9.46 27.97 42.15 12.26 24.20 6.55 

Iris 9.89 17.22 4.44 18.11 17.11 12.00 

Balance 16.32 15.09 11.68 9.97 10.24 9.31 

Sonar 11.06 8.01 8.09 10.58 12.58 12.58 
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.3. CQM comparison: proposed vs. euclidean distance 

Next, we evaluate the impact of utilizing the proposed metrics

rom Section 3 on the DI, SI, and CH CQMs. For each dataset, we

un each of the six algorithms in Table 1 for a grid of parame-

ers in the range specified. Aside from the benchmark datasets de-

cribed above, we also consider synthetic data drawn from a union

f K = 5 subspaces, each having dimension d = 5 , drawn uniformly

t random in ambient space D = 100 . We draw N k = 100 points

rom each subspace and corrupt them with Gaussian noise with

ariance σ 2 = 0 . 05 . We generate ten instances of data according to

his arrangement and report the average value. Table 2 shows the

verage R-AUC (taken over all algorithms) for each of these three

QMs using both Euclidean distance (left columns) and our pro-

osed subspace-based distances (right columns). For the Hopkins

ataset, where the UoS structure is known to be strong, the use

f subspace-based metrics has an especially large impact on the

erformance of both the SI and CH, yielding a R-AUC of roughly

/4 and 1/3, respectively, of the Euclidean-based variants. On other

atasets, the improvement in R-AUC is more mild, though the re-

ulting error selected by the subspace-based CQMs is typically sig-

ificantly lower than that of the Euclidean-based CQMs. We con-

rm this finding in Table 3 , where we display the average differ-

nce between the error selected by the various CQMs and the ora-

le error. In this case, a value of zero would indicate that the CQM

elected the best possible clustering among all configurations for

ach algorithm. The table displays the dramatic benefit of utiliz-
ng the proposed metric for datasets known to have strong UoS

tructure. For example, on Hopkins-155, the Euclidean-based SI se-

ects errors that are an average of 24.56% greater than the min-

mum error, while the proposed subspace-based SI results in er-

ors that are only 3.94% above the oracle. For the DI, the choice

f metric appears to have less impact; however, we will show in

ection 5.5 that the DI performs poorly overall when compared to

he proposed KSS and NKSS CQMs. For completeness, we also con-

ider the Balance, Iris, and Sonar datasets from the UCI Machine

earning Repository [60] , none of which is expected to exhibit UoS

tructure. Our results show that the subspace-based CQMs perform

n par with their Euclidean counterparts, even showing a mild im-

rovement in some cases (e.g., for the Balance dataset). Hence, our

roposed subspace-based metrics result in significant benefits in

he case where the underlying UoS structure is strong and do not

ppear to be harmful even in the case where there is no such

tructure. 

.4. Selecting the number of clusters 

We next consider the problem of selecting the number of clus-

ers K on synthetic data as well as the Hopkins, Yale, and COIL

atasets. For the synthetic data, we generate data from K = 7 sub-

paces of dimension d = 5 drawn uniformly at random from the

rassmannian in ambient dimension D = 100 . For k = 1 , . . . , K, we

raw N k = 100 points from the subspace spanned by U k as x i ∼
 (0 , U k U 

T 
k 
) , corrupt them with independent and identically dis-

ributed Gaussian noise with variance σ 2 = 0 . 05 , and then normal-

ze the points to have unit norm. We generate ten instances of data

ccording to this arrangement and report the average values below.

For each dataset, we run each algorithm listed in Table 1 over

 range of 10 values of K and select the best clustering accord-

ng to each CQM. The resulting average absolute deviation from

he true value of K is given in Table 4 , and the average R-AUC

across algorithms) is given in Table 5 . For the synthetic data, the

SS cost uniformly chooses the wrong K , choosing K = 8 for all al-

orithms and trials, while the normalization in NKSS selects the

orrect value in all instances. However, examination of the R-AUC

hows that the KSS cost does a better job of selecting low-error

lusterings, even though the number of clusters may be wrong.

he SI also selects the correct value for all algorithms and trials,

hile modularity and communitude selected K correctly for all but

SC-OMP and EKSS. In the case of EKSS, inspection of the affinity

atrices reveals that both CQMs favored sparse affinity matrices, a

henomenon noted in [36] . For the benchmark data, both the KSS

ost and NKSS are among the top performers in terms of absolute

eviation and R-AUC, while the CH achieves the best R-AUC scores

or several datasets despite having larger deviations from the true

umber of clusters. This highlights the fact that selecting the “cor-

ect” number of clusters does not always result in the lowest clus-

ering error. 
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Table 4 

Ability of various CQMs to select the correct number of clusters. Values indicate the average abso- 

lute deviation between the true and estimated number of clusters. Lowest values in each row are 

bolded. 

