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Highlights

• A random forest classification based acoustic event detection system was

constructed as the baseline system.

• Contextual information was employed to cope with the acoustic signals

with long duration.

• Global bottleneck features were employed in the acoustic event detection

system to utilize the prior knowledge of the event category information.

• Category-specific bottleneck features were employed in the acoustic event

detection system to utilize the prior knowledge of the event boundary

information.

• Evaluations on the UPC-TALP and ITC-IRST databases of highly
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Abstract

The variety of event categories and event boundary information have resulted

in limited success for acoustic event detection systems. To deal with this, we

propose to utilize the long contextual information, low-dimensional discriminant

global bottleneck features and category-specific bottleneck features. By con-

catenating several adjacent frames together, the use of contextual information

makes it easier to cope with acoustic signals with long duration. Global and

category-specific bottleneck features can extract the prior knowledge of the

event category and boundary, which is ideally matched by the task of an event

detection system. Evaluations on the UPC-TALP and ITC-IRST databases of

highly variable acoustic events demonstrate the effectiveness of the proposed

approaches by achieving a 5.30% and 4.44% absolute error rate improvement

respectively compared to the state of art technique.
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1. Introduction

Acoustic event detection (AED) deals with the event category and the

localization of the acoustic events and is of great importance in many real-

world applications such as security [1, 2, 3], life assistance [4, 5, 6] and

human-computer interaction [7, 8]. Intra-class variations and spectral-temporal

properties across classes pose challenges to acoustic event detection. Intra-

class variations include different duration for the same acoustic sound type and

non-stationary backgrounds. Spectral-temporal properties across classes include

impulse-like sounds (e.g., door slam), tonal events (e.g., phone ring) and noise-

like events (e.g., printer sound). Many works [9, 10, 11, 12, 13] have been carried

out to address such challenges. The CLEAR [14] and DCASE [15, 16] challenge

have attempted to capture the wide range of variations in the design of the AED

corpora [17, 18].

The popular features used in AED systems are frame based features [8, 19],

such as Mel-Frequency Cepstral Coefficients (MFCCs) and log frequency filter

bank parameters, which have been demonstrated to represent the speech

spectral structure well. However, the non-speech acoustic events contain a wide

range of characteristic and non-stationary effects which may not be captured

in such frame based features [20]. Frame based features do not represent

the contextual information which has shown its effectiveness in acoustic signal

processing systems [21]. The works in [22, 23, 24, 25, 26] used short frame based

acoustic features. Moreover, these frame based acoustic features are extracted

without any prior knowledge of the target events, which has been shown to be

useful in [27, 28]. In [20], a 100ms long window was used while extracting the

acoustic features and significant improvements have been achieved. Although

the contextual information was used in [20, 21, 29], it was extracted without

any prior knowledge of the event category or the event internal boundary

information.

Inspired by the successful applications of the random forest technique

[30, 31, 32, 33, 34] and the Deep Belief networks (DBNs) [35, 36] in the area
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of pattern recognition and to utilize the contextual information as well as the

prior knowledge of the acoustic events, this paper extends our previous and

random forest based work of [28]. In [28], the importance of prior knowledge

of the acoustic event category was verified on a random forest regression based

AED system. This paper is different from the existing methods in the sense that

contextual information is combined with DBN based global and category-specific

bottleneck features derived from the prior knowledge of the event category and

the event boundary.

For contextual information, it enables the feature space with a strong ability

to describe the acoustic signals with an even longer duration. Real-world

acoustic events, especially those presented periodically in time such as “phone

vibration” and “alarm” cannot be represented effectively if the window length of

acoustic features is shorter than the length of the basic unit within an acoustic

event (each periodical vibration in “phone vibration” or each repeat sound in

“alarm”). By adopting the contextual acoustic features, acoustic events which

are highly variable can be represented more effectively in time. However,

when more contextual acoustic features are adopted, the feature dimension

increases. Our proposed global bottleneck features are bottleneck layer outputs

of a deep belief network trained with the event category as the outputs and

they can reduce the input dimension as well as utilize the prior knowledge of

the event category information. We also propose category-specific bottleneck

features which are the bottleneck layer outputs of category-specific deep belief

networks trained with discretized event boundary information as the outputs.

Category-specific bottleneck features reduce the input feature dimension and

make full use of the prior knowledge of the event internal boundary information.

Experimental results show the superior performance of AED system using

contextual information, global and category-specific bottleneck features.

