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a b s t r a c t

This paper provides a new age estimation approach, which distinguishes itself with the following three

contributions. First, we combine distance metric learning and dimensionality reduction to better

explore the connections between facial features and age labels. Second, to exploit the intrinsic ordinal

relationship among human ages and overcome the potential data imbalance problem, a label-sensitive

concept and several imbalance treatments are introduced in the system training phase. Finally, an

age-oriented local regression is presented to capture the complicated facial aging process for age

determination. The simulation results show that our approach achieves the lowest estimation error

against existing methods.

& 2012 Elsevier Ltd. All rights reserved.
1. Introduction

In the last few decades, with the increasing need of automatic
recognition and surveillance systems, researches on human faces
– including face detection, face recognition, gender classification,
and facial expression recognition – have attracted significant
attention in both computer vision and pattern recognition.
Compared to these face-related researches, facial age estimation
is a relatively new topic yet with several interesting and impor-
tant potential usage. For example, an automatic age estimation
system can not only facilitate the human–computer interface, but
also prevent under ages from accessing cigarettes, bears, and
pornographic websites. In addition, the age attribute has been
applied in face verification and retrieval [24] to enhance the
overall performance.

Estimating human ages is intrinsically a challenging task due
to its multi-class nature: An age label can be seen as an individual
class. This nature makes age estimation much harder than gender
classification and face detection from the perspective of machine
learning, where well-studied binary classifiers cannot be directly
applied. This nature also makes age estimation easily suffer the
over-fitting problem when the size of the training set is insufficient.
Moreover, because of the diversity of facial aging processes across
people, it is very difficult to design and determine the type of facial
ll rights reserved.
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features that can directly represents human ages. To solve these
problems, several age estimation algorithms have been published in
the past decade; these algorithms are generally composed of two
steps: feature extraction [10,12,14,20,22,25,26,31,35,46,47] and age
determination [5,6,18,19,32,40,42–44,51].

Apart from the challenges mentioned above, three important
factors should also be regarded for building a robust age estimation
system. First, there exist the ordinal relationship and correlations
among age labels; for example, age 30 is closer to age 25 than to
age 10. This relationship leads age estimation to a more difficult
learning task than the traditional multi-class classification pro-
blem, which assumes no correlations among classes. Although
techniques like regression and cost-sensitive learning could model
the ordinal relationship in their objective functions, most of the
distance metric learning and dimensionality reduction algorithms
are designed only for the traditional classification case and ignore
the correlations among labels. Second, as mentioned in [18], the
aging process on human faces is rather complicated and may not be
fully captured by a single classifier or regressor. Finally in age
databases, the number of images of each age label can be highly
different, which would result in the serious imbalance problem
during the training phase and degrade the overall performance of
age estimation.

In this paper, a new facial age estimation approach is proposed,
which takes all the above factors and challenges into consideration:
�
 To avoid over-fitting and explore the connections between
facial features and age labels, the locality preserving projection
(LPP) [21] is utilized to reduce the dimensionality of features
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drastically and preserve the most important information for
age estimation.

�
 To better exploit the ordinal relationship among age labels, a

label-sensitive concept is introduced, which regards the label
similarity during the training phase of LPP.

�
 To capture the complicated facial aging process, an age-oriented

local regression algorithm named KNN-SVR (K nearest neighbors-
support vector regression) is presented.

�
 To alleviate the imbalance problem, several imbalance treat-

ments are proposed for some steps in our approach.

In addition, to further enhance the performance of LPP, a distance
metric adjustment step is introduced (just before LPP) to achieve a
suitable space for neighbor searching, an essential operation in LPP.
The label-sensitive concept could also be employed in this step.

The proposed approach is examined under several experimen-
tal settings and evaluation criteria on the most widely-used
FG-NET aging database [53], and the simulation results demon-
strate the effectiveness and efficiency of our approach. Besides, to
further illustrate the availability of the label-sensitive concept on
dimensionality reduction algorithms other than LPP, we apply
this concept to another popular algorithm called the marginal
fisher analysis (MFA) [45]; the results also show significant
improvements in the age estimation performance.

This paper is organized as follows: In Section 2, we broadly
review the previous work on facial age estimation and some
related techniques of our approach. In Section 3, an overview of
the proposed approach is presented, and the label-sensitive con-
cept is introduced in Section 4. In Sections 5 and 6, the proposed
algorithms of distance metric adjustment and dimensionality
reduction as well as their corresponding imbalance treatments
are described; the proposed age-oriented local regression KNN-
SVR and a short summary of our approach are presented in
Sections 7 and 8. Finally, the simulation results and conclusion
are given in Sections 9 and 10.
2. Previous and related work

2.1. Previous work on facial age estimation

There were several age estimation algorithms published in the
last decade, and the goals of these algorithms can be separated into
two categories: One is to estimate the actual age (e.g., 30-year old);
the other is to classify a person into an age range, such as baby,
teenager, middle-ager, or elder. In this paper, we aim at the first
goal, which is the main focus in previous work.

An age estimation algorithm can be simply divided into two
steps: feature extraction and age determination. In the first step,
facial features related to human ages or facial appearance change
are extracted from human faces for compact representation; in
the second step, an age determination function is built to estimate
the age based on the extracted features. In the following, we give
a broad review of the previous work in each step respectively.
2.1.1. Feature extraction

Among all kinds of facial features, the first one utilized in age
estimation is probably the anthropometric model, which is based
on the domain knowledge of facial aging processes, such as the
occurrence of wrinkles and the change of face shapes. In [25],
Kwon et al. exploited the snake algorithm [23] for wrinkle
detection, and combined this information with some measures
of facial geometry for age range classification. The anthropometric
model was also applied in [22,31] for the same task and resulted
in acceptable accuracy. However, according to the experiments
presented in [13], this model was claimed not suitable for actual
age estimation.

The active appearance model (AAM) [7], originally proposed for
face detection, was first exploited for age estimation by Lanitis et al.
[26] in 2002. AAM can jointly extract the shape and texture
variations from human faces – the variations that indeed show
some clues of the facial aging process – so it soon became the most
widely-used feature type in age estimation [5,6,17–19,27,29,
32,40,42–44,48,51]. Later according to AAM, Geng et al. proposed
the aging pattern subspace (AGES) [14–16], which further considers
the identity information and the ordinal relationship of ages during
feature extraction.

To enhance the extraction of local facial information, Yan et al.
[46] proposed the spatially flexible patch (SFP), which encodes
the age label, the local appearance, and the corresponding spatial
coordinate into a SFP vector; a unified Gaussian mixture model
(GMM) is then trained to model the variations of all SFP vectors.
The SFP method is claimed robust against slight pose change and
face misalignment [13], whereas a unified probability model is
unlikely to represent all possible local appearances. This problem
was later considered and alleviated in [47,50].

Manifold learning has also been applied for feature extraction on
human faces. In [10,12], Fu et al. directly performed manifold
learning algorithms [11,21] on the resized face images to extract
compact facial features. This approach shows plausible performance
on the private UIUC-IFP database [10], but is not suitable for the FG-
NET database [53], which contains significant pose and expression
variations. In our approach, we first extract the AAM features, which
could effectively record the pose and expression variations on faces;
manifold learning algorithms are then applied for dimensionality
reduction and learning the connections between facial features and
age labels, not for direct feature extraction from face images.