Dataset KSS Cost NKSS DI SI CH Cov Mod Per Comm 

Synthetic 1.00 0.00 0.57 0.00 4.75 4.22 0.13 2.02 0.10 

Hopkins-155 0.02 0.53 0.63 0.64 0.38 0.70 0.08 0.33 0.15 

Yale B 1.00 1.00 1.83 1.00 1.00 1.67 1.00 3.00 1.00 

COIL-20 1.00 1.00 1.50 1.83 1.00 3.67 0.67 0.67 1.67 

Table 5 

Ability of various CQMs to select the correct number of clusters. Values indicate the average R-AUC 

across all six algorithms (lower better). 

Dataset KSS Cost NKSS DI SI CH Cov Mod Per Comm 

Synthetic 1.03 1.13 1.91 1.21 1.54 1.90 1.17 1.52 1.25 

Hopkins-155 1.23 1.17 1.17 1.12 1.11 1.14 1.27 1.17 1.20 

Yale B 1.10 1.14 1.49 1.08 1.04 1.36 1.25 1.61 1.15 

COIL-20 1.03 1.03 1.52 1.49 1.03 1.97 1.16 1.13 1.31 

Table 6 

Ability of various CQMs to select tuning parameters on synthetic UoS data. Algorithm values (rows 2–7) indicate the 

average best clustering error (%) according to various CQMs. Oracle denotes the best overall clustering error. Final 

row shows the average R-AUC (lower better). 

Algorithm Oracle KSS Cost NKSS DI SI CH Cov Mod Per Comm 

SSC-ADMM 1.90 1.90 1.98 2.20 20.16 1.96 54.66 40.64 46.98 49.50 

SSC-OMP 4.54 4.54 4.86 4.82 4.54 4.54 56.12 56.12 6.04 56.12 

EnSC 2.28 2.28 2.44 2.70 2.40 2.34 2.70 2.70 6.30 2.70 

GSC 0.50 2.02 2.02 2.08 3.82 2.02 26.70 2.14 2.12 27.52 

TSC 0.56 0.66 0.78 0.94 0.76 0.76 1.68 1.68 0.80 1.68 

EKSS 0.38 0.82 0.94 0.76 23.90 0.74 0.72 0.70 0.62 41.22 

Average R-AUC 1 1.08 1.07 1.12 1.08 1.08 1.25 1.19 1.30 1.25 

Table 7 

Ability of various CQMs to select tuning parameters on Hopkins-155 dataset. Algorithm values (rows 2–7) indicate the 

average best clustering error (%) according to various CQMs. Oracle denotes the best overall clustering error. Final row 

shows the average R-AUC (lower better). 

Algorithm Oracle KSS Cost NKSS DI SI CH Cov Mod Per Comm 

SSC-ADMM 1.07 3.31 4.25 4.89 2.81 2.59 18.15 16.01 13.52 18.61 

SSC-OMP 25.25 33.10 33.55 33.43 31.91 31.77 40.87 43.06 36.30 42.24 

EnSC 9.75 13.88 15.25 16.46 12.97 12.52 21.85 25.80 22.91 23.66 

GSC 2.07 4.83 5.95 6.77 6.24 4.74 19.98 26.53 10.23 22.67 

TSC 11.82 16.25 17.79 19.94 16.21 16.50 22.15 27.45 25.04 25.36 

EKSS 0.26 6.15 8.21 9.13 3.70 5.67 17.96 30.08 18.24 28.65 

Average R-AUC 1 1.38 1.41 1.48 1.13 1.23 3.18 3.33 2.68 3.10 

Table 8 

Ability of various CQMs to select tuning parameters on Yale B dataset. Algorithm values (rows 2–7) indicate the best 

clustering error (%) according to various CQMs. Oracle denotes the best overall clustering error. Final row shows the 

R-AUC (lower better). 

Algorithm Oracle KSS Cost NKSS DI SI CH Cov Mod Per Comm 

SSC-ADMM 9.83 9.83 23.68 31.37 84.09 32.69 80.84 76.27 76.27 84.09 

SSC-OMP 13.28 13.28 27.59 30.35 38.16 27.59 79.15 79.15 79.15 79.15 

EnSC 18.87 31.58 28.99 58.92 42.85 31.58 21.30 21.30 63.36 21.30 

GSC 20.27 31.87 31.87 31.87 21.71 22.78 69.98 69.98 69.98 69.98 

TSC 22.20 22.20 22.20 41.24 39.27 22.20 49.34 49.34 49.34 49.34 

EKSS 16.00 17.02 22.94 54.65 87.21 17.02 81.62 50.37 35.49 84.95 

R-AUC 1 1.04 1.03 1.10 1.12 1.05 1.10 1.08 1.11 1.10 
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5.5. General parameter selection 

Finally, we consider the problem of selecting arbitrary algo-

rithm parameters, including optimization hyperparameters, thresh-

olding parameters, and number of neighbors, on the three bench-

mark datasets described above. For each dataset, we run each of

the six algorithms listed in Table 1 for a grid of parameters in the

range specified. We provide the oracle parameters, i.e., those re-
t  
ulting in the lowest clustering error, in Table 10 at the end of this

ection. 

