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Abstract

We proposed some novel classification features for the microcalcification of mammograms, and selected the effective
combined features using Karhunen—Loeve (KL) transformation followed by the restricted Euclidean distance measure,
and finally applied the proposed trend-oriented radial basis function neural network (TRBF-NN) to distinguish the
benign group from the malignant group and evaluate the performance with the round-robin method. The two-
dimensional KL features were more distinguishable than the raw two-dimensional features. The TRBF-NN was able to
define the more generalized distribution than those distributions defined by the conventional RBF-NNs. According
to the receiver operating characteristic analysis, the proposed system performed better than two trained radiologists.
© 1999 Pattern Recognition Society. Published by Elsevier Science Ltd. All rights reserved.
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1. Introduction

In the United States, breast cancer is the leading cause
of death in women between 40 and 55 years of age. At
present the mammogram is the only proven method for
detecting minimal breast cancer. One important indi-
cator of breast cancer is the presence of clustered micro-
calcifications. Clustered microcalcifications can be seen on
mammograms in 30-50% of cases of breast cancer. How-
ever, most mammographic calcifications are benign. Accu-
rate classification of microcalcifications into benign and
malignant groups would help improve diagnostic sensitiv-
ity as well as reduce the number of unnecessary biopsies.

What features are useful to distinguish benign from
malignant calcifications? Various investigators have
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attempted this distinction [1-6]. Roselli-Del-Turco used
three features to distinguish benign from malignant calci-
fications [3]: (1) size, shape or density of the calcifica-
tions, (2) size or shape of the “cluster”, and (3) number of
microcalcifications. Their analysis of the morphological
criteria, which led to a distinction between benign and
malignant biopsy results, is one of the most thorough
that has been published to date. However, there seems to
be no conclusive features which could distinguish benign
from malignant calcifications. Wu used a convolution
neural network to classify benign and malignant micro-
calcifications in radiographs of pathologic specimens.
[7]. Thiele analyzed 21 texture features (i.e., 16 co-occur-
rence and five fractal) of the breast tissue surrounding
microcalcifications on digitally acquired images during
stereotactics biopsy. His Jackknife results misclassified
2 of 18 malignant cases (sensitivity 89%) and 6 of 36
benign cases (specificity 83%) for logistic discriminant
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analysis [8]. Jiang extracted eight characteristic features
of clustered microcalcifications. Those features described
the size, shape irregularity, number and uniformity of
individual microcalcifications, and the size and shape of
a cluster. When individual microcalcifications were iden-
tified by a computer rather than manually, the classifica-
tion performance of his technique remained comparable
to that of the radiologists [9]. However, the above three
studies did not quantitatively measure how each feature
contributes to classification.

Most classification systems consist of four subsystems:
measure, preprocess and/or transformation, feature selec-
tion, and classification. In the design of a classification
system, a common assumption is that all input features
play an important discriminatory role in the classifica-
tion and are essential for a specified performance.
However, this may not always be true in practical ap-
plications. If the designer does not have confidence in
what the effective features are, some features may be
redundant or not as important as others. Our purpose in
this paper is to investigate the effectiveness of our feature
selection method and the proposed neural network as
detailed below:

(1) Image feature selection method for classification of
clustered microcalcifications: It is not easy to estimate
appropriate image features on this classification
problem. First, we propose 10 image feature candi-
dates. Second, some redundancy of image features is
eliminated through Karhunen-Loeve (KL) trans-
formation. Finally, we determine the most effective
KL feature (i.e., eigen vector) plain to classify benign
and malignant groups through the restricted Euclid-
ean distance measure (rEDM).

(2) Trend-oriented radial basis function neural network
(TRBF-NN): Since two data distributions of benign
and malignant groups were partly overlapped on the
selected KL feature plain, a more powerful neural
network to regularize the class distribution was de-
sired. We propose the novel cost function which
would be minimized through the network training,
where the learning equations of the centers and
widths of each radial basis function (RBF) are based
on the gradient-descent method [10].

2. Materials and method

Our database consists of the Mammographic Image
Analysis Society (MIAS) MiniMammographic Database
[117, which includes 9 benign and 13 malignant calcifica-
tion cases, and the Georgetown University Hospital
Database, which includes 17 benign and 16 malignant
calcification cases. Forty-seven benign and 81 malignant
region of interest (ROI) images, a total of 128 ROIs, were
selected from 50 pm x 50 pm digitized whole mammo-
grams manually. Each 256 x 256 pixel ROI image is