The rest of the paper is organized as follows. A brief review of related works

is given in Section 2. In Section 3, the random forest classification based acoustic

event detection system is introduced. Our proposed algorithms are described in

Section 4. In Section 5 we provide the experimental results and analysis followed
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by conclusion and future work in Section 6.

2. Related work

In [37], the local spectrogram features and the generalised Hough

transform were utilized in the AED system. Authors in [38] investigated the use

of biologically-inspired features, derived from a filter-bank of two-dimensional

Gabor functions. In [39], spectral band selection based features are used.

A novel approach for classifying acoustic events was proposed based on a

bag of features (BOF) approach in [40]. In [41], different acoustic features,

such as log-frequency filter bank coefficients, audio spectrum envelope (ASE),

audio spectrum flatness (ASF), audio spectrum centroid (ASC), audio spectrum

spread (ASS), spectral flux, spectral roll-off frequency and zero crossing rate

were introduced and analyzed. Although various feature representations are

explored, the acoustic features were extracted without contextual information,

event type and event internal boundary information. To address this, different

bottleneck features amalgamating contextual information are proposed in this

paper to improve the detection performance.

The statistical machine learning algorithms such as Gaussian Mix Model

(GMM) [42], Hidden Markov Model (HMM) [43, 44], Support Vector Machine

(SVM) [45, 46, 47] and Non-negative Matrix Factorization (NMF) [22, 23] are

routinely used to perform the classification task. The highly confusable non-

speech sounds were detected using the fuzzy integral (FI) [10] which showed

comparable results to the high performing SVM feature-level fusion in [10]. In

[20], the authors proposed a technique for the joint detection and localization of

non-overlapping acoustic events using random forest regressors. Multi-variable

random forest regressors are learned for each event category to map each frame

to continuously estimate the onset and offset time of the events. Cakir et al. [29]

proposed to use multi label feed-forward deep neural networks for polyphonic

sound event detection. They used Deep Neural Networks (DNNs) to learn a

mapping between features and sound events. Heittola et al. [48] proposed two
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iterative approaches based on the Expectation Maximum (EM) algorithm [49]

to select the most likely stream to contain the target sound: one by always

selecting the most likely stream and the other by gradually eliminating the

most unlikely streams from the training data.

According to [20, 50], the random forest technique outperformed both HMM

and SVM methods and has been shown to be the state of art approach on the

non-overlapping acoustic events. In this paper, the random forest classification

based AED system [50] is adopted as our benchmark system, upon which

global and category-specific bottleneck features with contextual information are

explored.

3. Random forest classification based AED system

Fig. 1 depicts the flowchart of the random forest classification based acoustic

event detection system. As shown in Fig. 1, the system consists of three

modules, namely feature representation, frame position discretization and event

category detection and localization.

Training

vectors

Category Detection

module

Localization

module

Test

vectors

Category

detection
Localization

Reverse process

module

Output

Discretization

module

, ,, , , , ,t on t off tX B c D D t

, ,, , , [ / ], [ / ],t on t off tX B c R D e R D e t

Feature

Representation

Frame Position Discretization

Event Category Detection and

Localization

Training

stream

Test

stream

Figure 1: The flowchart of random forest classification based AED system.

3.1. Feature representation

For the training corpus, training vectors can initially be expressed as:

F t = {X t, B, c,Don, Doff , t} (1)
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Here, X t denotes the acoustic feature at frame t, B is a binary result

representing whether the frame is silent or not, t is the time index and

c ∈ {1, ..., C} denotes the event category, where C is the number of event

categories of interest. The event boundary information Don and Doff denote

the distances (number of frames) from the current frame to the start and end

positions of the acoustic event that the current frame belongs to. The definition

of Don and Doff for the frame under consideration is shown in Fig. 2. This

waveform is an event segment with start and end points where the selected part

of the waveform is the current frame at time t. During testing, B, c, Don and

Doff need to be detected.

onD offD

ont offtt

Figure 2: An illustration of Don and Doff .