Besides the feature extraction methods mentioned above,
well-known texture descriptors like the Gabor wavelets [20]
and the local binary patterns (LBP) [9] have been utilized for
age estimation as well.
2.1.2. Age determination

As described in Section 1, age estimation can be seen as a multi-
class classification problem, so traditional classification algorithms
such as the nearest centroid classifier [26,27,50] and the support
vector machine (SVM) [18–20] can be directly applied for age
determination. These algorithms, nevertheless, do not take the
ordinal relationship and correlations among age labels into
account. Namely, they assign in their objective functions a uniform
penalty to any misclassification case; however, in age estimation,
wrongly predicting a 30-year-old person as 10-year-old is much
more serious than predicting him/her as 25-year-old.

Regressors, on the other hand, indigenously consider the ordinal
relationship and could probably result in better estimation results.
Regression algorithms such as the least square regression [10,12],
the kernel regression [42,47], the Gaussian process regression
(GPR) [32,51], and the support vector regression (SVR) [18–20]
all have been applied and examined in previous work. In [43],
Yan et al. proposed an auto-structured regression according to the
claim: The age label given to each image should be a nonnegative
interval, rather than a fixed value. This regression model was later
improved in [44] by utilizing the expectation maximization (EM)
algorithm for optimization, leading to better age estimation per-
formance than in [43].

Compared to using a single regressor or classifier for age
determination, combining several regressors and classifiers could
better capture the complicated aging process and improve the
estimation performance [18]. In [26,27], Lanitis et al. proposed the
appearance- and age-specific combinations, which first classify a
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face into a similar-appearance group or an age group, and then
utilize the age determination function built specifically for that
group to predict the age. The age-specific combination was also
applied in [18,19,29] by concatenating SVM and SVR.

Recently, some new techniques of machine learning have been
brought into age estimation. In [5,52], the ordinal regression
technique is exploited to model the ordinal relationship among
age labels; and in [6], Chang et al. applied the cost-sensitive
classification technique, where the correlations among age labels
can be flexibly modeled according to different evaluation criteria.

2.2. Related techniques of the proposed approach

2.2.1. Manifold learning

The proposed approach improves LPP [21], a linearized manifold
learning algorithm, for dimensionality reduction on the extracted
facial features, as mentioned in Section 1. Manifold learning has
been experimented to successfully discover the intrinsic and latent
variables from data samples [28,39]; since the number of these
variables is generally much smaller than that of the input features,
manifold learning could therefore be used for dimensionality
reduction.

Algorithms of manifold learning are generally composed of three
steps: The first two steps, neighbor searching and local geometry

modeling, explore certain kinds of nonlinear properties from the
input data samples; the third step, embedding computation, then
embeds these input samples into the output feature space (with the
reduced dimensionality) through optimizing the objective function
built on such explored properties. In early manifold learning
algorithms (such as [4,33,36]), the embedding computation step
directly generates the output sample for each input sample in a
given training set, but cannot handle the testing (or unseen) data.
To solve this problem, linearization – a modification that restricts
the input–output relationship by a linear projection matrix – is
proposed in [21], where LPP is the linearized form of the Laplacian
eigenmap [4]. Based on the learned linear matrix, a testing sample
can thus be projected into the output space for dimensionality
reduction. Linearization was later applied in many manifold learn-
ing algorithms [11,45], and in the next subsection, the algorithm of
LPP is presented.

2.2.2. Locality preserving projection (LPP)

Given a training set X ¼ fxðnÞARd
gNn ¼ 1with N d-dimensional

samples and a desired output dimensionality p, LPP aims to learn

a matrix WLPP ARd�p that minimizes the average neighbor dis-

tance among the projected output samples Z ¼ fzðnÞARp
gNn ¼ 1,

where zðnÞ ¼WT
LPPxðnÞARp.

The algorithm of LPP comprises the three steps mentioned
in Section 2.2.1. In the first step, each sample in X searches its
k1 nearest neighbors via the Euclidean distance. And in the second
step, an N � N matrix Bþ ¼ ½bþij �1r i,jrN is constructed to record
the feature similarity

bþij ¼ expð�:xðiÞ�xðjÞ:2
=tÞ ð1Þ

between any pair of neighboring samples for local geometry
modeling; if samples x(i) and x(j) are not neighbors, bþij ¼ bþji ¼ 0.
Finally in the third step, the projection matrix WLPP is reached
through minimizing the following objective function ELPP(W):

ELPPðWÞ ¼
XN

i ¼ 1

XN

j ¼ 1

bþij � :WT
ðxðiÞ�xðjÞÞ:2

¼
XN

i ¼ 1

XN

j ¼ 1

bþij � :zðiÞ�zðjÞ:2
,

ð2Þ

with the constraint WTXDþXTW¼ I (for preventing trivial solu-

tions), where X is a d� N matrix containing each training sample
in the corresponding column, and Dþ is a diagonal matrix with

dþii ¼
P

j

bþij . To sum up, LPP tries to bring the neighbors (searched

in X) as closer as possible in the output p-dimensional space,
according to the neighbor similarity Bþ . Furthermore, the learned
matrix WLPP can be used directly for dimensionality reduction on
the testing data.

When the class label y(n) of each training sample x(n) is provided
in the training phase, the algorithm of LPP could be adjusted into the
supervised version by searching neighbors with only the same class
label in the first step [45]; the other parts of the LPP algorithm
remained unchanged. Since now the neighbors are defined not only
by feature similarity, but also by the same-label constraint, the
connection between features and labels can be explicitly linked,
hence leading to more representative features for classification after
dimensionality reduction. The implementation details of LPP could
be traced from the proposed algorithm in Table 3.
3. The proposed age estimation approach

3.1. The problem setting of age estimation

In this section, we give an overview about the proposed age
estimation approach. The problem setting used in this paper is

defined as follows: Given a training set fiðnÞgNn ¼ 1 with N face

images, and its corresponding label set Y ¼ fyðnÞALgNn ¼ 1 with

L¼ fl1,. . .,lcg, building an age estimation system can be modeled
as a supervised machine learning task, where the symbol c indicates
the total number of age labels concerned.
3.2. The overview of the proposed approach

The proposed approach basically adopts the traditional two-
step framework of age estimation algorithms (feature extra-

ctionþage determination), but further include two new steps –
distance metric adjustment and dimensionality reduction – as
illustrated in Fig. 1. There are two main purposes for performing
dimensionality reduction on the extracted features before feeding
them into the age determination step: One is to alleviate the over-
fitting problem in training the age determination function; the
other is to better explore the connection between facial features
and age labels—via the supervised version of dimensionality
reduction.

Suggested by the previous work, the active appearance model
(AAM) [7], which jointly considers the texture and shape informa-
tion from human faces, is utilized for feature extraction in our
approach and outputs a d-dimensional feature vector xARd for an
input image i. Then, a distance metric adjustment step is applied
to transfer the AAM feature space into a suitable space that can
enhance the performance of the following dimensionality reduc-
tion step. The resulting feature vectors after distance metric
adjustment and dimensionality reduction are denoted as xadjus-

tARd and zARp respectively; xadjust has the same dimensionality as
the extracted AAM features and z has a lower dimensionality p.
Finally, an age determination function is built to estimate the
age label ŷ (for the input image i) based on the p-dimensional
vector zARp.

In our approach, we improve the relevant component analysis
(RCA) [3] and LPP [21] for distance metric adjustment and
dimensionality reduction, respectively; both of them are machine
learning algorithms, and each requires a training phase to gen-
erate a projection matrix that can be directly applied on the
testing data. To our best knowledge, this is the first time to
combine supervised distance metric learning and dimensionality



Fig. 1. The flowchart of our approach: The proposed algorithms will be introduced in later sections.
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reduction algorithms for facial age estimation; the motivation
will be described in Section 5.