supposed to contain whole clustered microcalcifications.
If calcifications were widely distributed beyond an ROI
boundary, additional ROIs were selected from an image
while avoiding more than 50% overlap between ROIs.
The overview of our proposed method is shown in Fig. 1.
First, we extract ten raw image features which are cal-
culated from an original ROI image, the binarized micro-
calcification image, automatically made in preprocess,
and two processed images based on the binarized image.
These features are based on three morphological criteria:
(1) number, size, and shape of the calcifications, (2) size
and shape of the “cluster”, and (3) contrast of microcal-
cifications. Second, we apply KL transformation to ten-
dimensional raw feature hyper-space in order to reduce
the dimension of the problem. Next, we select the best
two-dimensional KL feature plain, separating benign
from malignant calcifications, from ten-dimensional KL
feature hyper-space using the rEDM. In addition to the
KL feature plain, the best plain for raw feature hyper-
space is selected for comparison using the rEDM.
Finally, we classify them based on the two-dimensional
plain using the proposed TRBF-NN and evaluate the
performance with the round-robin method, where one
sample is tested after the learning based on the remaining
127 samples.

2.1. Preprocessing

The purpose of the preprocessing is to get a binarized
image of clustered microcalcifications. Fig. 2a and b is an
example of a original gray-scale image and a binarized
microcalcification image, respectively. The preprocessing
algorithm is summarized as follows:

1. Subtraction of the averaged image from the original
image: The averaged image is made through applying
23 x 23 pixels average kernel to the original image.
Then the averaged image is subtracted from the orig-
inal image to eliminate the background trend.

2. Binarization through the histogram quantization: The
average-subtracted image (i.e., the outcome of step 1)
is quantized to 32 levels based on its histogram. The
pixels in the maximum level are only used as candi-
dates of clustered microcalcifications.

3. Opening of the histogram quantized image (i.e., the out-
come of step 2). The 3 x 3 pixels morphological open-
ing filter is applied to the histogram quantized image
to remove line artifacts which arise when microcalcifi-
cations are in the ductal structures.

4. Dilation of the opened image (i.e., the outcome of step
3): The 3 x 3 pixels morphological dilation filter is
applied to the opened image to enlarge objects.

5. AND operation: The AND operation between the
opened image and the dilated image (i.e., the outcome
of step 4) is processed to preserve the detail shape of
microcalcifications.
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Ten raw features are extracted based on:

(1) Number, size, shape of microcalcifications.
(2) Size or shape of the "cluster".

(3) Contrast of microcalcifications.

}

Fig. 1. The overview of the entire method. Ca

6. Labeling: The labeling for the AND image (i.e., the
outcome of step 5) is processed to eliminate small
objects less than 5 pixels, which are regarded as noise.

All parameters used in the preprocessing are deter-
mined on the basis of the experiments.

2.2. Feature extraction

Our image features are based on four images, which
are the original image shown in Fig. 2a, the binarized
clustered microcalcifications image shown in Fig. 2b,
the ellipse image, which fits to the distribution of micro-
calcifications, shown in Fig. 2¢, and the morphological
dilation image of the binarized image shown in Fig. 2d.
Ten raw features u,, k =0, ..., 9, based on four factors (i.e.,
number, size, shape, and subtlety) are listed as follows.

uo: Number N, where N is the number of microcalcifica-
tions shown in Fig. 2b.

Uq:

Ujp:

us:

Uy

Us:

Ug:

uq:

Ug:
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Feature
Database

Apply KL transformation
to ten-dimensional
features space to reduce
the dimensionality.

10 Raw features
* 10 KL features

Feature selection

Select two-dimensional feature combinations
through the Euclidean Distance Measure.

two-dimensional

KL features

Distributionl N/DA, where DA is the distribution
area of microcalcifications shown in Fig. 2c.

Shapel AE, where AE is the average circularity of
microcalcifications. The higher the circularity, the
rounder the microcalcification.

Shape2 WE, where WE is the weighted average circu-
larity of microcalcifications.

Distribution2 CA/DA, where CA is the total area of
microcalcifications shown in Fig. 2b.

Sizel BA, where BA is the area of the biggest micro-
calcification.

Size2 AA, where AA is the average area of microcal-
cifications.

Distribution3 Ax/Bx, where Ax and Bx are the length
of the semimajor axis and semiminor axis, respective-
ly, of the ellipse which best fits to the disposition of
microcalcifications. The higher the Distribution3, the
rounder the cluster.

Contrastl C/M, where C and M are the contrast and
moment of the original image masked by the 25 x 25

two-dimensional
Raw features

Round-Robin method

One sample is tested after the learning based on
the remaining 127 samples. The network has three
layers which is composed of 2 inputs, 2 output
nodes and about 12 hidden neurons. The 128
samples are tested.

* 128 network outputs

Evaluation

Receiver Operating Characteristic (ROC)
Analysis through the LABROC1 algorithm.