Tables 6 –9 show the resulting errors obtained and R-AUC for

ach CQM on the Synthetic, Hopkins, Yale, and COIL datasets,

espectively, where Synthetic refers to the dataset described in

ection 5.3 . While no single CQM stands out as the best performer

cross all datasets, several useful observations can be made. First,

he proposed CQMs that explicitly account for existing UoS struc-

ure consistently outperform those that are based solely on the
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Table 9 

Ability of various CQMs to select tuning parameters on COIL-20 dataset. Algorithm values (rows 2–7) indicate the 

best clustering error (%) according to various CQMs. Oracle denotes the best overall clustering error. Final row shows 

the R-AUC (lower better). 

Algorithm Oracle KSS Cost NKSS DI SI CH Cov Mod Per Comm 

SSC-ADMM 13.19 15.28 17.50 33.68 47.22 16.32 63.68 13.19 57.15 63.68 

SSC-OMP 27.29 27.29 27.29 36.67 87.92 27.29 64.72 27.29 36.67 64.72 

EnSC 8.26 8.47 17.36 21.60 46.67 17.36 8.26 8.26 21.67 8.26 

GSC 2.99 12.50 12.50 12.50 10.28 12.50 61.32 3.40 10.62 68.96 

TSC 15.62 17.22 20.62 16.60 16.88 15.83 21.46 16.25 23.33 21.46 

EKSS 14.03 31.39 31.39 33.89 17.64 31.39 47.71 40.35 27.99 48.96 

R-AUC 1 1.06 1.05 1.06 1.14 1.04 1.08 1.05 1.11 1.08 

Table 10 

Parameter configuration resulting in the lowest clustering error for each 

algorithm on each dataset. Description of parameters for each algorithm 

is given in Table 1 . For Hopkins-155 dataset, the mode of each parameter 

is displayed. 

Algorithm Synthetic Hopkins-155 Yale B COIL-20 

SSC-ADMM (1.0, 5.0) (0.1, 226.67) (0.10, 670) (0.8, 5) 

SSC-OMP 2 2 2 2 

EnSC (3, 0.01) (98, 0.01) (3, 0.88) (3,0.99) 

GSC (14, 1) (2, 1) (12, 5) (11, 9) 

TSC 6 3 3 8 

EKSS (87, 5) (2, 3) (18, 7) (7, 12) 
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ffinity matrix, reinforcing the notion that geometric structure in

he data should be leveraged when it is known to exist. Second,

he KSS Cost is a strong performer across all three datasets, though

t should be noted that this is in light of a fixed number of clusters

 , and in the case of algorithms that do not have subspace dimen-

ion as input, a fixed subspace dimension d . In the case of GSC and

KSS, where the subspace dimension is selected, KSS Cost selects

 = 20 for both the Yale and COIL datasets. However, these still cor-

espond to clusterings of low error, as indicated in the table. Third,

he CH obtains strong performance across all datasets, while the

I is the best CQM on the Hopkins dataset but performs poorly on

ale and COIL. Upon closer inspection, we found that the SI favored

lusterings in which one or two clusters contain the overwhelming

ajority of the points. 

Based on the above observations, the results indicate that when

he number of clusters is unknown, the NKSS and SI provide the

ost reliable performance, though practitioners should take care

o verify that the SI does not select clusterings with unwarranted

lass imbalance. In the case where the number of clusters is known

n advance, the KSS Cost and CH provide the most reliable indica-

ions of clustering quality. 

. Conclusions & future work 

In this work, we present the first comprehensive study of in-

ernal clustering validation for the problem of subspace clustering.

e propose a novel point-to-point distance designed to capture

he salient features of points lying on a union of subspaces, and

e demonstrate empirically that this pseudometric has favorable

roperties. We then propose a variety of measures of clustering

uality that can be used to select the “best” configuration of pa-

ameters for any subspace clustering algorithm. Our results show

hat while no single CQM is clearly dominant, measures such as

he proposed normalized KSS cost and Silhouette Index can be

sed to select the number of clusters, while the KSS cost and

alinski-Harabasz index provide strong results on selecting the al-

orithm parameters. 

As this is a first approach to the clustering validation problem

or subspace clustering, we believe that it will enable researchers
nd practitioners to develop new CQMs based on the proposed dis-

ances. Finally, the proposed point-to-point metric resembles a Ma-

alanobis distance, as noted in Section 3.3 . In light of this fact, it

ould be interesting to incorporate our distance into the problem

f metric learning with pairwise constraints, as in [61] , which may

pen a new avenue for the development of subspace clustering al-

orithms. 
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