3.2. Frame position discretization

In the random forest classification based system, the frame positions are

discretized with e as the discretization step. This is a reasonable approach

because the final detected acoustic events are usually evaluated with an error

tolerance and we choose e to match this. As displayed in Fig. 1, the event

onset Don and offset Doff are discretized with e as the interval first. After the

discretization, the feature space for the training the category-specific localizer

becomes:

FD
t = {X t, B, c, R[

Don

e
], R[

Doff

e
], t} (2)

Here, R is the rounding operation and e is the discretization step.
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3.3. Event category detection and localization

The background random forest classifier (Mbg) and event category random

forest classifier (Mev) are trained first. The background and event category

detection are treated as two-class and multi-class classification problems

respectively using F t. At the stage of localization, FD
t is adopted as the

input feature space. With FD
t as the input, the category-specific localization

random forest classifiers Mc,on and Mc,off are trained. The output targets for

Mc,on and Mc,off are R[Don/e] and R[Doff/e] respectively. In the random

forest classification based AED system, localization classifiers Mc,on and Mc,off

are trained for each event category c ∈ {1, ..., C}. Training for random forest

classifiers in this work is supervised and the Gini criterion [51] which focuses

on minimizing the probability of misclassification is adopted as the splitting

criterion while training.

Upon testing, with acoustic features X t as the input, the background and

event category are firstly detected. Assume that the detected event category

for the test frame is ĉ, localization classifiers Mĉ,on and Mĉ,off are then used

to output the boundary information oon and ooff . The reverse process module

ultimately converts the boundary information into the event onset D̂on and

offset D̂off . The detected event onset and offset at frame index m is expressed

as:

D̂on,m = m− oon × e (3)

D̂off,m = m+ ooff × e (4)

When the event category, event onset and offset are detected at each

frame index, the respective localization probability distribution across time are

established as follows:

pon(t) =
m=T∑

m=1

Pon,mfon,m(t) (5)
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poff (t) =
m=T∑

m=1

Poff,mfoff,m(t) (6)

Here, T is the total number of test frames, and Pon,m and Poff,m are the

output probability of the localization classifiers Mĉ,on and Mĉ,off respectively.

The output probabilities are byproducts of the random forest classifiers. The

fon,m(t) and foff,m(t) are defined as:

fon,m(t) =





1 t = m− D̂on,m

0 else

(7)

foff,m(t) =





1 t = m+ D̂off,m

0 else

(8)

Fig. 3 shows the final detection process. As shown in Fig. 3, each test

frame index m corresponds to an event category ĉ, and output probabilities

Pon,m and Poff,m from Mĉ,on and Mĉ,off respectively. Each test frame index

also corresponds to the event onset detection D̂on,m and offset detection D̂off,m.

The peaks of the localization distributions over the whole acoustic signal (pon(t1)

and poff (t2)) determine the ultimate acoustic event beginning time t̂on and end

time t̂off , which are expressed as:

t̂on = argmax
t

pon(t) (9)

t̂off = argmax
t

poff (t) (10)

4. Proposed AED algorithms

There are two types of bottleneck features in the proposed acoustic event

detection system, the global bottleneck features (BNG) and category-specific

bottleneck features (BNCS). The global and category-specific bottleneck
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Figure 3: Determination of the acoustic event boundaries.

features are then combined with the acoustic features. Contextual information

is defined as the sequence of multi-frame acoustic features:

∆t = {X t−K , ...,X t, ...,X t+K} (11)

where t is the frame index and K determines how many consecutive frames are

utilized.

4.1. Global bottleneck features

Fig. 4 is the flowchart of the global bottleneck features fusion process in the

proposed acoustic event detection system. As illustrated in Fig. 4, a global deep

belief network ΛG is trained with the contextual information ∆t as the input

and the event category as the output (the unit number for the output is the

number of classes of interest). Several RBMs [52] acting as the building blocks

for each layer are used to pre-train the initial weights of the network. The ΛG

models the joint distribution between ∆t and the pth hidden layer hp as follows:

p(∆t, h
0, ..., h`) = (

∏̀

p=1

p(hp|hp−1))p(∆t, h
0) (12)

where p(∆t, h
0) means the visible-hidden joint distribution at the bottom-level

RBM and p(hp|hp−1) denotes the conditional distribution for the hidden units

10
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Figure 4: Flowchart of AED system utilizing global bottleneck features

conditioned on the visible units of RBM at level p. Training for the deep belief

network proceeds as follows:

1) Train the first layer as an RBM with the acoustic feature ∆t, as the visible

input data ∆t, to provide the estimate for p(h0|∆t).

2) Utilize the first RBM output p(h0|∆t) as the input data to the second layer,

to train the second RBM to provide an estimate for p(h1|h0).

