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Chamfer distances are discrete distances based on the propagation of local distances, or weights, defined
in a mask. The medial axis, i.e. the centers of maximal balls (balls which are not contained in any
other ball), is a powerful tool for shape representation and analysis. The extraction of maximal disks is
performed in the general case by testing the inclusion of a ball in a local neighborhood with covering
relations usually represented by lookup tables.
The proposed method determines if a mask induces a norm and in this case, computes the lookup tables
and the test neighborhood based on geometric properties of the balls of chamfer norms, represented as
H-polytopes. The method does not need to repeatedly scan the image space, and improves the compu-
tation time of both the test neighborhood detection and the lookup table computation.

© 2008 Elsevier Ltd. All rights reserved.

1. Introduction

The distance transform DTX of a binary image X is a function that
maps each point p to its distance to the closest background pixel
i.e. with the radius of the largest open disk centered in p included in
the image. Such a disk is said to be maximal if it is not contained in
another disk also included in X. The set of centers of maximal disks,
also called the medial axis, is a convenient description of binary
images for many applications ranging from image coding to shape
recognition. Its attractive properties are reversibility and (relative)
compactness.

Algorithms for computing the distance transform are known
for various discrete distances [1–5]. In this paper, we will focus
on chamfer (or weighted) distances which are defined by a set of
weighted vectors described by a mask, called the chamfer mask.
The classical medial axis extraction method is based on the re-
moval of non-maximal disks in the distance transform. It is thus
mandatory to describe the covering relation of disks, or at least
the transitive reduction of this relation. For simple distances, this
knowledge is summarized in a local maximum criterion [1] but
a most general method uses lookup tables (LUT) for that purpose
[6].

In this paper, we propose a two-phase method that determines
if a mask induces a norm and in this case, computes the LUT and
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the test neighborhood based on geometric properties of the balls of
chamfer norms.

The first phase starts from the 3D chamfer mask and produces
a triangulation of the chamfer neighbors inversely pondered by
the chamfer weights. The algorithm conceptually operates on the
convex hull of these weighted vectors and creates a triangulation
of this convex hull. It produces two results: a norm condition check
and a description of the geometry of the chamfer balls for the given
chamfer mask. The second phase is performed only for norms; from
the general geometry obtained during the previous phase, each
chamfer ball is described as the intersection of a set of half-spaces
(H-description). The norm condition is sufficient for the balls
to be convex, ensuring the validity of their H-description. This
H-description is then used to compute the test neighborhood T
and the LUT values.

Basic notions, definitions and known results about chamfer
disks and medial axis LUT are recalled in Section 2. Then Section 3
justifies the use of polytope formalism in our context and
presents the principles of the method. In Section 4, a triangulation
algorithm is given for the 3D case. The computation of the test
neighborhood T and of the LUT values is explained in Section 5.
Finally, Section 6 gives speed-up figures for the overall algorithm
compared to a reference implementation [7]. Notice that we do not
address the actual computation of the medial axis which remains
unchanged.

This paper is a more detailed version of [8] with an added method
for the triangulation of 3D balls and the detection of norm conditions.
The algorithms for LUT and T computation were adapted to the 3D
case from [8].

http://www.sciencedirect.com/science/journal/pr
http://www.elsevier.com/locate/pr
mailto:Nicolas.Normand@polytech.univ-nantes.fr
mailto:Pierre.Evenou@polytech.univ-nantes.fr


N. Normand, P. Evenou / Pattern Recognition 42 (2009) 2288 -- 2296 2289

2. Chamfer distances and medial axis

2.1. Discrete distances

Definition 1 (Discrete distance, metric and norm). Consider a func-
tion d : Zn × Zn → N and the following properties ∀x, y, z ∈ Zn,
∀� ∈ Z:

1. positive definiteness d(x, y)�0 and d(x, y)= 0 ⇔ x= y,
2. symmetry d(x, y)= d(y, x),
3. triangle inequality d(x, z)�d(x, y)+ d(y, z),
4. translation invariance d(x+ z, y+ z)= d(x, y),
5. positive homogeneity d(�x,�y)= |�| · d(x, y).

d is called a distance if it verifies conditions 1 and 2, a metric with
conditions 1–3 and induces a norm if it also satisfies conditions 4
and 5.