3.3. Main concerns and contributions

Aside from the combinations of distance metric learning and
dimensionality reduction, we also emphasize the following concerns
and propose the corresponding treatments:
�
 The label-sensitive concept is proposed (in Section 4) to take
the ordinal relationship among age labels into account in
distance metric adjustment and dimensionality reduction.

�
 As mentioned in [18], the facial aging process is rather

complicated. To overcome this problem and also fit the
criterion used for evaluating the performance of age estima-
tion, an age-oriented local regression algorithm, called KNN-SVR,
is proposed.

�
 In age databases, the number of images of each age label can

be highly different; if these databases are directly used for
training, the resulting age estimation system will be biased by
the labels with relatively more samples, leading to the imbal-
anced learning problem. To alleviate this problem, several
imbalance treatments are considered in our approach.

�
 Through incorporating the label-sensitive concept and the

imbalance treatments, new algorithms for the 2nd and 3rd
steps in our approach are presented and marked in Fig. 1.
4. The label-sensitive concept

Before describing in more detail about the proposed approach,
we first introduce the label-sensitive concept. In traditional
multi-class classification, a class is treated independently of the
other classes, and a uniform penalty is given when a sample is
misclassified into any other class. This condition also occurs in
training the conventional supervised dimensionality reduction
and distance metric learning algorithms, where a uniform penalty
is given to each different-label sample pair and only samples with
exactly the same label are to be pulled closer. However, in the
task of age estimation, there intrinsically exists the ordinal
relationship and correlations among age labels; therefore, the
penalties should be varied according to different misclassification
cases and different degrees of label dissimilarity.

In the existing literature, there are indeed some algorithms
that can handle the ordinal relationship in the age determination
step, such as the regression algorithms (as described in Section
2.1.2) and the modified forms of multi-class classification
[2,5,6,8,37]. For the distance metric learning and dimensionality
reduction steps, unfortunately, few previous algorithms (e.g. [30])
have taken the ordinal relationship into account. To achieve this,
the label-sensitive concept is proposed in paper, and in Section 9.7,
the differences between our algorithms and the one in [30] are
compared and discussed.

In the training phases of supervised distance metric learning
and dimensionality reduction, several statistical quantities (e.g.,
the scatter matrix) are required to compute for every single class
(age label), as will be mentioned in the next two sections. Instead
of treating each class independently with only the same-label
samples, the proposed label-sensitive concept claims that samples
with similar class labels (defined from the ordinal relationship)
should also be considered; the weight of each sample in comput-
ing the quantities of a specific class is assigned based on the
label similarity. For example, when computing the scatter matrix
of age 30, samples with ages around 30 are also regarded. In the
following two sections, we show how to embed the label-sensitive

concept into distance metric learning and dimensionality
reduction.
5. Distance metric adjustment

5.1. The drawbacks of AAM features and manifold learning

algorithms

The shape and texture variations extracted from human faces
by AAM may not directly reflect the corresponding age labels:
These variations may result from different personalities, poses,
genders, races, expressions, and living environments, not just
from ages. Besides, the dimensionality of AAM features is usually
too high (simply over a hundred) to train a robust age classifier or
regressor. To overcome these problems, we apply LPP [21] to
explore the connections between facial features and age labels,
and drastically reduce the dimensionality of features. LPP, as
introduced in Section 2.2.2, is a manifold learning algorithm and
composed of three steps in the training phase. In the first step,
LPP and most manifold learning algorithms [21,45] assumes the
input space to be locally Euclidean, and utilizes the Euclidean
metric for neighbor searching; this distance metric, however, may
not be suitable in practical cases.

5.2. The reason for performing distance metric adjustment

In age estimation, the desired neighbors of a given sample are
samples with similar facial appearance change caused by human

ages. To judge the availability of the Euclidean metric for



Table 1
The algorithm of RCA (relevant component analysis) [3].

Presetting
� Training set: X ¼ fxðnÞARd

gNn ¼ 1, Y ¼ fyðnÞALgNn ¼ 1

� Define Xi as the feature set containing all feature samples with age label li . The

number of samples in Xiis denoted as Ni .

� The goal of RCA is to find the projection matrix WRCAARd�d; then

xadjust ¼WT
RCAxARd.

Algorithm

� For each age label li , compute the mean vector li ¼
1
Ni

P
xðnÞ AXi

xðnÞ and the intra-

class scatter matrix Si ¼
1
Ni

P
xðnÞ AXi

ðxðnÞ�liÞðx
ðnÞ�liÞ

T .

�
Compute the total intra-class scatter matrixS¼ 1

N

Pc
i ¼ 1

Ni � Si .

� Perform the eigendecomposition: S¼ VLVT ; then WRCA ¼ VLð�1=2Þ .

Table 2
The proposed lsRCA algorithm (without the imbalance treatment).

� Define the sample-to-class weight (from sample n to class i;s and e are

tunable):

eðnÞi ¼
expð�ðyðnÞ�liÞ

2=sÞ if yðnÞ�li
�� ��re

0 otherwise

(

where e is the label-sensitive threshold to define the range of similar labels.
� Modify the computation of li,Si , and S as:

li ¼
1

oi

XN

n ¼ 1

eðnÞi xðnÞ , Si ¼
1

oi

XN

n ¼ 1

eðnÞi ðx
ðnÞ�liÞðx

ðnÞ�liÞ
T , and S¼

Xc

i ¼ 1

oiSi

Xc

i ¼ 1

oi ,

,

where oi ¼
PN

n ¼ 1

eðnÞi is the sum of sample-to-class weights from all the samples

to the label i.

� Follow the last step of RCA to compute WRCA ARd�d .
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searching neighbors in the AAM feature space, we simply check
the standard deviation (STD) of each feature: AAM utilizes the
principal component analysis (PCA) [38] for features generation,
and each STD value (equivalent to the square root of the eigenvalue
in PCA) represents how sharply the corresponding feature varies
across different face images. Besides, the usage of PCA also makes
the AAM features uncorrelated, suggesting that each feature could
be independently considered. Namely, the higher the STD is, the
stronger influence the feature has in computing the Euclidean
distance.

The STDs of the AAM features extracted from the FG-NET
database [53] are shown in Fig. 2; as presented, there exists a
strong variation among the STD values. However, from both our
observations and the experiments in [7,26,27], most of the AAM
features with higher STDs are not relevant to human ages, but to
poses and expressions, indicating the problem of applying the
Euclidean metric for neighbor searching. That is, the searched
neighbors are mainly with similar poses or expressions, but not
with similar change of appearances caused by human ages. This
problem would degrade not only the performance of LPP, but also
the overall accuracy of age estimation.

To deal with the above issue, a distance metric adjustment
step is introduced in our work (just before LPP) for re-weighing
the strengths of features.

5.3. The proposed usage of distance metric learning algorithms

In the existing literature of pattern recognition, normalizing
or scaling the STDs of features is the most widely-used method
to achieve distance metric adjustment. Nevertheless, without
regarding the label information, this method again could not
produce a suitable space for searching the desired neighbors via
the Euclidean distance. In our approach, we adopt the relevant
component analysis (RCA) [3] for distance metric adjustment
because of its efficiency and supervised nature: RCA is a super-
vised distance metric learning algorithm.

Given a training set X ¼ fxðnÞARd
gNn ¼ 1 with the label set Y ¼

fyðnÞALgNn ¼ 1, RCA first computes the intra-class scatter matrix Si of

each class li, and then performs the weighted sum on these
matrices to produce the total intra-class scatter matrix S. Finally,

the d� d matrix W that leads to WTSW¼ I is selected as the
adjustment matrix WRCA; the sample after distance metric adjust-

ment is denoted as xadjust, where xadjust ¼WT
RCAxARd.