3) Train the pth RBM layer from hp−1 to hp, with the output of layer hp−1 as

the input, to provide estimate p(hp|hp−1), then iterate for the desired number

of layers, including the bottleneck layer.

A randomly initialized softmax layer is added to the top and backpropagation

is adopted to optimize all the weights WG and bias variable bG by minimizing

the following cross-entropy J(W,b):

{WG,bG} = argmin
W,b

{J(W,b)} (13)

J(W,b) = − 1

M

m=M∑

m=1

J(W,b;∆m, cm) (14)

J(W,b;∆m, cm) = f(cm = c)log
ezm

∑n=C
n=1 e

zn
(15)
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Here, m denotes the training vector index and M is the total number of

training vectors, cm is the observed event category for the frame m and f(v)

is equal to 1 if v is true. zi is the output of the final layer for the ith event

category where x is the output of the second last layer, the wT
i are the weights

connecting the second last layer to the final layer and the bi is the ith bias value

for the final layer. The feature space of the proposed acoustic event detection

system is defined as:

ΩG,t = {X t,BNG,t, B, c, R[
Don

e
], R[

Doff

e
], t} (16)

where BNG,t denotes the output of the bottleneck layer at frame t using the

optimized weights and bias. The BNG,t is expressed as:

BNG,t = WT
l−1,l ·Ol−1 + bl (17)

where WT
l−1,l is the optimized weights that collect the layer l-1 and the

bottleneck layer l, the Ol−1,t is the output of the layer l-1 at frame t and

bl,t is the bias value for the bottleneck layer.

As shown in Fig. 4, bottleneck features BNG,t and acoustic features X t are

concatenated to be the input feature space of the random forest classification

based acoustic event detection system. With the newly constructed feature

space ΩG,t, new onset and offset random forest classifiers MBNG
c,on and MBNG

c,off

are trained. During testing, the test vector and test vector context are fed

into the pre-trained global neural network ΛG to generate the global bottleneck

features. The generated bottleneck features are then combined with the acoustic

features as the input to the onset and offset random forest classifiers MBNG
c,on and

MBNG

c,off .

4.2. Category-specific bottleneck features

The mechanism for combining the category-specific bottleneck features with

the acoustic features in the proposed system is shown in Fig. 5. Two components

constitute the proposed AED system, namely the category-specific bottleneck

feature extraction and acoustic event detection. For the category-specific

12
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bottleneck feature extraction, a deep belief model Λc for each event category c

is trained with contextual features as the input and discretized event boundary

information R[Don/e]/R[Doff/e] as the outputs. A total number of C category-

specific deep belief models are trained. The training for the category-specific

deep belief network is identical to the training process of the global deep belief

network ΛG except for the cost function during the training. When the cth

category-specific deep neural network Λc is trained, weights Wc and bc are

optimized by minimizing the following softmax cross-entropy J(W,b):

{WC ,bC} = argmin
W,b

{J(W,b)} (18)

J(W,b) = − 1

M
{
m=M∑

m=1

J(W,b;∆m, R
m[Don/e])

+
m=M∑

m=1

J(W,b;∆m, R
m[Doff/e])}

(19)

For the acoustic event detection, acoustic features and category labels

are used to train the background classifier Mbg and event category classifier

Mev. Then acoustic features and category-specific bottleneck features are

concatenated to construct the input space of the onset and offset random forest

classifiers MBNCS
c,on and MBNCS

c,off . The feature space of the AED system with

category-specific bottleneck features can be expressed as:

ΩCS,t = {X t,BNCS,t, B, c, R[
Don

e
], R[

Doff

e
], t} (20)

where BNCS,t is the output of the bottleneck layer of the category-specific

neural network at frame t.

For testing, the acoustic features are extracted first, for which background

and event category are detected. The category-specific bottleneck features are

detected at the same time. Given the acoustic features, the detected event

category and the obtained category-specific bottleneck features, the localization

task is then performed.
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Figure 5: AED system utilizing the category-specific bottleneck features.

5. Experiments and analysis

5.1. System definition

This work implements and evaluates three types of acoustic event detection

systems with different sets of input feature spaces.

5.1.1. Baseline system (BS)

The baseline system uses feature space FD
t to train the random forest

classifiers Mc,on and Mc,off . The input acoustic feature to each of the random

forest classifiers is X t. If the input feature space of BS is projected onto an m-

dimensional feature space (e.g. using PCA), the system will be denoted BSm.