Most discrete distances are built from a definition of neighbor-
hood and connected paths (path-based distances), the distance be-
tween two points being equal to the length of the shortest path
that joins them [9]. Distance functions differ by the neighborhoods
used to build paths and by the way path lengths are measured. For
the simple distance d4 (denoted by d in [1]), defined in the square
grid Z2, each pixel has four neighbors located at its top, left, bottom
and right edges. Similarly, for distance d8 (d∗ in [1]), each pixel has
four extra diagonally located neighbors. In both cases, d4 and d8, the
length of a path is defined as its number of displacements, whereas
it is measured as a weighted sum of displacements for chamfer dis-
tances [2,3] or by the displacements allowed at each step for neigh-
borhood sequence distances [3,9], or even by a mixed approach of
weighted neighborhood sequence paths [5].

For a given distance d, the closed ball B� and open ball B< of
center c and radius r are the sets of points of Zn:

B<(c, r)= {p : d(c,p)<r},
B� (c, r)= {p : d(c,p)� r}. (1)

Since the codomain of d is N, we have ∀r ∈ N, d(c,p)� r ⇔
d(c, p)<r + 1. So

∀r ∈N, B� (c, r)= B<(c, r + 1). (2)

Definition 2 (Distance transform). The distance transform DTX of the
binary image X is a function that maps each point p to its distance
to the closest background pixel:

DTX : Zn →N,

DTX(p)=min{d(p, q) : q ∈ Zn\X}. (3)

Alternatively, since all points at a distance less than DTX(p) from
p belongs to X (B<(p, DTX(p)) ⊂ X) and at least one point at a distance
equal to DTX(p) is not in X (B� (p, DTX(p))=B<(p, DTX +1) /⊂ X) then
DTX(p) is the radius of the largest open disk centered in p included
in the image:

DTX(p)=max{r : B<(p, r) ⊂ X}. (4)

Definition 3 (Medial axis). The medial axis MAX of the binary image
X is the set of centers of maximal open balls in X valued with their
radii:

MAX : Zn →N,

MAX(p)=
{
0 if ∃q, r′ s.t. B<(p, DTX(p))�B<(q, r′) ⊂ X,
DTX(p) otherwise.

(5)

2.2. Chamfer distances

Definition 4 (Chamfer mask, Thiel [10]). A weighting M = (−→v ;w) is
a vector −→v of Zn associated with a weight w (or local distance).
A chamfer mask M is a central-symmetric set of weightings having
positive weights and non-null displacements, and containing at least
one basis of Zn: M= {Mi ∈ Zn ×N∗}1� i�m.

The grid Zn is symmetric with respect to the hyperplanes normal
to the axes and to the bisectors (G-symmetry). This divides Zn into
2n.n! subspaces (there are eight of them for Z2 and 48 for Z3). The
particular subspace xn� · · · �x1�0 is called the generator cone or
simply generator and is denoted G. From every point in Zn, we
can determine its unique G-symmetrical point in G by ordering the
absolute values of its components in decreasing order. Conversely,
from any point p in G, we can derive all its G-symmetrical points by
generating all n1! permutations of the components of p and all 2n2
combinations of their signs where n1 and n2 are, respectively, the
number of different absolute values of the components of p and the
number of non-null components.

Chamfer masks are usually restricted to G for simplicity. Weight-
ings are then only given in G and we denote M|G = {Mi ∈ G ×
N∗}1� i�m, the chamfer mask restricted to G. A usual ordering of
the points in G is the lexicographical order; p is before q if for some
i: p0.. .i−1=q0.. .i−1 and pi <qi. According to this ordering, a common
naming scheme assigns alphabetic letters to visible points (such that
gcd(p)=1). For instance, in the 2D grid:−→a =(1 0),

−→
b =(1 1),−→c =(2 1),−→

d = (3 1), −→e = (3 2) . . . . The corresponding chamfer weights are,
respectively, named a, b, c, d, e . . . .