The objective function of RCA, WTSW¼ I, is a whitening opera-
tion; in other words, RCA aims to whiten the intra-class scatter
matrices of all classes simultaneously. The resulting feature space
after RCA, though with no theoretical guarantee as the desired
space for neighbor searching, does lead to a (nearly) globally
Euclidean space inside each age class—through the whitening
operation in RCA with the label information. Therefore, when fed
with this feature space, the neighbor searching step of supervised
LPP (with the same-label constraint) now explores the k1 nearest
neighbors in a globally Euclidean space, which better matches the
usage of the Euclidean metric for neighbor searching, hence
improving the overall performance (as shown in Section 9). The
detailed algorithm of RCA is presented in Table 1; to be noticed,
xadjust has the same dimensionality as the input AAM features.

5.4. The proposed label-sensitive relevant component analysis

To further exploit the ordinal relationship among age labels,
the label-sensitive concept is applied in RCA: When computing the
intra-class scatter matrix Si of class li, samples with labels similar
to li are also involved. The weight of each sample to li is modeled
through a radial basis function, and the range of similar labels is
defined by a label-sensitive threshold e: Two ages with the gap
no larger than e are viewed as similar ages. The resulting
label-sensitive form of RCA, called lsRCA, is summarized in
Table 2, where the formulas of the mean vector li, the intra-
class scatter Si, and the total intra-class scatter S defined in
Table 1 are modified.

Eventually, to balance the influence of each label in lsRCA – the
age labels with more samples are likely to dominate the training
of lsRCA – an imbalance-compensated version called C-lsRCA is
proposed, where the formula of S in Table 2 is replaced by

S¼
1

c

Xc

i ¼ 1

Si: ð3Þ

This modification equalizes the influence of each intra-class
scatter matrix on the total intra-class scatter matrix.
6. Dimensionality reduction

6.1. The proposed label-sensitive locality preserving projection

RCA or its modified versions result in a suitable feature set

fxðnÞadjust ¼WT
RCAxðnÞARd

gNn ¼ 1, where the Euclidean metric now can

be utilized in the neighbor searching step of LPP. As mentioned in
Section 2.2.2, LPP is originally an unsupervised technique, yet
can be extended into the supervised version by searching



Fig. 2. The STD of each AAM feature (127 features are extracted from the FG-NET

database).

Fig. 3. The schematic illustration of the proposed lsLPP compared to the conven-

tional supervised extension of LPP [45]: Here we only take xðiÞ
adjust

’ s neighborhood

as an example. In both (a) and (b), the left ones are the distributions of

neighboring samples before dimensionality reduction; the right ones depict the

distributions after applying supervised LPP and lsLPP. As shown, lsLPP can not only

pull samples with similar labels together, but also preserve the order of label

similarity with respect to xðiÞ
adjust

.

Table 3
The proposed lsLPP algorithm (label-sensitive LPP).

Presetting
� Training set: X ¼ fxðnÞadjust ARd

gNn ¼ 1, Y ¼ fyðnÞALgNn ¼ 1 (X is represented as a d� N

matrix)

� Define the similar-label set Nþ ðiÞ for each sample xðiÞ
adjust

:

Nþ ðiÞ ¼ fxðjÞ
adjust

yðjÞ�yðiÞ
��� ���re,ja ig,
���

where e is the label-sensitive threshold to define the range of similar labels.
� Create an N � N sample similarity matrix Bþ ¼ ½bþij ¼ 0�1r i,jrN .

� The goal of lsLPP is to find the projection matrix WLPP ARd�p; then

z¼WT
LPPxadjust ARp .

Algorithm

� For each sample xðiÞadjust , find the k1-nearestsamples in Nþ ðiÞ, and denote these

samples as KNNþ ðiÞ. The parameter k1 defines the number of neighboring

samples.

� For each sample pair fxðiÞ
adjust

,xðjÞ
adjust
g, if xðjÞ

adjust
AKNNþ ðiÞor xðiÞ

adjust
AKNNþ ðjÞ, set:

bþij ¼ expð�:xðiÞadjust�xðjÞadjust:
2
=tÞ � expð�ðyðiÞ�yðjÞÞ2=sÞ:

� Compute Lþ ¼Dþ�B� , where Dþ is a diagonal matrix with dþii ¼
P

j

bþij .

� Solve the generalized eigendecomposition problem:

XLþXT
� �

vðiÞ ¼ lðiÞ XDþXT
� �

vðiÞ- XLþXT
� �

V ¼ XDþXT
� �

VL,

Where L is arranged in the descending order.
� WLPP ¼ vðN�pþ1Þ ,vðN�pþ2Þ ,. . .,vðNÞ

� �
¼ V Op�ðN�pÞ9Ip�p

� �T
:
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neighbors with the same class label. To further take the ordinal
relationship among age labels into consideration, the label-

sensitive concept is applied in LPP to achieve an improved version
named label sensitive LPP (lsLPP), where the same-label constraint
is replaced by a similar-label one (according to the label-sensitive

threshold e). That is, a training sample now searches the k1

nearest neighbors with the similar labels.
In addition, lsLPP defines a new neighbor weighting function:

bþij ¼ expð�:xðiÞadjust�xðjÞadjust:
2
=tÞ � expð�ðyðiÞ�yðjÞÞ2=sÞ, ð4Þ

which regards both the feature similarity (former part) and the
label similarity (later part) between neighbors: The degree of label
similarity is again modeled through a radial basis function.
In Fig. 3, we show the schematic illustration of lsLPP compared
to the conventional supervised extension of LPP; the detailed
algorithm of lsLPP is described in Table 3, where e, s, and t are
tunable parameters for defining the feature and label similarity.
The learned matrix WLPP by lsLPP then can be applied to the
unseen or testing data.
6.2. The proposed label-sensitive marginal fisher analysis

To illustrate the availability of the label-sensitive concept on
dimensionality reduction algorithms other than LPP, we also
apply this concept to another popular algorithm called the
marginal fisher analysis (MFA) [45]. MFA, contrary to LPP, is
intrinsically a supervised manifold learning algorithm. In the
neighbor searching step, MFA searches the k1 same-label and k2

different-label nearest neighbors for each sample via the Euclidean
metric. Then in the local geometry modeling step, MFA builds two
N � N matrices, an intrinsic matrix Bþ and a penalty matrix B� , to
record the geometrical information for each type of neighbors,
respectively; the entries in Bþ and B� are defined by (1). Finally in
the embedding computation step, MFA seeks the matrix
WMFAARd�p that minimizes EþMFAðWÞ and maximizes E�MFAðWÞ, as
defined below, simultaneously:

EþMFAðWÞ ¼
XN

i ¼ 1

XN

j ¼ 1

bþij � :WT xðiÞ�xðjÞ
� �

:2
¼
XN

i ¼ 1

XN

j ¼ 1

bþij � :zðiÞ�zðjÞ:2
,

ð5Þ

E�MFAðWÞ ¼
XN

i ¼ 1

XN

j ¼ 1

b�ij � :WT xðiÞ�xðjÞ
� �

:2
¼
XN

i ¼ 1

XN

j ¼ 1

b�ij � :zðiÞ�zðjÞ:2
:

ð6Þ

In other words, MFA tries to pull the same-label neighbors
closer while push the different-label neighbors away for each
sample. The last step of MFA, just like LPP, can be formulated as a
generalized eigendecomposition problem.