** represents microcalcifications.
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Fig. 2. (a) an original clustered microcalcifications image, (b) a binarized clustered microcalcifications image representing the area and
shape of each microcalcification, (c) an ellipse image assumed to represent the area and shape of the microcacification cluster, (d) a
morphological dilation image used as the background when calculating the contrast features.

kernel dilated microcalcification image shown in
Fig. 2d. The kernel size is determined by some heuris-
tics. The higher the contrast, the more clearly the
microcalcifications can be seen.

uy: Contrast2 D1/D2, where D1 and D2 are the average
intensity of microcalcifications and the original im-
age masked by the 25 x 25 kernel dilated microcalcifi-
cation image, respectively.

2.3. Feature selection

The reduction of the dimensionality of a problem in
order to deliver a system for a real-world application has
always been a main concern of researchers. In this study,
we reduce the dimensionality from 10 to 2, because a

(b)

o
PO

(d

two-dimensional plain is the largest dimension in which
a human can recognize the separation of classes without
changing the direction of the view. There are two basic
approaches to reducing the dimensionality: (1) trans-
formation technique such as Fourier transformation or
KL transformation, and (2) selection of a subset of fea-
tures by evaluating the features based on the available
data, e.g., Euclidean distance measure (EDM). A combi-
national feature evaluation measures the separability of
a subset of features which takes into account the combin-
ing effect of a set of features. In this study, we apply KL
transformation followed by the restricted EDM. Before
KL transformation, the normalization of feature values
must be processed, because KL features are calculated
on the basis of the variance of feature distributions.
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The magnitude variation among raw features should
be removed. The normalized feature values x;(n), k =
0,...,9, for the original feature value x;(n) are given as

Kelm = L (1
O

where k is a feature index, and g, and o, are the mean and

the standard deviation, respectively, of the original fea-

ture value sequence x;(n), n =0, ...,127.

KL transformation extracts the lengths of the data
distribution in the multi-dimensional feature space using
eigensystems. The eigenvalues 4, k =0,...,9, and the
eigenvectors F; for the covariance matrix R of the 10
normalized original features are defined as all solutions of

IR — Z4ld| =0,
RF, = 4F,, )
Fk?éo,

where I is an identity matrix. In this study the eigenvec-
tors F,, where k is a descending order of the eigenvalues,
are called as KL features vk, and KL feature values v, (n),
k=0,...,9, are defined as inner products between the
eigenvector F, and the normalized original features
u'(n) = {u'y(n)} [12]. The KL features which have high
eigenvalues usually consist of effective raw features, be-
cause in general the wider the distribution, the more
separability.

Table 1 shows the eigenvalues and the eigenvectors for
the covariance matrix of the 10 original features for our
database. Using this table we can find the combination
ratios of the normalized 10 original features to compose
each KL feature. In other words, this table defines the
KL features (i.e., vectors) in the ten-dimensional hyper-
space composed by the normalized ten original features.
According to the empirical theory, the direction having
the bigger variances of the data distribution are more

Table 1

effective to discriminate the classes than those of the
smaller variances. In that sense the KL features v, and v,
which have the biggest eigenvalues, are regarded as the
more effective features for discrimination. However, it is
not always true that the combination of the two KL
features with the biggest eigenvalues are the best for the
classification in the two-dimensional plain. We quantize
the separability of the data, projected from the nor-
malized original ten-dimensional space to the KL feature
plain, using the restricted EDM. The EDM of two fea-
tures is defined by

p(wi) p(wy)
N(we)N(w;)

N(wi) N(wy)

XYY =X %L )

p=14=1

EDM(x;, x,) =

where x;, x, are two features, p(w,) and p(w,) are prior
probabilities of occurrence of class w; and w;, respective-
ly, N(wy) is the number of patterns in class w, and x¥ are
two element vectors from class wy [13]. EDM is used to
evaluate the separability in the feature space, where the
distance between every pair of two-element patterns from
a different class is accumulated. However, EDM some-
times presents inappropriate results when some data
points are far from the major mass (e.g., inside the stan-
dard deviation) of the data. Because such data make EDM
values higher than the values expected from the appear-
ance of the data distribution, we introduce the restricted
EDM which measures the accumulated distance with the
restriction of the data space. The rEDM is defined by

Eigenvalues and eigenvectors of the covariance matrix for the original 10 features

Vo Vs V7 Ve

"(wi) p' (W
rEDM (x4, x5, o) = 717/( QP S )
N'(wi)N'(w)
N’ (w,) N'(wy) /
<Y Y DX XU I -
r=1 ¢g=1
[x1] < o [x2] S o, 00 >0, 4
Va Vs V2 Vi Vo