Definition 5 (Chamfer distance,Thiel [10]). Consider the chamfer
mask M = {(−→vi ;wi) ∈ Zn ×N∗}1� i�m. The chamfer (or weighted)
distance between two points p and q is

d(p, q)=min
{∑

�iwi : p+
∑

�i
−→vi = q,�i ∈N, 1� i�m

}
. (6)

Paths between two points p and q can be produced by chaining
displacements. The length of a path is the sum of the weights asso-
ciated with the displacements and the distance between p and q is
the length of the shortest path.

Any chamfer masks defines a metric [11]. However, a chamfer
mask only generates a norm when proper conditions on the mask
neighbors and on the corresponding weights permits a triangulation
of the ball in influence cones [10,12]. When a mask induces a norm
then all its balls are convex and therefore can be represented as
polytopes.

2.3. Chamfer medial axis

For simple distances d4 and d8, the medial axis extraction can be
performed by the detection of local maxima in the distance map [1].
Chamfer distances raise a first complication even for small masks
as soon as the weights are not unitary. Since all possible values of
distance are not achievable, two different radii r and r′ may corre-
spond to the same set of discrete points. The radii r and r′ are said
to be equivalent. Since the distance transform labels pixels with the
greatest equivalent radius, criteria based on radius difference fail to
recognize equivalent disks as being covered by other disks. In the
case of 3 × 3 2D masks or 3 × 3 × 3 3D masks, a simple relabeling
of distance map values with the smallest equivalent radius is suffi-
cient [13,14]. However, this method fails for greater masks and the
most general method for medial axis extraction from the distance
map involves LUT that represent for each neighbor −→vi in a set called
the test neighborhood T and for each radius r1, the minimal open
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Fig. 1. (a) Test neighborhood and (b) lookup table for distance d5,7,11 extracted from [7, Fig. 14]. The value Lut−→c (14)=23 (in boldface) means that B<(O, 14) ⊆ B<(O+−→c , 23)
as shown in (c) but B<(O, 14)�B<(O+−→c , 22) because of the point (−2, 1) (d). In terms of closed balls, B� (O, 13) ⊆ B� (O+−→c , 22) but B� (O, 13)�B� (O+−→c , 21).

ball covering B<(O, r1,) in direction −→vi [6]:

Lut−→vi (r1)=min{r2 : B<(O+−→vi , r1) ⊆ B<(O, r2)}.

Equivalently, using closed balls (considering (2)):

Lut−→vi (r1)= 1+min{r2 : B� (O+−→vi , r1 − 1) ⊆ B� (O, r2)}. (7)

As noticed by Thiel, the test neighborhood T (Fig. 1(a)) is not nec-
essarily equal to the chamfer mask M [10].

2.3.1. Medial axis LUT coefficients
A general method for LUT coefficient computation was given by

Rémy and Thiel [10,15,16]. The idea is that the disk covering relation
can be extracted directly from values of distance to the origin. If
d(O, p)= r1 and d(O, p+−→vi )= r2, we can deduce the following:

p ∈ B� (O, r1)= B<(O, r1 + 1),

p+−→vi /∈B� (O, r2 − 1)= B<(O, r2),

hence B<(O + −→vi , r1 + 1) /⊂ B<(O, r2) and Lut−→vi (r1 + 1)>r2. If

∀p, d(O, p)� r1 ⇒ d(O, p+−→vi )� r2 then Lut−→vi (r1 + 1)= r2 + 1.

Finally, Lut−→vi (r)= 1+max{d(O, p+−→vi ) : d(O, p)<r}.
This method only requires one scan of the distance function for

each displacement −→vi . Moreover, the visited area may be restricted
according to the symmetries of the chamfer mask. The order of com-
plexity is about O(mLn) for m neighbors if we limit the computation
of the distance function to an image of size Ln.