Fig. 4. Illustrations of the degrees of label similarity and label dissimilarity

defined in Table 4 for lsMFA. (a) The degree of label similarity is modeled by a

radial basis function (e.g. with s¼ 12). (b) The degree of label dissimilarity is

modeled by a sigmoid function (e.g. with e¼ 5, g¼ 2, and Z¼ 2).
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Following the modifications proposed in Section 6.1 for LPP,
we replace the constraints of the same- and different-label
neighbors in MFA by the similar- and dissimilar-label neighbors
(again based on the label-sensitive threshold e). Moreover, the
degrees of label similarity and label dissimilarity, which are used
in computing the modified neighbor weights bþij and b�ij as in (4),
are modeled by a radial basis and a sigmoid function, respectively
(shown in Fig. 4). The improved algorithm is called the label-

sensitive MFA (lsMFA) and summarized in Table 4, where
e, s, g, Z, and t are tunable parameters for defining the feature
and label similarity.

6.3. The proposed imbalance treatments for dimensionality

reduction

To alleviate the imbalance problems when training lsLPP and
lsMFA, three imbalance treatments are proposed: sample weight
modification (SWM), neighbor size modification (NSM), and
neighbor range modification (NRM).

The sample weight modification (SWM) is to balance the
influence of each label in the optimization problems of lsLPP and

lsMFA. Namely, when computing bþij ,b�ij in Tables 3 and 4, the label

influence of yðiÞand yðjÞ should also be considered. For this purpose,

an SWM weighting function f SWMðyÞ is defined, which gives
higher weights to age labels with fewer samples. The computa-

tion of bþij ,b�ij are then modified as

fbþij ,b�ij g : ¼ fb
þ

ij ,b�ij g � f SWMðy
ðiÞÞ � f SWMðy

ðjÞÞ: ð7Þ

The neighbor size modification (NSM) is another way to
balance the influence of each label in the optimization problems
of lsLPP and lsMFA. Instead of directly changing the values of
bþij and b�ij , NSM changes the number of neighbors searched for
each sample based on the corresponding label: The more neigh-
bors are searched, the higher influence that sample has. In our
implementation, an NSM function is defined, which also gives
higher weights to labels with fewer samples. The computation of
k1 and k2 in Tables 3 and 4 are then modified as

fk1ðiÞ,k2ðiÞg : ¼ fk1,k2g � f NSMðy
ðiÞÞ: ð8Þ

In addition to the influence of each label, the quality of the
searched neighbors, which define the local geometry to be
preserved, is also an important issue of lsLPP and lsMFA. That is,
the searched neighbors should be close (according to the feature
similarity) to the target sample to represent the local geometry

faithfully. For a sample xðiÞadjust , if the similar-label set Nþ(i) defined

in Tables 3 and 4 contains sufficient samples, it is more likely to

find the k1 neighbors close to xðiÞadjust; on contrary, if Nþ(i) contains

insufficient samples, the k1 searched neighbors may not be close

to xðiÞadjust , resulting in poor local geometry. To compensate this

problem, we propose the neighbor range modification (NRM),
which sets the label-sensitive threshold e and the parameter s of
the radial basis function in Tables 3 and 4 individually for each
sample based on the corresponding label:

feðiÞ,sðiÞg : ¼ fe,sg � f NRMðy
ðiÞÞ: ð9Þ

The weighting function f NRMðyÞ also gives higher weights to labels
with fewer samples, making the size of Nþ(i) much stable. Fig. 5
illustrates the concept of NRM.

In our implementation, we apply NSMþNRM to lsLPP and
SWMþNRM to lsMFA according to the experimental results. The
resulting imbalance-compensated versions are then called C-lsLPP
and C-lsMFA respectively. To be noticed, the matrices Bþ , B� , Lþ ,
and L� defined in Tables 3 and 4 may become asymmetric after
these three treatments, disobeying the standard form of LPP and
MFA. To deal with this problem, we replace the entries of Bþ and
B� by the entries of ðBþ þBþT

Þ=2andðB�þB�T
Þ=2 before computing

Dþ , D� and Lþ , L�.
7. Age determination

After dimensionality reduction, the resulting p-dimensional

feature set Z ¼ fzðnÞARp
gNn ¼ 1 (zðnÞ ¼WT

LPPxðnÞadjust or WT
MFAxðnÞadjust; p is

usually much smaller than d) now can be used for training the age
determination function. Instead of applying the global regression
techniques for age determination, we propose to utilize local
regression mainly for two reasons: Local regression can generate
comparably sophisticated mapping functions; hence is more
likely to capture the complicated facial aging process. Besides,
from the perspective of manifold learning [21,45], the output
space of LPP, MFA, or their modified versions is locally Euclidean
rather than globally Euclidean, meaning that only the local
statistical properties are reliable to exploit.

Inspired by the local classification algorithm in [49] and the
L1 loss of support vector regression (SVR) emphasized in [18],
an age-oriented local regression algorithm named KNN-SVR is
proposed: Given a testing sample z, KNN-SVR first searches the

k-nearest neighbors of z in the training set Z ¼ fzðnÞARp
gNn ¼ 1, and

trains an RBF-kernel SVR regressor based on these neighboring
samples; the learned regressor is then applied to the testing
sample z for age estimation. The algorithm of KNN-SVR is
summarized in Table 5. Notice that, the neighbor searching step
in KNN-SVR is with no prior distance metric adjustment step.
8. Summarization of the proposed approach

In this section, a short summary of the proposed approach is
presented, where the training phase for building the age estima-
tion system and the testing phase for predicting the age of a
testing image are described separately.

8.1. The training phase

Given a training set fiðnÞgNn ¼ 1 with N face images, our approach

first applies AAM to extract the facial features from each image,

resulting in a d-dimensional feature set X ¼ fxðnÞARd
gNn ¼ 1. Then,

through jointly considering X with its corresponding label set

Y ¼ fyðnÞALgNn ¼ 1, a d� d matrix WRCA is learned by the proposed

C-lsRCA algorithm for distance metric adjustment; the adjusted

feature set is denoted as X ¼ fxðnÞadjust ¼WT
RCAxðnÞARd

gNn ¼ 1. With this

adjusted feature set X and the label set Y, the proposed C-lsLPP



Table 4
The proposed lsMFA algorithm (label-sensitive MFA).

Presetting
� Training set: X ¼ fxðnÞ

adjust
ARd
gNn ¼ 1, Y ¼ fyðnÞALgNn ¼ 1 (X is represented as a d� N matrix)

� Define the similar-label set Nþ ðiÞ and dissimilar-label set N�ðiÞ for each sample xðiÞ
adjust

:

Nþ ðiÞ ¼ fxðjÞ
adjust

yðjÞ�yðiÞ
��� ���re,ja ig and N�ðiÞ ¼ fxðjÞ

adjust
yðjÞ�yðiÞ
��� ���4e,ja ig,
������

where e is the label-sensitive threshold to define the range of similar labels.
� Create an N � N intrinsic matrix Bþ ¼ ½bþij ¼ 0�1r i,jrN and a penalty one B� ¼ ½b�ij ¼ 0�1r i,jrN .

� The goal of lsMFA is to find the projection matrixWMFA ARd�p , then z¼WT
MFAxadjust ARp .

Algorithm
� For each sample xðiÞ

adjust
, find the k1- and k2-nearestsamples in Nþ ðiÞ and N�ðiÞ, and denote these samples as KNNþ ðiÞ and KNN�ðiÞ.