Eigenvalues:
0.1818 0.2941 0.3855 0.4734

Eigenvectors:

U —0.2305 —02179 0.1436 0.6389
u) 0.2748 0.0554 0.1728 0.0523
) —0.2756 0.5761 0.3346 0.0653
s 04214 —0.5330 —0.1638 0.0977
uj —0.2120 —0.1433 0.2777 0.0615
s 0.5299 0.2270 0.4139 0.2186
ug —0.5358  —0.3453 0.0968  —0.0834
u; — 0.0638 0.1036 —0.2670 0.5992
ug — 0.0040 0.1061  —0.2264 0.3918

Uy —0.0310 0.3467 —0.6560 — 0.0649

0.0628 —0.2135 0.2530 0.2607
— 04110
0.0089  —0.5420 0.0904
—0.0339 0.7302 0.4762
0.0522  —0.0062

0.0352 1.1460 1.0335 1.6123 2.1326 2.7055

—0.0766 0.0469  —0.3457 0.5030 —0.0651 —0.2928
— 0.6093 0.1816 —04310 —0.0876 0.3503 0.4103
—0.0444 0.1694 —0.2559 —04417 —0.3535 —0.2445
0.0636 0.1545 —0.2693 —04347 —04439 —0.1245
0.6634 0.1659 —0.2677 —0.0846 0.1287 0.5391

—0.4292 0.2879
—0.0489 —0.4370 0.3981
—0.4384 0.1881 0.1587
—0.0510 0.0091 0.1418
—0.3762 02879  —0.3520 0.3054

—0.1099 0.2110
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where o is a positive value to restrict the data space, and
all dashed-variables are modified from Eq. (3) to be with-
in the restricted space. Using the rEDM the contribu-
tions from the data, whose absolute values are outside of
the coefficient o, are eliminated when measuring the
accumulated distance.

We apply the rTEDM to both the raw feature space and
the KL feature space in order to select the best separable
combination (i.e., plain) for each feature space. Before
applying the rEDM to KL features, the magnitude vari-
ance of KL features is also removed following Eq. (1),
otherwise the KL features, which have higher eigen-
values, are always selected as the best features. The nor-
malized KL features are represented as vy, k =0,...,9.
The rEDM of raw features are evaluated for comparison
with that of KL features. The number of combinations is
45 (i.e., a combination of two from ten). Fig. 3a and b
show the rEDM values of 45 two-dimensional combina-
tions for both raw features and KL features, respectively.
Those values are the weighted averages of the six rEDMs,
where o is varied from 1.0 to 1.5 with 0.1 step. The rTEDM
values generally have positive correlation with the
o values, so the weighted averages are used. The most
separable combinations, which indicate the maximum
rEDM values, for raw features and KL features are the
combination between the raw features uy and u’, and the
combination between KL features v; and v5. The projec-
tions of the data from the normalized original ten-dimen-
sional space to both the raw feature plain and the KL
feature plain determined in Fig. 3 are shown in Fig. 4a
and b, respectively. The data distribution of the KL
feature plain is normalized using Eq. (1) after the inner
production process. As seen in Fig. 4a, two classes are
separated by the line with a 135° slope. It means that
there is a positive correlation between two raw features
uy and u3, i.e.,, Number and Shape2. The more microcal-
cifications, the smaller the weighted average circularity,
the more likely the microcalcifications are malignant. As
seen in Fig. 4b, two classes are separated by the line with
a 45° slope, meaning that there is a negative correlation
between the KL features v; and v,. When there is a nega-
tive correlation between two KL features, the bigger the
difference between raw component features of two KL
features, the more effectively the raw component feature
can distinguish two classes. As seen in Table 1, the
differences of u’, uy, and u- between two KL features v}
and v, are larger than those of other raw component
features, which means that the larger the maximum area,
the higher the contrast, and the smaller the ellipsity of the
clustered distribution, the more likely the microcalcifica-
tions are malignant.

2.4. Review of RBF neural network

In this section, we review the central features of the
RBF-NN [14]. Assume that the neural network has

0.55 -
e i combination of |
z 0.50 " |raw features u' oand u's
O — -
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c
8
B 035 o
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©
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Fig. 3. The averaged rEDMs of 45 two-dimensional combina-
tions for (a) ten raw features and (b) ten KL features.

a three layer feedforward architecture as shown in Fig. 5.
Input vectors x are propagated to the hidden units (i.e.,
RBF neurons), which computes a hyper-spherical func-
tion of x, so that the output of the jth hidden unit is given
by