5.1.2. Extended system (ES)

In the extended system, the feature space is extended from FD
t to I t which

is expressed as:

14
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I t = {X t−K , ...,X t, ...,X t+K , B, c, R[
Don

e
], R[

Doff

e
} (21)

Here X t−K and X t+K denote the acoustic features of frame index t − K
and t + K respectively. If the input feature space of ES is projected onto an

m-dimensional feature space, the system will be denoted ESm.

5.1.3. Combined system (CS)

In the combined systems, the global and category-specific bottleneck features

are combined with acoustic features X t to train the random forest classifiers

MBNG
c,on /MBNG

c,off and MBNCS
c,on /MBNCS

c,off .

If an AED system adopts the b-dimensional global bottleneck features

together with the acoustic feature X t as its input feature space, it will be

denoted CS bG in this work. The system will be denoted CS bE if the b-

dimensional category-specific bottleneck features combined with the acoustic

feature are used as the input feature space.

Table 1 provides the details of the feature space, dimension and side

information being utilised for the three types of AED systems. Here, CI,

EC and EB are abbreviations for contextual information, event category

information and event boundary information respectively. Here, K denotes how

many surrounding frames are utilized, m denotes the reduced feature dimension

after using PCA, b is the bottleneck feature dimension and Dim(X t) indicates

the dimension of X t.

5.2. Database

Our proposed systems are tested on the two popular UPC-TALP [17] and

ITC-IRST [18] databases.

The UPC-TALP database contains a set of isolated acoustic events that

occur in a meeting room environment for the CHIL (Computers in the

Human Interaction Loop) acoustic event detection task. Data was recorded

at 44.1kHz, 24-bit precision. There are approximately 60 types of sounds

for each of the sound classes. The acoustic events in the database are door
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Table 1 Feature components for different systems.

System Feature dimension CI EC EB

BS Dim(X t) NO NO NO

ES Dim(X t).(2.K + 1) YES NO NO

BSm m NO NO NO

ESm m YES NO NO

CS bG Dim(X t) + b YES YES NO

CS bE Dim(X t) + b YES NO YES

open(do), steps(st), door slam(ds), chair moving(cm), spoon-cup jingle(sc),

paper wrapping(pw), key jingle(kj), keyboard clicking(kc), phone ringing(pr),

applause(ap), cough(co), laugh(la), door knock(kn) and unknown(un).

The ITC-IRST database was also produced within the CHIL project.

Different sets of isolated acoustic events in meeting room environments were

recorded. These recordings are non-overlapping and 16 classes in total exist

within this database: door knock(dk), door open(do), door slam(ds), steps(st),

chair moving(cm), cough(co), paper wrapping(pw), falling object(fo), laugh(la),

keyboard clicking(kc), phone ringing(pr), key jingle(kj), spoon-cup jingle(sc),

phone vibration(pv), MIMIO pen buzz(mb) and applause(ap).

For the UPC-TALP and ITC-IRST databases, there are 1028 and 767

acoustic events, 5% of which are randomly chosen as the test sets and the

total duration for the two databases are approximately 6.46 and 8.56 hours

respectively. Details on the composition of the databases can be found in [20].

5.3. Acoustic signal representation

The acoustic representation of [7, 20] was adopted in our work and Table 2

provides the details of the feature components used. The log spectral parameters

with their first and second derivatives, zero-crossing rate, spectral bandwidth,

sub-band energies, spectral flux for each band and the short time energy are

concatenated together to form the 60 dimensional feature for each frame (i.e.
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Dim(Xt) = 60 in Table 1). The length is set to 100ms which was used in [20].

To utilize the correlation of acoustic features, each frame is divided into

overlapped sub-frames of 30ms duration using a Hamming window with a 20ms

overlap.

Table 2 Frame based acoustic representation.

Feature type Dimension

16 log-spectral parameters, 1st, 2nd derivative 48

zero-crossing rate, spectral bandwidth 2

spectral centroid 1

4 sub-band energies 4

spectral flux for each sub-band 4

short time energy 1

5.4. Metrics

In our work, frame based correctness (AED-AC) is used to represent the

correctness of the trained models and acoustic event detection error rate (AED-

ER) is used to represent the detection performance.

The frame based correctness of the system is computed as:

AED-AC =
Nd

N
(22)

where N is the total number of test frames and Nd is the number of frames

correctly detected by the classifiers..