2.3.2. Medial axis test neighborhood
Thiel observed that the chamfer mask is not adequate to com-

pute the medial axis [15, p. 81]. For instance, with d14,20,31,44,
Lut(2,1)(291)=321 and Lut(2,1)(321)=352, but the smallest open ball
of center O that covers B<((4, 2), 291) is B<(O, 351). This inclusion
relation is neither detected with the vector −→c = (2 1) nor with the
other vectors of the chamfer mask. Remy and Thiel then introduced
an LUT mask (called test neighborhood and denoted by T(R) here)
for that purpose [12].T(R) is the minimal set of vectors sufficient to
detect the medial axis for shapes whose inner radius (the radius of
a greatest ball) is less than or equal to R. In the previous d14,20,31,44
example, the point (4, 2) is not in the chamfer mask but should be
in T(R) for R greater than 350.

A test neighborhood incompleteness produces extra points in the
medial axis (undetected ball coverings). A general method for both
detecting and validatingT is based on the computation of themedial
axis of all disks [7]. WhenT is complete, the medial axis is restricted
to the center of the disk, when extra points remains, they are added
to T. This neighborhood determination was proven to work in any
dimension n�2. However, it is time consuming even when taking
advantage of the mask symmetries.

3. H-polytopes and chamfer balls

3.1. General H-polytopes [17]

Definition 6 (Polyhedron). A convex polyhedron is the intersection
of a finite set of half-hyperplanes.

Definition 7 (Polytope). A polytope is the convex hull of a finite set
of points.

Theorem 1 (Weyl–Minkowski). A subset of Euclidean space is a poly-
tope if and only if it is a bounded convex polyhedron.

As a result, a polytope in Rn can be represented either as the
convex hull of its k vertices (V-representation) or by a set of l half-
planes (H-representation):

P = conv({pi}1� i� k)=
⎧⎨
⎩p=

k∑
i=1

�ipi : �i ∈ R+ and
k∑

i=1
�i = 1

⎫⎬
⎭ , (8)

P = {x : Ax�y}, (9)

where A is an l × n matrix, y a vector of n values that we name
H-coefficients of P. Given two vectors −→u and −→v , we denote −→u �−→v
if and only if ∀i, −→ui �−→vi .

Definition 8 (Simplicial cone). A simplicial cone Co,U from a point o is
a cone of dimension m defined by a set U of m independent vectors.

In a simplicial cone, each point is representable by a unique (up
to a permutation) non-negative combination of the vectors of the
cone, i.e.:

p ∈ Co,U ⇒ −→op=
m∑
i=1

�i
−→ui where (�i) ∈ Rm

+ is unique.
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Fig. 2. H-representations of a discrete G-symmetrical polytope P (restricted to the
first octant). Dashed lines: an H-representation of P. Thick lines: Ĥ-representation
of P. In the Ĥ case, the three equalities are verified for the same point (6, 3). Notice
that although coefficient values are minimal, this representation is still redundant:
the second inequality could be removed.

Definition 9 (Discrete polytope). A discrete polytope Q is the inter-
section of a polytope P in Rn with Zn (Gauss discretization of P).

Definition 10 (Unimodular cone). A unimodular cone Co,U is a sim-
plicial cone defined by a set of integral vectors U that generate all
the integral points of Co,U .

In a unimodular cone, all discrete points are representable as a
unique non-negative integral combination of the vectors of the cone.
A cone Co,U of dimension n is unimodular if and only if |det(U)| = 1.
Then U is the basis of a unimodular point lattice, equivalent to Zn,
so each integral point can be reached.

3.1.1. Minimal representation
Many operations on Rn polytopes in either V or H representa-

tion often require a minimal representation. The redundancy removal
is the elimination of unnecessary points in the V-representation
or unnecessary inequalities in the H-representation of polytopes.
Since our purpose is mainly to compare H-polytopes defined with
the same matrix A, no inequality removal is needed. However, for
some operations, H-representations of discrete polytopes must be
minimal in terms of H-coefficients.

Definition 11 (Minimal parameter representation). A minimal pa-
rameter H-representation of a discrete polytope P, denoted
Ĥ-representation, is an H-representation of P = {x : Ax�y} such
that y is minimal:

P = {x ∈ Zn : Ax�y} and ∀i ∈ [1 . . . l], ∃x ∈ P : Aix= yi, (10)

where Ai stands for the ith line of the matrix A.