¢;=¢(Ix =yl ®)
where y; is the center of the RBF neuron for the jth
hidden unit, and || ... || denotes a distance measure that is

generally taken to be the Euclidean norm. The nonlinear
function ¢ can be chosen in variety of ways and can, in
principle, vary from one hidden unit to the next. For
example, we use a Gaussian nonlinearity:

$(x) = exp (— j—) ©

The outputs z; of the neural network are given by the
weighted sums of the outputs from the hidden units:

2= Y wyhy, ™

where the synoptic weights w;; are adaptive variables that
are set during the learning phase. Training data are
supplied to the neural network in the form of pairs
(xp,t,) of input and target vectors, where p=1,...,P
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Fig. 4. The data distributions of (a) the raw features and , and (b) the KL features and . Blue dots and red dots represent benign and
malignant cases, respectively. As seen in Fig. 4a, when two classes are separated by the line with a 135° slope, there is a positive
correlation between two axes, i.e., two raw features, to separate two classes. As seen in Fig. 4b, when two classes are separated by the line
with a 45° slope, there is a negative correlation between two axes, i.e., two KL features.

Benign

Malignant

Output i

Feature 2

Feature 1

Fig. 5. Architecture of a three layer feedforward neural network
used in this study.

labels the individual training pairs. The learning algo-
rithm aims to minimize the sum-of-squares error defined
by

1
E :EZZ(ZU, — [ip)z, (8)

where z;, = z;(x,) denotes the output of the ith output
unit when the neural network is presented with the input
vector X,,. At a minimum of E we have

OE

5Wij

0. ©)

It is unlikely that the widely used technique of error
back-propagation [15], the learning algorithm for the
RBF-NN corresponds to the solution of a linear prob-
lem. Therefore, the training of the network is a fast
procedure as follows:

wi =) (M1, {Z q&kpt,p},

where the matrix M, which is the covariance matrix of
the transformed data, is defined by

(10)

My; =2 dip P (11
r

where ¢y, = ¢r(x,) and ¢;, = ¢;(x,).

2.5. Modifications of RBF-NN

An important consideration in setting up an RBF-NN
is the choice of the number, center y; and width o; of the
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RBF neuron. The most natural choice is to let each data
sample point in the training set correspond to an RBF
center. In this case the number of degrees of freedom in
the network equals the number of items of data, and the
neural network function fits exactly through each data
point. If the data appear regular, but are contaminated
by noise, the neural network will learn all the details of
the individual data points, rather than representing the
underlying trends in the data. This phenomenon is some-
times called overfitting. There are four main ways to
avoid overfitting. The first method, regularization,
damps out the rapid sensitivity in a full size model (e.g.,
the full set of RBFs, whose centers correspond to the
input vectors from the training data, is retained) by
adding a weight penalty term to the minimization cri-
terion [ 16-18]. For example, minimization of the energy
Es

By =3 Y (Zip— o) + X S0} (12

is zero-order regularization [19]. The regularization
parameter, 4, has to be chosen a priori or estimated from
the data, and controls the degree to which the neural
network function is smoothed. The second way to avoid
overfitting is to explicitly limit the complexity of the
network (i.e., to reduce the number of degrees of freedom)
by allowing only a subset of the possible centers to
participate. This method has the added advantage of
producing small networks. Broomhead and Lowe sug-
gested choosing such a subset randomly from the train-
ing inputs [14]. Chen used forward selection to choose
the centers of the hidden units to produce small neural
networks [20]. Orr has done extensive studies on the
examination of regularized forward selection [21]. The
third way is to choose the centers of the RBF neurons
using a k-means algorithm or a self-organization algo-
rithm such as the topology preserving feature map [22].
The fourth way to avoid overfitting is to find the approxi-
mated solution of centers and widths while reducing the
number of degrees of freedom for the neural network. At
a minimization of the energy function E,, given by
Eq. (12), we have

OE,
JE; _ 0.
dw;;
OE,
o,
ay;
OE,
-=0 13
da; (13

The weights w;; are solved, using the same technique as
Eq. (10), and are given by

Wij = Z (M + ;“In)k_jl {Z (l’kptjp}’ (14)

k

where I, is the n x n identity matrix and » is the number
of RBF neurons. Gradient-descent is probably the
simplest approach for attempting to find the solution of
centers and widths, though, of course, it is not guaranteed
to converge [23]. In the gradient-descent method the
values of y; and ¢; which minimize E; are given by

Ay] = - aEs}
ay;
Ag, = — p2E, (15)
‘ da;

where f is a learning parameter which is related to the
rate of convergence.