The acoustic event detection error rate is adopted from the NIST metric

for speaker diarization and used as an evaluation metric in [20, 28, 50]. The

AED-ER is defined as:

AED-ER =

∑
s l(s).[max(N∗(s), N.(s)−N�(s))]∑

s l(s).N∗(s)
(23)

Here, for a segment s, l(s) is the duration of the segment s, N∗ is the number

of manually labeled acoustic events, N� is the number of correctly detected
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acoustic events and N. is the number of total detections.

The AED-AC adopted in this paper is calculated frame wise and used

to evaluate the performance of the trained acoustic models. The AED-ER

includes the correctly and incorrectly detected events and is adopted as the

final evaluation metric.

5.5. Configurations

During the process of the random forest training, the maximum tree depth

and the minimum number of remaining frames within a leaf node are set to 12

and 10 respectively. According to the experimental results in [20], a tree depth

of 12 allows for adequately modelling the long duration categories while not

over-fitting the short ones. A minimum number of 10 frames within a leaf node

is large enough to avoid over-fitting for short events. In the extended system

ES and combined system CS, k is set to 3. The detection error tolerance e in

this work is set to 100ms, which is a commonly used value as in [14, 20].

5.6. Results on the UPC-TALP database

In this section, the performance of different AED systems will compared and

analyzed on the UPC-TALP database.

5.6.1. Performance of the BS system

To begin with, the baseline system BS using acoustic features of the current

frame to train the localization random forest classifiers is constructed. The mean

AED-AC and AED-ER across all the acoustic events for system BS are 61.96%

and 29.46% respectively (see Fig. 6 for the individual event performance).

5.6.2. Performance of ES system

To demonstrate that long contextual information is good for an AED system,

system ES with 420-dimensional features (k = 3 in I t) is compared with system

BS in Fig. 6. The mean AED-AC and AED-ER across all the acoustic events

for system ES is 70.37% and 25.79% respectively. The AED-AC and AED-

ER for each event is shown in Fig. 6. As illustrated in Fig. 6, contextual
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Figure 6: AED-AC and AED-ER for system BS and ES (UPC-TALP).

information contributes to a higher classification accuracy and lower acoustic

event detection error.

To make a comparison between system BS and ES with an equal input

feature dimension, the input feature space of BS and ES are both projected

onto a 20-dimensional feature space. Principal component analysis (PCA) is

adopted to reduce the input dimension. After reducing the dimension, system

BS and ES become BS20 and ES20. The AED-AC and AED-ER results of

BS20 and ES20 are displayed in Fig. 7. The higher detection accuracies and

lower detection error rates for ES20 further verify that contextual information

contributes to the performance of an acoustic event detection system.

5.6.3. Performance of system with global bottleneck features

When global bottleneck features BNG,t are combined with acoustic features,

the dimension of the global bottleneck features (b in system CS bG) is firstly

optimized. We did this by varying the number of bottleneck layer units in

the global deep belief network to maximise the category classification accuracy

(percentage of frames with correctly detected event category). Table 3 shows the

converged category classification accuracy using different number of bottleneck

layer units. As shown in Table 3, the neural network with 20-dimensional
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Figure 7: The AED-AC and AED-ER for system BS20 and ES20 (UPC-TALP).

global bottleneck features achieves the highest category classification accuracy.

The acoustic features and the 20-dimensional global bottleneck feature are

Table 3 The category classification accuracy using different number of bottleneck layer units.

b = 5 b = 10 b = 20 b = 50 b = 100 b = 200

Accuracy 75.6% 78.3% 79.2% 78.4% 78.1% 76.7%

then concatenated to construct the system CS 20G. In the system CS 20G,

the mean AED-AC and AED-ER across all the acoustic events are 69.12% and

27.19% respectively. Fig. 8 shows the results for each acoustic event compared

to the BS system.

To further demonstrate the importance of global bottleneck features, the

feature importance of acoustic features and global bottleneck features is shown

in Fig. 9 for various acoustic events. Here, feature importance is the byproduct

of the random forest classifier MBNG
c,on and MBNG

c,off during the process of splitting

[53] at the stage of localization. In splitting, the decrease in the Gini node

impurity [51] is recorded for each variable. The Gini node impurity was then

used to guide the split. Averaging all decreases in the Gini impurity in the forest

yields the variable importance. The importance of all variables is normalized
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Figure 8: The AED-AC and AED-ER for system BS and CS 20G (UPC-TALP database).

from 0 to 1 by dividing by the largest importance score. A variable with a

larger importance score indicates the variable is more important. The solid and

dashed line segments denote the average mean importance of acoustic features

and global bottleneck features respectively. As illustrated in Fig. 9, the global

bottleneck features (dimension 61 to 80) achieved a higher mean importance

than that of the acoustic features (dimension 1 to 60).