� For each sample pair fxðiÞadjust ,x
ðjÞ
adjustg, if xðjÞadjust AKNNþ ðiÞor xðiÞadjust AKNNþ ðjÞ, set:

bþij ¼ expð�:xðiÞ
adjust
�xðjÞ

adjust
:2
=tÞ � expð�ðyðiÞ�yðjÞÞ2=sÞ:

� For each sample pair fxðiÞadjust ,x
ðjÞ
adjustg, if xðjÞadjust AKNN�ðiÞor xðiÞadjust AKNN�ðjÞ, set:

b�ij ¼ expð�:xðiÞ
adjust
�xðjÞ

adjust
:2
=tÞ � 1þexp �g yðiÞ�yðjÞ

��� ����ðeþZÞ� �� �� ��1
:

� Compute Lþ ¼Dþ�B� and L� ¼D��B� , where Dþ and D�are both diagonal matrices with dþii ¼
P

j

bþij and d�ii ¼
P

j

b�ij .

� Solve the generalized eigendecomposition problem:

XLþXT
� �

vðiÞ ¼ lðiÞ XL�XT
� �

vðiÞ- XLþXT
� �

V ¼ XL�XT
� �

VL,

where L is arranged in the descending order.
� WMFA ¼ vðN�pþ1Þ ,vðN�pþ2Þ ,. . .,vðNÞ

� �
¼ V Op�ðN�pÞ9Ip�p

� �T
:

Fig. 5. The schematic illustration of the neighbor range modification (NRM): Before NRM, the 6 nearest samples with similar labels are sparsely distributed; after NRM, the

yellow samples are considered similar to the red sample, and the 6 nearest samples can be searched in a much smaller area around the target red sample, resulting in a

much faithful local geometry. (For interpretation of the reference to color in this figure, the reader is referred to the web version of this article.)
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algorithm (or C-lsMFA) is performed to achieve a d� p

matrix WLPP (or WMFA) for dimensionality reduction, leading

to the output feature set Z ¼ fzðnÞ ¼WT
LPPxðnÞadjust ARp

gNn ¼ 1 (or

Z ¼ fzðnÞ ¼WT
MFAxðnÞadjust ARp

gNn ¼ 1) with dimensionality p.

8.2. The testing phase

Now given a testing image i, the AAM features x are again
extracted at the first step. Then based on the learned matrices
WRCA and WLPP (or WMFA), both the distance metric adjustment
and dimensionality reduction steps can be simply accomplished
by linear projection, resulting in the p-dimensional vector z:

z¼WT
LPPðW

T
RCAxÞARp or z¼WT

MFAðW
T
RCAxÞARp. Finally, according
to the testing sample z and the feature set Z, which is acquired in
the training phase, the proposed KNN-SVR is performed to
estimate the actual age for the input face image i. Notice that,
there is also an neighbor searching step in KNN-SVR, just like LPP
and MFA; however, this neighbor searching step is performed on
the p-dimensional data in the testing phase.
9. Simulation results

9.1. Database

The age estimation experiments are performed on the most
widely-used FG-NET aging database [53], which contains 1002



Table 6

Definitions of MAE and CS (ŷ: the predicted age).

Testing set Dtest : fi
ðnÞ
g

Nt

n ¼ 1 ,Y ¼ fyðnÞALgNt

n ¼ 1

MAE
MAE¼ 1

Nt

PNt

n ¼ 1

ŷ
ðnÞ
�yðnÞ

��� ���
CS

CSðjÞ ¼ 1
Nt

PNt

n ¼ 1

1 ŷ
ðnÞ
�yðnÞ

��� ���r j
h i

, where
1 true½ � ¼ 1

1 f alse
� �

¼ 0

(
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face images from 82 individuals and provides 68 landmarks on
each face. These images are ranging from age 0 to age 69, but
more than 700 of them are under age 20, making the FG-NET
aging database highly imbalanced. Fig. 6 shows some example
images of the FG-NET database, and the number of images in each
age range is listed in Table 10.

9.2. Experimental settings and evaluation criteria

Suggested by the experimental setups in previous work, the
leave-one-person-out (LOPO) testing strategy is adopted, where
the age estimation algorithm is repeatedly trained on images of
81 people and tested on images of the remaining person. After
repeating 82 times, each image will be the testing sample for once
and receive an estimated age.

To evaluate the performance, two popular measures, the mean
absolute error (MAE) and the cumulative score (CS), proposed in
[14] are computed in our experiments. MAE stands for the
average L1 loss during testing, which fits the loss function of SVR,
and that is why we adopt SVR in the proposed local regression
algorithm; CS calculates the percentage of images with L1 losses
lower than a given threshold. The formulations of MAE and CS are
defined in Table 6.

9.3. Implementation details of the proposed approach

The proposed age estimation approach is composed of four
steps as illustrated in Fig. 1. In the feature extraction step, the 68
landmark points provided on each FG-NET face image are used for
AAM training (implemented by the AAM-API tool [34]). Under the
memory limitation during our implementation, all face images
are first down-sampled, and totally 127 features are extracted to
represent each image.

In the subsequent three steps, besides the proposed algo-
rithms, other existing algorithms (e.g., SVR for age determination)
could also be applied; therefore, we perform different algorithm
combinations to demonstrate the improvements achieved by the
usage of RCA and the proposed C-lsRCA, C-lsLPP, C-lsMFA, and
KNN-SVR algorithms. The tunable parameters of the proposed
algorithms, such as the label-sensitive threshold e and the number
of neighbors, are selected via cross validation. The three functions
for imbalance treatments proposed in Section 6.3 are simply
defined in Table 7 to balance the influence of each age label.
Table 5
The proposed KNN-SVR algorithm.

Presetting
� Training set: Z ¼ fzðnÞARp

gNn ¼ 1, Y ¼ fyðnÞALgNn ¼ 1

Algorithm: (k is tunable)

� Given an input query z, find its k-nearest Euclidean neighbors fzðiÞKNN ,yðiÞKNNg
k
n ¼ 1in Z.

� Train an RBF-kernel SVR regressor based on fzðiÞKNN ,yðiÞKNNg
k
n ¼ 1 to predict the age of z

Fig. 6. Example images of the FG-NET aging database: Each row show
The LOPO MAE results of different algorithm combinations in
our four-step framework are listed in Table 8. As presented, the
usage of RCA outperforms the widely-used standard deviation
normalization (STDN) for distance metric adjustment; the
improved version C-lsRCA further reduces the MAEs in most of
the combinations. The proposed lsLPP and lsMFA with the label-

sensitive concept obviously surpass their original versions, and the
imbalance treatments (NSMþNRM for lsLPP and SWMþNRM for
lsMFA) improve the performance in several combinations. Finally,
the proposed KNN-SVR definitely outperforms SVR in all the
cases, demonstrating the usage of local regression after perform-
ing manifold learning algorithms. To sum up, the combinations
with our propositions and modifications – including distance
metric adjustment, local regression, the imbalance treatments,
and the label-sensitive concept – achieve the lowest age estima-
tion errors against other algorithm combinations.

Furthermore, the optimal output dimensionality p of
C-lsLPP, C-lsMFA and the parameter k of KNN-SVR are reached
around 10 and 15 (as shown in Fig. 7), illustrating the effec-
tiveness of dimensionality reduction and local statistics in age
estimation: Fig. 7 shows the MAEs achieved by the two best
combinations in Table 8 – C-lsRCAþC-lsLPPþKNN-SVR and
C-lsRCAþC-lsMFAþKNN-SVR – with different choices of dimen-
sionality p and the parameter k of KNN-SVR.

9.4. Performance comparisons with existing algorithms

We further compare the two best combinations, C-lsRCAþ
C-lsLPPþKNN-SVR and C-lsRCAþC-lsMFAþKNN-SVR, with other
existing age estimation algorithms; the LOPO MAE results of the
existing and the proposed algorithms are listed in Table 9, along
with brief algorithm descriptions. As presented, both the two
proposed combinations reach the lowest MAEs, even better than
.

s part of the face images of one subject from younger to older.