The Ĥ function, introduced for convenience, gives the minimal
parameter vector for a given polytope P: Ĥ(P)=max{Ax : x ∈ P}. As
a consequence, {x : Ax�Ĥ(P)} is the Ĥ-representation of P = {x :
Ax�y}. Fig. 2 depicts two representations of the same polytope P in
Z2, one of each is minimal.

3.1.2. H-polytope translation
Let P = {x : Ax�y} be an H-polytope. The translated of P by −→v

which is also the Minkowski sum of P and {−→v } is

(P)−→v = P ⊕ {−→v } = {x+−→v : Ax�y} = {x : Ax�y+ A−→v }. (11)

The translation of a minimal representation gives a minimal repre-
sentation.

3.1.3. Covering test
Let P = {x : Ax�y} and Q = {x : Ax�z} be two polyhedra

represented by the same matrix A but having different sets of
H-coefficients y and z. We have

y�z ⇒ P ⊆ Q . (12)

Furthermore, if the H-description of the enclosed polyhedron has
minimal coefficients, the condition is also necessary:

y= Ĥ(P)�z ⇔ P ⊆ Q . (13)

3.2. Geometry of the chamfer ball [10,12]

Describing balls of chamfer norms as polygons in 2D and poly-
hedra in higher dimensions is not new [11]. Thiel and others have
extensively studied chamfer ball geometry from this point of view
[12,15,18]. Our purpose is to introduce properties specific to the
H-representation of these convex balls.

We can deduce from (1) and (6) a recursive construction of cham-
fer balls:

B� (O, r)= B� (O, r − 1) ∪
⋃

0� i�m

B� (O+−→vi , r −wi). (14)

This construction is sufficient to obtain an exact description of the
balls in the case of chamfer norms as we will see later (Section 5.1).

Definition 12 (Rational ball). Consider a chamfer mask M, the ra-
tional unitary ball or simply rational ball BR is the convex hull of the
rational points −→vi /wi, (

−→vi ,wi) ∈M:

BR = conv
(−→vi
wi

: (−→vi ;wi) ∈M
)

=
⎧⎨
⎩

m∑
i=1

�i

−→vi
wi

: �i ∈ R+,
m∑
i=1

�i = 1

⎫⎬
⎭ . (15)

Note that the rational ball, as it is introduced here, is convex by
definition and is different, in this regard, from the equivalent rational
ball described in [10,12,19].

Proposition 1. The homothetic of BR, rBR contains B� (O, r): B� (O, r) ⊆
rBR.

Proof. Let p be a point of B� (O, r) and
∑m

i=1 �i
−→vi , �i ∈N be a mini-

mal path between O and p. Then d(O, p)� r and d(O, p) =∑m
i=1 �iwi.

We can describe p as a combination of O, r−→v1/w1, . . . , r−→vn/wn:

p= r−d(O, p)
r

· O+
m∑
i=1

�iwi

r
· r
wi

−→vi with
r−d(O, p)

r
�0,

�iwi

r
�0 ∀i

and

r − d(O, p)
r

+
m∑
i=1

�iwi

r
= 1.

Then, by definition of conv: p ∈ conv(O, (r/w1)−→v1, . . . , (r/wn)−→vn) ⊂ rBR
and every point of B� (O, r) is in rBR. �

Definition 13 (Normal vector, Thiel [10]). We call normal vector to
a facet F of BR, the unique vector

−→
F orthogonal to the facet such

that ∀p ∈F,
−→
F · p= 1.

In the simplicial cone spanned by vectors −→v1/w1 . . .−→vn/wn,
−→
F ·

(−→v1/w1 . . .−→vn/wn)= (1 . . . 1). This implies
−→
F= (w1, . . . ,wn) · (−→v1| . . . |−→vn)−1. (16)
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The vector �= (−→v1| . . . |−→vn)−1p give the unique representation of p as
a combination of −→v1, . . . ,−→vn . If � has integer coefficients then there
is a path �(−→v1| . . . |−→vn) to p and its length is (w1, . . . ,wn) · � = −→F · p.
The normal vector is equivalent to the elementary displacement and
discrete gradient of the cone intercepted byF as defined for chamfer
norms in [10,12]. Note that the normal vector is defined here for
general chamfer masks, whether they induce a norm or not.