2.6. The proposed TRBF-NN

The proposed TRBF-NN also finds the approximated
solution of centers and widths while reducing the number
of degrees of freedom. We introduce a novel cost function
E, given by

1 1
El = EZZ(ZW — [ip)Z + )LZT’ (16)
p i i Oi

where the regularization parameter A can be a positive
number by some heuristics. By adding an inverse g2
penalty term to the minimization criterion, the regulariz-
ation should be more accelerated than the conventional
method given by Eq. (12). This cost function is designed
so that the greater the widths of RBF neurons, the less
the training error. The weights w;; are solved using
Eq. (10), and using the gradient-descent method, the delta
values of y; and ¢; which minimize E, are given by

OE,
Ay, = — 'Hﬁ_y = - 2/32 Z <Z OiPrp — tip)

x,—y)
X 01 1 ”02 2. (17)

J

OF,
Acj=— ﬁ% =—2p <ZZ <Z Oikip — tiP>

lIx, — yillI? 1
xwijqupaiif/la—; , (18)
where f§ is a learning parameter which is related to the
rate of convergence. We evaluate the regularization
performance among the conventional RBF-NNs and the
TRBF-NN.

3. Results and discussion
The performances of the KL features and the TRBF-

NN were evaluated through the round-robin method,
where one sample is tested after the learning based on
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the remaining 127 samples. Regarding the round-robin
method, we should assume two conditions below:

(1) The resulting raw feature plain and KL feature plain
selected based on 127 testing examples are same as
those based on the entire 128 examples, respectively.
Although both raw feature plain and KL feature
plain should be selected for each training set using
our proposed method, we approximately used the
feature plains based on the entire examples to test
each example.

(2) Even if a plural of ROIs are selected from one case,
those ROIs are independent. Those ROIs are not
independent in reality. However, most features (e.g.,
the number of microcalcifications, the shape of distri-
bution, and the contrast of clustered microcalcifica-
tions) would be different from those of neighboring
ROIs, because when extracting a plural of ROIs from
one case, those were selected in the manner, where no
more than 50% of areas did not overlap.

The LABROCT! algorithm developed by Metz was used
to fit the receiver operating characteristic (ROC) curve to
the continuous data from 128 outputs of each neural
network. All neural networks, evaluated in this section,
have two output ports as shown in Fig. 5. Both value
ranges of the benign port and the malignant port are
[0,1]. If both outputs are 0, it means that this image is
classified as neither benign nor malignant. Similarly, if
both outputs are 1, it means that its data is classified as
both benign and malignant. However, the LABROCI1
algorithm does not support such a two output model, so
the two output values must be converted to be a com-
bined output within [0, 1], given by

{0.5 —05%x(ty —tn), tp =t
=

g (19)
0.5+ 05%x(t, —ty), tp, <tn,

where t, t,, and t,, are the combined output, the output
of the benign port, and the output of the malignant port,
respectively. If the combined value ¢, is 0, it means the
microcalcification is classified as benign with 100% cer-
tainty by the neural network, and if 1, then the microcal-
cification is malignant. If ¢, is 0.5, it means the neural
network presents the undecided answer.

3.1. Comparison of the feature plains using the TRBF-NN

The raw feature plain, composed by ug and u3, and the
KL feature plain, composed by v; and v5, shown in
Fig. 4a and b, respectively, were compared using the
TRBF-NNs. All image data points were projected from
the ten-dimensional feature space to those plains. The
neural network outputs for the raw features and the KL
features are shown in Fig. 6a and b, respectively. The
neural network parameters were determined based on
the Az value by means of scanning various combinations

of the parameters, i.e., the number of the RBF neurons,
the regularization parameter A, and the initial positions
of the neurons. The five patterns of the initial positions
were tested. The learning parameter f is empirically fixed
as 0.001 in both neural networks. The Az value represents
the area under the ROC curve. If the two classes are
clearly separated, the Az value of the system is 1.0, and
if two classes overlap each other, the Az is almost 0.5.
The higher Az value represents the better performance
system. The initial width @, of each neuron was
equally given by

16

neurons’

(20 initial)2 = (20)

where the number 16 (=4 x 4) is the area in which most
of the data are supposed to be. We assume that most of
the data are settled in [ —2,2], where the feature values
are normalized by Eq. (1), and the area controlled by
each neuron is define by the square of 26;,;,;.- The best
parameters for the raw feature plain were 12 neurons and
A= 14. On the other hand, those for the KL feature
plain were 11 neurons and 4 = 3.6. Both neural networks
were trained for 100 epochs, where the differences of the
training errors, defined by Eq. (16), were converged in less
than 0.01% of the training error. The training errors,
given by Eq. (8), of the raw feature plain and the KL
feature plain were 55.5 and 43.1, respectively. As seen in
Fig. 6a and b, it is much easier to find the separating
strategy in the KL feature plain than in the raw feature
plain.