Table 9
Comparisons of the LOPO MAE results on the FG-NET database.

Category Algorithm name MAE Algorithm description

AAMþClassifiers/Regressors KNN 8.24 AAMþK nearest neighbors

SVM 7.25 AAMþSupport vector machine

MLP 6.95 AAMþMulti-layer perceptron

KNN Regression 6.44 AAMþKNN Regression

RUN1 [43] 5.78 AAMþRUN1a

Gaussian IIS-LLD [17] 5.77 AAMþLearning from label distribution

SVR 5.68 AAMþSupport vector regression

RUN2 [44] 5.33 AAMþRUN2

RED-SVM [5] 5.24 AAMþRED-SVM

MHR [6] 4.87 AAMþMultiple hyperplanes ranker

OHR [6] 4.48 AAM þOrdinal hyperplanes ranker

AAMþHybrid combination WAS [26] 8.06 AAMþWeighted appearance-specific

LARR [18] 5.07 AAMþLARRb

PFA [19] 4.97 AAMþProbabilistic fusion approach

AGES AGES [14] 6.77 AAMþAging pattern subspace

AGES with LDA [14] 6.22 AAMþAGES with LDAc

KAGES [15] 6.18 AAMþKernel AGES

MSA [16] 5.36 AAMþMulti-linear subspace analysis

Manifold learning LEA [48] 7.65 AAMþLocally embedded analysis

SSE [48] 5.21 AAMþSSEd

Distance metric learning mGPR [32] 5.08 AAMþDMLe
þGPRf

mKNN [42] 4.93 AAMþDMLþKNN Regression

Gaussian process regression WGP [51] 4.95 AAMþWarped GPR

MTWGP [51] 4.83 AAMþMulti-task warped GPR

Other features BIF [20] 4.77 BIFg
þPCAþSupport vector regression

RPK [47] 4.95 SFPh
þPatch kernelþKernel regression

Proposed C-IsRCAþC-lsMFA (SWMþNRM) 4.44 AAMþC-lsRCAþC-lsMFAþKNN-SVR
C-IsRCAþC-lsLPP (NSMþNRM) 4.38 AAMþC-lsRCAþC-lsLPPþKNN-SVR

a RUN: regression with uncertain nonnegative label.
b LARR: locally adjusted robust regression.
c LDA: linear discriminant analysis.
d SSE: synchronized submanifold embedding.
e DML: distance metric learning.
f GPR: Gaussian process regression.
g BIF: biologically inspired features.
h SFP: Spatially flexible patch.

Table 8
Comparisons of the LOPO MAEs with different algorithm combinations in our four-step framework. For the distance metric adjustment step, four different algorithms are

considered: No change, STDN, RCA, and C-lsRCA. For the dimensionality reduction step, six algorithms are compared: LPP, lsLPP, C-lsLPP, MFA, lsMFA, and C-lsMFA. For the

age determination step, SVR and KNN-SVR are used and compared.

sLPP a lsLPP C-lsLPP MFA lsMFA C-lsMFA

SVR
No change b 7.35 6.95 7.28 8.07 7.62 7.58

STDN c 5.79 5.82 5.85 5.62 5.71 5.84

RCA 5.43 5.38 5.44 5.49 5.43 5.48

C-lsRCA 5.55 5.32 5.34 5.89 5.46 5.37

KNN-SVR
No change 4.84 4.85 4.81 5.06 4.61 4.68

STDN 5.10 4.95 4.75 5.07 4.97 5.12

RCA 4.67 4.53 4.49 4.95 4.60 4.62

C-lsRCA 4.74 4.43 4.38 5.40 4.67 4.44

a sLPP: supervised LPP.
b No change: no distance metric adjustment.
c STDN: STD normalization.

Table 7
Definitions of the three imbalance treatments proposed in Section 6.3.

SWM NSM NRM

f SWMðyÞ ¼
1, for yr20

1þ ðy�20Þ
50 , for y420

(
f NSMðyÞ ¼

1:0, for yr20

1:3, for 20oyr30

1:8, for 30oyr40

2:5, for y440

8>>>><
>>>>:

f NRMðyÞ ¼

1:0, for yr20

1:2, for 20oyr30

1:6, for 30oyr40

2:0, for y440

8>>>><
>>>>:
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Table 10
Comparisons of the LOPO MAEs at different age ranges on the FG-Net database.

Range # images LEA [48] MLP QF KNN Reg. a RUN1 [43] SSE [48]

0–9 371 3.89 5.25 5.67 4.76 2.51 2.06

10–19 339 4.85 5.24 5.54 3.43 3.76 3.26

20–29 144 8.67 5.85 5.92 5.46 6.38 6.03

30–39 70 13.02 11.29 10.27 13.51 12.51 9.53

40–49 46 19.46 16.48 12.24 22.2 20.09 11.17

50–59 15 26.13 28.80 18.60 31.17 28.07 16.00

60–69 8 39.00 39.50 28.00 43.47 42.50 26.88

Average 1002 7.65 6.95 6.70 6.44 5.78 5.21

Range # images mGPR[32] RPK[47] mKNN[42] BIF[20] C-lsMFA C-lsLPP
0–9 371 2.99 2.3 2.29 2.99 1.965 1.911
10–19 339 4.19 4.86 3.65 3.39 3.7021 3.5264
20–29 144 5.34 4.02 5.44 4.30 5.5278 5.326
30–39 70 9.28 7.32 10.55 8.24 10.06 10.67
40–49 46 13.52 15.24 15.81 14.98 10.80 10.11
50–59 15 17.79 22.2 25.18 20.49 14.53 15.07
60–69 8 22.68 33.15 36.80 31.62 22.25 23.37
Average 1002 5.08 4.95 4.93 4.77 4.44 4.38

a KNN Reg.: KNN regression.

Fig. 7. The LOPO MAEs achieved by C-lsRCAþC-lsLPPþKNN-SVR and C-lsRCAþC-lsMFAþKNN-SVR with different choices of dimensionality p and the parameter k of KNN-

SVR. The first row shows the MAEs achieved by varied p, with either a fixed k or the best k under the corresponding p. The second row shows the MAEs achieved by varied

d, with either a fixed p or the best p under the corresponding k. From our observation, the best p under each varied k in the combination C-lsRCAþC-lsLPPþKNN-SVR is

always 7.
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the state-of-art ordinal hyperplanes ranker (OHR) proposed by
Chang et al. [6]. Also from Table 9, we found that our approach,
combining distance metric learning and dimensionality reduction,
definitely outperform the work in [32,42,48], which only applies
one of these two techniques, supporting the usage of the four-
step framework in our approach. To further illustrate the perfor-
mance improvement achieved by the proposed imbalance
treatments, the LOPO MAEs at different age ranges are computed
and listed in Table 10; both the proposed combinations reach
significantly lower MAEs at higher ages.

Finally in Fig. 8, we show the comparison of the cumulative
score (CS), where totally 11 thresholds are examined. As pre-
sented, the proposed approaches achieve the highest CSs at each
threshold against other algorithms.



Table 11
Comparisons of the LOPO MAE results on the FG-NET database (with ages smaller

than 30).

Algorithm name MAE Algorithm description

LBPþOLPPþMLP [9] 4.28 LBP a
þOLPPb

þMLPc

LBPþOLPPþQF [9] 3.65 LBPþOLPPþQuadratic function

C-lsRCAþ lsMFA (SWMþNRM) 3.10 AAMþC-lsRCAþC-lsMFAþKNN-SVR
C-lsRCAþ lsLPP (NSMþNRM) 3.06 AAMþC-lsRCAþC-lsLPPþKNN-SVR

a LBP: local binary pattern.
b OLPP: orthogonal LPP.
c MLP: multi-layer perceptron.