For instance, with the chamfer norm d5,7,11, the point (3, 1) is in
the cone spanned by the vectors −→a = (1 0) and −→c = (2 1) and the
weights involved are 5 and 11. The distance between the origin and
the point (3, 1) is then [10, (4.32)]:

d(O, (3, 1))= (5 11) ·
(
1 2
0 1

)−1
·
(
3
1

)
= (5 1) ·

(
3
1

)
= 16.

3.3. Mask conditions for chamfer norms

Proposition 2 (Distance lower bound). If F is a facet of the rational
ball and

−→
F its normal vector, then:

d(O, p)�
−→
F · p. (17)

Proof. Let p =∑
i �i
−→vi be a minimal path to p, so d(O, p) =∑

i �iwi.
The facet F is supported by the hyperplane {x ∈ Rn :

−→
F · x = 1}.

Due to convexity, the unitary ball is included in the half-space {x ∈
Rn :

−→
F · x�1}. This applies to the vertices of the unitary ball −→vi /wi:−→

F · −→vi /wi�1. By linearity of the dot product,
−→
F · −→vi �wi and

−→
F ·

(
∑

i �i
−→vi ) =

∑
i �i
−→
F · −→vi �

∑
i �iwi. Hence,

−→
F ·∑i �i

−→vi is always less
than or equal to the length of the path

∑
i �i
−→vi . �

This lower bound applies for any point p, whether or not it is
located in a cone that intercepts F; d does not need to induce
a norm.

Proposition 3 (Homogeneity in a unimodular cone). Let CO,U be a uni-
modular cone that intercepts a unique facet F of BR. The distance d is
homogenous in the cone and equal to

−→
F · p, ∀p ∈ CO,U if and only if:

d(O,O+−→u )=−→F · −→u , ∀−→u ∈ U. (18)

Proof. According to Proposition 2, d(O, p)�
−→
F · p, ∀p ∈ CO,U . Since

CO,U is unimodular, p is reachable by a non-negative integral combi-
nation of vectors of U, −→Op=∑

�i
−→ui . By triangle inequality and propo-

sition hypotheses, d(O, p)�
∑

�id(O,O+−→ui )=
∑

�i
−→
F · −→ui =

−→
F · p. So−→

F · p is simultaneously a lower and upper bound to d(O, p) then the
equality holds and d is homogenous in CO,U .

Conversely, consider a vector −→u of U such that d(O, p)�p · −→F,
so d(O, p)>p · −→F, by Proposition 2. In the facet F, we always can
find n= dim(F)+ 1 vertices −→v1/w1 . . .−→vn/wn such that −→u lies in the
simplicial cone spanned by the vectors −→v1 . . .−→vn . As a consequence
−→u can be represented by a unique non-negative combination of n
linearly independent vectors: −→u = � · (−→v1| . . . |−→vn). The components
of � = (−→v1| . . . |−→vn)−1 · −→u are not necessarily integers (they are if � =
|det(−→v1| . . . |−→vn)|=1). However,�(−→v1| . . . |−→vn)−1 has integral coefficients
hence �−→u can be uniquely represented as an integral combination
of the vectors −→vi : �−→u =�(−→v1| . . . |−→vn) ·�, so there is a path to O+�−→u
whose length is: �(w1 . . .wn)·�=�(w1 . . .wn)·(−→v1| . . . |−→vn)−1 ·−→u =�

−→
F·

p�d(O,�−→u ). Thus d(O,O+�−→u )<�d(O,O+−→u ) and the distance is
not homogenous in the cone. �

According to this proposition, the homogeneity in an nD uni-
modular cone can be determined by only testing the vectors of the
cone (which are not necessarily in the chamfer mask). We derive a

necessary and sufficient condition for norms (a sufficient condition,
based on a unimodular triangulation, is given in [10]):

Corollary 1 (Norm condition). Let {Ui} be a set of vectors sets Ui with
the following properties:

• each unimodular cone Ci = CO,Ui
intersects a unique facet of BR;

• the union of the cones covers the entire space Zn.