In the KL feature plain, the left part divided by the line,
not indicated, with a 45° slope is mainly classified as
malignant, and the right side is classified as benign.
However, the line or curve which distinguishes two
classes can be hard to find in the raw feature plain. The
Az values of both feature plains shown in Fig. 7 endorse
the human evaluation based on Fig. 6a and b. It is helpful
to evaluate the system performance with the two-dimen-
sional space. The Az for the KL feature plain is much
better than that for the raw feature plain, which indicates
that more than two raw features are effective for this
classification task, because the combinational plain from
10 raw features gives better performance than every raw
plain.

3.2. Comparison among the neural network models

The full size RBF-NN (hereafter FRBF-NN), the regu-
larized RBF-NN defined by Eq.(12) (hereafter RRBF-
NN), and the TRBF-NN were evaluated using the KL
feature plain shown in Fig. 4b. The FRBF-NN has the
same number of neurons as the training data (i.e., 127),
and the positions of the RBF neurons are identical to
those of the training data. For the FRBF-NN, the width
of each neuron, which is the only parameter, was chosen
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Fig. 6. The training outputs of (a) the TRBF-NN for the raw features v; and v,, (b) the TRBF-NN for the KL features u, and u5, (c) the
FRBF-NN for the KL features v; and v,, and (d) the RRBF-NN for the KL features v, and v,. Pale blue, purple and pink represent the
spheres classified as benign, intermediate and malignant, respectively. Each neuron, indicated by the plus sign, has the Gaussian sphere
of influence. When an image falls in the pink spheres, it is classified as malignant. If that image is actually malignant, then the neural
network works correctly. Similarly, when an image falls in the purple spheres, that is classified as intermediate. White space represents

indeterminate.

on the basis of the Az value by scanning the various
widths. After scanning, each width was decided to be the
distance to the nearest neuron divided by the constant
1.5. The network parameters for the RRBF-NN were

selected based on the Az value with the same method as
that of the TRBF-NN. The best parameters of the
RRBF-NN were nine neurons and A = 0.2. The outputs,
which gave the best performances, of the FRBF-NN and
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Fig. 7. The ROC analysis of the neural networks shown in Fig,
6 (a)~(d) using the Round-Robin method. Az value represents the
area under the ROC curve.

RRBF-NN are shown in Fig. 6¢ and d, respectively. The
RRBF-NN was trained for 100 epochs, and its training
error, given by Eq. (8), was 46.0. Those of the TRBF-NN
are explained in the previous section. As the outputs of
the FRBF-NN are identical to the training data, the
training error, given by Eq. (8), was almost zero. But no
trend of the distributions could be found in the appear-
ance of the FRBF-NN output. Therefore the Az value of
the FRBF-NN is not good (Fig. 7). The different points
between two outputs RRBF-NN and TRBF-NN are the
appearances of the border areas between the RBF neur-
ons. The outlines of the RBF neurons in the RRBF-NN
are much clearer than those of the TRBF-NN. In the
RRBF-NN, several data, which fall between the RBF
neurons, are still in the white background. It means that
those data are classified as neither benign nor malignant.
On the other hand, in the TRBF-NN most of the data are
classified as benign or malignant. The learning equation
Eq. (18) for the TRBF-NN could train the neural net-
work in a more trend-oriented manner than the RRBF-
NN given by Eq. (15). The Az values for the FRBF-NN
and the RRBF-NN are shown in Fig. 7. The Az value of
the TRBF-NN is better than both values of the FRBF-
NN and the RRBF-NN.

3.3. Comparison based on the regularization parameter A

The regularization parameter 4 controls the degree of
regularization for the RRBF-NN and the TRBF-NN.
But it works in different manners for the two NN models
as defined in Eqgs. (12) and (16). The Az value and the
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Fig. 8. (a) the Az value and (b) the training error, given by
Eq. (8), for the various regularization parameter As. Note that
the value ranges of the regularization parameter are different for
the two graphs.

training error, given by Eq.(8), for the various As are
shown in Fig. 8a and b. The number of the neurons for
the RRBF-NN and the TRBF-NN are nine and eleven,
respectively. Those values are averaged through the five
patterns of the initial neuron positions.

In the RRBF-NN, the maximum peak of the Az value
and the minimum peak of the training error can be found.
As assumed from Eq. (12), if the regularization parameter
A continues to grow while fixing the number of the
neurons, the training phase tends to make smaller the
weight power given by Y w?. And if the weight power
alone decreases, then the neurons cannot contribute
enough to classify the data.