5.6.4. Performance of system with category-specific bottleneck features

When category-specific bottleneck features BNCS,t are combined with the

acoustic features, the dimension of category-specific bottleneck features (b in

the system CS bE) also has to be optimized. We varied the number of units

in the bottleneck layer and the minimum event detection error is adopted as

the criteria in the selection of b. Fig. 10 shows that the converged AED-ER

is achieved when b reaches 100. Thus the 100-dimensional category-specific

bottleneck features are combined with the acoustic features Xt. The mean

AED-AC and AED-ER across all the acoustic events are 71.60% and 24.90%
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Figure 9: Importance of the global bottleneck features (UPC-TALP).

for system CS 100E. Detection results for each acoustic event are shown in Fig.

11 compared to the baseline AED system BS.

To show the importance of category-specific bottleneck features (dimension

20 40 60 80 100 120

AED-ER 38.64% 34.92% 32.89% 32.26% 32.14% 32.01%

20%

24%

28%

32%

36%

40%

A
E
D
-E
R

Figure 10: The AED-ER for systems with different sets of BNCS,t (UPC-TALP database).

61 to 160), the feature importance of various acoustic events are displayed in Fig.

12. Here, the feature importance is the byproduct of the random forest classifier

MBNCS
c,on and MBNCS

c,off . As shown in Fig. 12, in all cases, the average importance

values of the category-specific bottleneck features consistently outperform that

of acoustic features. Furthermore, as displayed in Fig. 12, the variation of

category-specific bottleneck feature importance is smaller than the variation of

acoustic feature importance, which indicates that category-specific bottleneck
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Figure 11: The AED-AC and AED-ER for system BS and CS 100E (UPC-TALP).

features provide consistent importance across all bottleneck units.

Figure 12: Importance of the category-specific bottleneck features (UPC-TALP).

5.7. Results on ITC-IRST database

In this section, performance of different AED systems will be compared and

analyzed on the ITC-IRST database.
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5.7.1. Performance of the BS system

For the baseline acoustic event detection system, the mean AED-AC

and AED-ER are 59.51% and 30.59% respectively (for the individual event

recognition refer to Fig. 13).

5.7.2. Performance of ES system

The mean AED-AC and AED-ER across all the acoustic events for ES

are 67.69% and 27.16% respectively. The AED-AC and AED-ER for each

acoustic event is shown in Fig. 13 for both BS and ES systems. Similar to the

trend with the UPC-TALP database, higher classification accuracy and lower

detection error are also achieved for the ES on the ITC-IRST database. These

better detection results demonstrate the effectiveness of multi-frame contextual

information.

To further verify the importance of contextual information on the AED
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BS ES
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Figure 13: The AED-AC and AED-ER for system BS and ES (ITC-IRST).

system with equivalent input dimension, the input feature space of BS and ES

are also projected onto a 20-dimensional feature space using PCA. The detection

error rates for each acoustic event are displayed in Fig. 14 which demonstrates

that contextual information assists the acoustic event detection by providing

more discriminant features.
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Table 4 The category classification accuracy using different number of bottleneck layer units

on the ITC-IRST database

b = 5 b = 10 b = 20 b = 50 b = 100 b = 200

Accuracy 66.2% 65.3% 71.2% 65.8% 64.6% 63.5%

0%

20%

40%

60%

80%

dk do ds st cm co pw fo la kc pr kj sc pv mb ap

A
E
D
-A
C

BS20 ES20

0%

20%

40%

60%

80%

100%

A
E
D
-E
R

BS20 ES20

Figure 14: The AED-AC and AED-ER for system BS20 and ES20 (ITC-IRST).

5.7.3. Performance of system with global bottleneck features

When the global bottleneck features BNG,t are combined with the acoustic

features, the dimension of global bottleneck features (b in the system CS bG)

is also optimized. From Table 4 where the number of bottleneck layer units

is varied in the deep belief network, we can set b to 20 to maximise the

category classification accuracy. The 20-dimensional bottleneck features are

then combined with the acoustic features to construct the CS 20G system. The

mean AED-AC and AED-ER are 65.50% and 28.17% for CS 20G. Fig. 15

shows the detection error rate of each acoustic event compared to the system

BS.