Table 12
Comparisons of the 4-fold cross validation MAE results on the FG-NET database.

Algorithm name MAE Algorithm description

HFM [35] 5.97 Hierarchical face modelþMLP

RankBoost [52] 5.67 Haar-like featuresþRankBoostþSVR

C-lsRCAþ lsMFA (SWMþNRM) 4.23 AAMþC-lsRCAþC-lsMFAþKNN-SVR
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9.5. Performance comparisons under other experimental settings

In addition to the LOPO, there are still other experimental
settings adopted in previous work. In [9], only the images under
age 30 (totally 873 images) are utilized for training and testing
with the LOPO evaluation; in [35,52], the whole FG-NET database
are randomly divided into 4 folders, and the 4-fold cross valida-
tion is performed for the MAE evaluation. This cross validation
setting disregards the identity information, where a single person
may have images in the training (base) and testing (validation)
sets simultaneously.

To justify the effectiveness of the proposed approach, we also
perform these two settings for comparison. The MAE results are
listed in Tables 11 and 12, and our approaches still achieve the
lowest MAEs in both settings. Furthermore, the cross validation
case is observed to result in lower MAEs than the LOPO case with
the whole FG-NET database, revealing that if images of one person
are included in both the training and testing sets, the accuracy of
age estimation could be further improved. Besides, this observa-
tion also tells that under different experimental settings, an age
estimation algorithm would produce different estimation results.
C-lsRCAþ lsLPP (NSMþNRM) 4.11 AAMþC-lsRCAþC-lsLPPþKNN-SVR
9.6. Further discussions and illustrations

The proposed approach can be efficiently trained and tested. It
takes only 6 s for training the C-lsRCA and C-lsLPP/ C-lsMFA
matrices by using Matlab on a duo-core PC. Although KNN-SVR
is an on-line algorithm, in the testing phase it requires only
0.003 s for searching neighbors in the low-dimensional space
after dimensionality reduction and training the SVR regressor
with only the k nearest neighbors: The training complexity of the
dual-form SVR is generally from O(m) to O(m2), where m is the
number of training samples. Compared to other age estimation
algorithms, such as the ones requiring nearly a half minute for
training the SVR regressor or the multi-class SVM classifier, the
computational complexity of our approach seems acceptable.
Even with a larger training set, the efficiency of the neighbor
searching step in KNN-SVR could still be kept by incorporating the
indexing techniques [1,41].

Besides, to demonstrate the effectiveness of the proposed
dimensionality reduction algorithms on learning the feature-
label connection, we depict in Fig. 9 the distributions of the first
Fig. 8. The comparison of LOPO CS (cumulative score) results on the FG-NET

database.
two C-lsLPP and C-lsMFA features from the whole FG-NET data-
base. As shown, obvious feature-label dependences have been
reached by the proposed algorithms. This result also provides
support to the use of local regression: Neighboring samples in the
feature space after performing C-lsRCAþC-lsLPP or C-lsRCAþ
C-lsMFA are with similar age labels.

Furthermore, to justify the improvement (on the neighbor
searching step in manifold learning) achieved by distance metric
adjustment, we show in Fig. 10 the searched neighbors (via the
Euclidean metric) of an arbitrary target sample, in either the
original AAM feature space or the feature space adjusted by
C-lsRCA, and with or without the similar-label constraint in lsLPP.
On the condition with no similar-label constraint, the searched
neighbors in the AAM feature space (though with similar expres-
sions and poses) are with large age gaps to the target sample; on
contrary, the searched neighbors in the adjusted space are of close
ages to the target sample and with similar appearance change
caused by human ages. Even with the similar-label constraint
(e.g., label-sensitive threshold e¼3), the searched neighbors in the
AAM feature space are still with similar poses and expressions;
the influence of these factors can be much suppresses in the
adjusted space, demonstrating the effectiveness of C-lsRCA on
reaching a suitable space for neighbor searching in LPP (MFA),
lsLPP (lsMFA), and C-lsLPP (C-lsMFA).

9.7. Algorithm comparisons with the class distance based

discriminant analysis [30]

The class distance based discriminant analysis (CDDA) pre-
sented by Ma et al. [30] also considers the relationship among
labels in supervised dimensionality reduction; however, there are
some fundamental differences between CDDA and the proposed
C-lsLPP and C-lsMFA. First, though the objective functions of
CDDA can be written in the forms of (5) and (6), it is not a
manifold algorithm indeed: The neighbor searching step for setting
the entries of Bþ and B� (in Tables 3 and 4) are not included in
CDDA. Second, any sample pair in CDDA could receive weight in
Bþ without considering the similar-label constraint. That is, a
sample pair with a large label difference (e.g. over 20 years)
could still get weight in Bþ . Third, the purpose for building the
penalty matrix B� in CDDA is contrary to the one in C-lsMFA:
According to the claim that similar labels are easily to be



Fig. 9. The dimensionality reduction results after C-lsRCAþC-lsLPP/C-lsMFA based on the whole FG-NET database: The distributions of the 1st and 2nd dimensions

(features) are shown for visualization.

Fig. 10. The influence of distance metric adjustment on the neighbor searching step in manifold learning algorithms: (a), (c) show the 5 nearest neighbors searched in the

AAM feature space, either with or without the similar-label constraint; (b), (d) show the 5 nearest neighbors searched in the C-lsRCA adjusted space. As presented, the

neighbor searching process in the adjusted space is affected less by expressions and poses; therefore, the searched neighbors are with more similar ages and facial aging

processes to the target sample than the ones in the AAM feature space.
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misclassified, CDDA gives a larger penalty b�ij to the sample pair
with a smaller label difference (the largest penalty is given to
sample pairs with yðiÞ�yðjÞ

�� ��¼ 1). Our label-sensitive constraint, on
the other hand, aims to pull the similar-label neighbors closer
while push the dissimilar-label neighbors away for each sample;
therefore, the smaller the label difference is, the smaller the
penalty is assigned. In more detail, CDDA simultaneously gives
the similar-label sample pair a large bþij and b�ij , whereas C-lsMFA
assign a small (even no) b�ij to this pair. Finally, the distance
metric adjustment step and the potential imbalance problem are
not considered in CDDA. Since the age estimation experiments in
[30] are not performed on the FG-NET database, we implement
CDDA and substitute it for the proposed C-lsLPP (C-lsMFA) in our
four-step framework; the resulting LOPO MAE is 5.80, demon-
strating the effectiveness of our label-sensitive concept on exploit-
ing the label information.
10. Conclusion

In this paper, a new age estimation approach considering
the intrinsic factors of human ages is proposed. After feature
extraction, RCA is utilized to achieve a suitable space for neighbor
searching. Then based on this adjusted space, LPP and MFA are
trained to drastically reduce the feature dimensionality and learn
the connections between features and age labels. To further
consider the ordinal relationship of human ages as well as the
imbalanced learning problem in RCA, LPP, and MFA, the label-

sensitive concept and several imbalance treatments are proposed,
resulting in new algorithms called C-lsRCA, C-lsLPP, and C-lsMFA.
In addition, an age-oriented local regression algorithm called
KNN-SVR is presented to capture the complicated facial aging
process for age determination. From the simulation results
performed on the most widely-used FG-NET aging database, the
proposed approach achieves the lowest MAE against the state-of-
art algorithms under several experimental settings.
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