In other words, the controlling areas of the neurons are
shrunk and the borders between the neurons become
wider as shown in Fig. 6d. However, if the widths os
increase as the weight power decreases, the RRBF-NN
can prevent the area controlled by the neurons from
being shrunk. The learning equation, given by Eq. (15),
for the widths os cannot make them big enough to
compensate for the decrease of the w;;, so the training
error monotonically increases after the minimum peak.
The / value which maximizes the Az value is almost
equal to the 4 value which minimizes the training error. It
means that as long as the optimal / value is searched
based on the training error, that A value gives the neural
network the optimal Az.
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Fig. 9. The Az value and the training error, given by Eq. (8),
based on the number of the neurons for the RRBF-NN and the
TRBF-NN.

In the TRBF-NN output, the training error saturates
for the A values which are more than four, and the Az
value also saturates for the same /1 value range even with
the deviations. There can be found a tolerant A value
range giving acceptable Az values and training errors. In
general, both Az values and training errors of the TRBF-
NN are better than those of the RRBF-NN.

3.4. Performances based on the number of the neurons

Fig. 9 shows the Az value and the training error, given
by Eq. (8), based on the number of the neurons for the
RRBF-NN and the TRBF-NN. Those values were also
averaged through the five patterns of the initial neuron
positions. While the training error decreases as the num-
ber of the neurons grow, the Az values give a broad peak
with some deviations. The peak period of the TRBF-NN
is wider than that of the RRBF-NN.

4. Conclusion

We proposed some novel features for the classification
of microcalcifications on mammograms, and selected the
effective combined features using KL transformation
followed by the restricted EDM, and finally applied the
proposed TRBF-NN to distinguish the benign group
from the malignant group. For comparison with two
trained radiologists, their Az performances are around
0.5, which means that this database is very difficult for
classification, we found that the performance of the pro-
posed system was much better than those of the radi-
ologists. The visualization method using the two-dimen-
sional plain was successful to help the human understand
how the system works. For comparison between the
RRBF-NN and the TRBF-NN, the TRBF-NN gave
a better performance and was as dependent on the regu-
larization parameter in order to get acceptable perfor-
mances as the RRBF-NN. The key difference between the
RRBF-NN and the TRBF-NN is that the TRBF-NN
helps the widths grow more than the RRBF-NN, as

defined in Eq. (16), so that the TRBF-NN s able to define
the more generalized distribution than those defined by
the conventional RBF-NNs. Orr reported that half the
maximum distance separating pairs of input training
points often gives good results [21], we adopted Eq. (20)
as the initial width of the neurons in this study. Our
initial widths were much smaller than those of his report.
Our experiments, not mentioned in the RESULT section,
represented that most converged widths were approxim-
ately twice the initial widths using the regularization
parameter A as four. This application did not endorse
his report. We have already applied the TRBF-NN to the
functional approximation, which has not been reported
yet. The TRBF-NN also gave a good performance in that
application. In the future work, we must investigate the
relationship between the regularization parameter A and
the initial width values.

5. Summary

We propose an automated classification method for
clustered microcalcifications associated with benign and
malignant processes in digital mammograms. Our
database consists of 47 benign and 81 malignant region
of interest (ROI) images selected from 50 um x 50 um
digitized whole mammograms manually. First, we ex-
tract 10 raw features which are calculated from an orig-
inal ROI image, the binarized microcalcification image,
automatically made in preprocess, and two processed
images based on the binarized image. These features are
based on three morphological criteria: (1) number, size,
and shape of the calcifications, (2) size and shape of the
“cluster”, and (3) contrast of microcalcifications. Second,
we apply Karhunen—Loeve (KL) transformation to ten-
dimensional raw feature hyper-space in order to reduce
the dimension of the problem. Next, we select the best
two-dimensional KL feature plain from 10-dimensional
KL feature hyper-space using the restricted Euclidean
distance measure. Finally, we classify them based on the
two-dimensional plain using the proposed trend-oriented
radial basis function neural network (TRBF-NN), and
evaluate the receiver operating characteristic (ROC) per-
formance with the round-robin method. The two-dimen-
sional KL features were more distinguishable than the
raw two-dimensional features. For comparison with two
trained radiologists, their Az, the area under the ROC
curve, performances were around 0.5, which means that
this database is very difficult for classification. We found
that the performance of the proposed system was much
better than that of the two radiologists. The visualization
method using the two-dimensional plain was successful
to help the human understand how the system works.
In our comparison of the regularized radial basis
function neural network (RRBF-NN) and the TRBF-
NN, the TRBF-NN gave a better performance and was
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not as dependent on the regularization parameter in
order to get acceptable performances as the RRBF-NN.
The key difference between the RRBF-NN and the
TRBF-NN is that the TRBF-NN helps the widths in-
crease more than the RRBF-NN. The TRBF-NN was
also able to define the more generalized distribution than
those defined by the conventional RRBF-NN.
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