The importance of global bottleneck features (dimension 61 to 80) of
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Figure 15: The AED-AC and AED-ER for system BS and CS 20G (ITC-IRST).

randomly chosen acoustic events are shown in Fig. 16. As displayed in Fig.

16, the global bottleneck features achieved higher average mean importance

than the acoustic features.

Figure 16: Importance of the global bottleneck features (ITC-IRST).
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5.7.4. Performance of system with category-specific bottleneck features

When the category-specific bottleneck features BNCS,t are combined with

acoustic features, the dimension of category-specific bottleneck features (b in

the system CS bE) needs to be optimized. We varied the number of units in

the bottleneck layer and the minimum event detection error is adopted as the

criteria in the selection of b. Fig. 17 shows the converged detection error when

b reaches 60. Then the 60-dimensional category-specific bottleneck features are

combined with the acoustic features X t. The mean AED-AC and AED-ER

are 71.6% and 26.15% for the system CS 60E. The detection results for each

acoustic event are displayed in Fig. 18 compared with the baseline system

BS. The higher mean importance of the category-specific bottleneck features

(dimension 61 to 120) are evident from Fig. 19.

20 40 60 80 100

AED-ER 38.65% 34.12% 30.90% 31.15% 31.05%

20%

24%

28%

32%

36%

40%

A
E
D
-E
R

Figure 17: The AED-ER for systems with different sets of BNCS,t (ITC-IRST).

5.8. Discussion and analysis

Table 5 summarises the overall AED-ERs for systems using different

approaches. Here, system RFR and SVM are systems which used random

forest and SVM techniques. The CSG and CSE are our proposed random

forest classification based systems using global bottleneck and category-specific

bottleneck features respectively. From Table 5 system CSE (CS 100E and

CS 60E for the UPC-TALP and ITC-IRST database respectively) using

category-specific bottleneck features together with acoustic features achieved

the lowest detection error. To further demonstrate the efficiency of the proposed
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Figure 18: The AED-AC and AED-ER for system BS and CS 60E (ITC-IRST).

Figure 19: Importance of the category-specific bottleneck features (ITC-IRST).

features, support vector machine is combined with the best proposed bottleneck

features (category specific bottleneck features) to construct the system

CSE-SVM , which outperformed the system SVM. Performance improvements

can be attributed to the following factors:

Firstly, contextual information assists in the category classification

and event localization. The contextual information helps to utilize the
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Table 5 The AED-ER for systems using different approaches

RF based RFR [20] BS [50] ES CSG CSE

UPC-TALP 38.14% 30.20% 25.79% 27.19% 24.90%

ITC-IRST 34.20% 30.59% 27.16% 28.17% 26.15%

SVM based SVM CSE-SVM

UPC-TALP 44.12% 37.10%

ITC-IRST 38.70% 32.18%

acoustic information from a longer duration rather than the frame based

acoustic features. For some periodically acoustic events, such as the “phone

vibration” and “applause”, the contextual information can effectively capture

the periodical information from the acoustic signals.

However, as more contextual information is used, the higher the input

dimension will be. The use of the global bottleneck features reduces the input

dimension but captures the important contextual information. Moreover, the

global bottleneck features are trained with the acoustic event type as the output

of the neural network, which makes the extracted bottleneck features more

acoustic event discriminant. The resultant features are better able to compactly

represent the complex unstructured acoustic events.

The category-specific bottleneck features are derived with the contextual

information as the neural network input and the discretized acoustic event

positions as the neural network output. This makes the category-specific

bottleneck features amalgamate the contextual information and the acoustic

event localization information. Category-specific bottleneck features embed rich

information of the acoustic event boundaries and provide much more class-

specific discriminant features for the final event localization.

6. Conclusion and future work

This paper proposes to utilize the prior knowledge of the acoustic event

category and boundary information along with contextual information. Global
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and category-specific bottleneck features are employed to construct a more

discriminative feature space. We show that our proposed system achieves state

of the art performance. However, only the available prior knowledge of the event

category and boundary information are utilized in this paper. Additional prior

knowledge, such as prior acoustic event duration, prior distribution of acoustic

event signals and discriminative differences between specific acoustic events are

areas for consideration in future work.
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