The chamfer mask M induces a norm if and only if:

d(O,O+−→u )=−→F · −→u , ∀−→u ∈
⋃
i

Ui. (19)

Proposition 4 (Direct distance formulation). If d induces a norm, the
distance from O to any point p is

d(O, p)= max
1� i� l

{−→Fi · p}, (20)

where l is the number of facets of BR and
−→
Fi is the normal vector to

the ith facet of BR. This formula does not require to determine in which
cone lies p.

Proof. The inequality d(O, p)�
−→
Fi · p holds for all facets due to

Proposition 2 and the equality d(O, p) = −→Fi · p holds, according to
Proposition 3, for all the facets of BR (there is at least one of them)
that intersect [O,p). �

3.4. H-representation of chamfer norm balls

The H-representation of chamfer balls is directly derived from
(20):

p ∈ B� (O, r) ⇔ max
1� i� l

{−→Fi · p}� r ⇔ AM · p�y, (21)

where AM is an H-representation matrix depending only on the
chamfer maskM. The number of rows in AM is equal to the number
l of facets of BR, each line of the matrix AM is computed with (16)
and y is a column vector whose values are r. For instance, the H-
representation matrix of d5,7,11 balls restricted to G is AM = ( 54

1
3 )

where (5 1) and (4 3) are the normal vectors of the two facets of BR
and B� (O, r)= {p ∈ Zn : ( 54

1
3 ) · p� ( rr )}.

Note that if a polytope is not centered in O, the simplification
due to symmetries do not hold and the full set of H-coefficients
is needed, unless we ensure that the H-coefficients for the hyper-
planes in the generatorG are greater thanH-coefficients for the cor-
responding symmetric cones. This is the case when a G-symmetric
polytope is translated by a vector in G.

Proposition 5 (Furthest point). Let AM be the matrix defined by a
chamfer mask M generating a norm. The furthest point from the origin
in the Ĥ-polytope P={p : AM · p�Ĥ(P)} is at a distance equal to the
greatest component of Ĥ(P).

Proof. By construction of AM, (20) is equivalent to d(O, p) =
maxi{AMi · p}, thus

max
p∈P
{d(O, p)} =max

p∈P

{
max
1� i� l

{AMi · p}
}
= max

1� i� l
{Ĥi(P)}. �

Proposition 6 (Minimal covering ball). The radius of the minimal ball
centered in O that contains all points of a discrete Ĥ-polytope P repre-
sented by the matrix AM and the vector Ĥ(P) is equal to the greatest
component of Ĥ(P).
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Proof. The smallest ball that covers the polytope P must contain its
furthest point from the origin:

min{r ∈N : P ⊆ B� (O, r)} =max
p∈P
{d(O, p)} = max

1� i� l
{Ĥi(P)}. �

Definition 14 (Covering function). We call covering function of a set
X of points of Zn the function CX which assigns to each point p of
Zn, the radius of the minimal ball centered in p covering X:

CX : Zn →N,

CX(p)=min{r : X ⊆ B� (p, r)}.

The covering function of the chamfer ball B� (O, r) at point p gives
the radius of the minimal ball centered in p that contains B� (O, r)
or, by central symmetry of the chamfer balls, to the radius of the
minimal ball centered in O covering B� (p, r) and therefore it is the
maximal component of the Ĥ-representation of B� (p, r):

CB� (O,r)(p)=max{Ĥ(B� (p, r)} =max{Ĥ(B� (O, r))+ AM · p}. (22)

One can notice that the covering function of the zero radius disk is
equal to the distance function, as is the distance transform of the
complement of this disk:

CB� (O,0)(p)= DTZn\{O}(p)= d(p,O)= d(O, p).

Definition 15 (Covering cone). A covering cone Co,U in the covering
function CX is a unimodular cone defined by a vertex o and a set of
vectors U, such that each ball centered in p is included in the ball
centered in p+−→u ,−→u ∈ U:

∀p ∈ Co,U , ∀−→u ∈ U, B� (p,CX(p))�B� (p+−→u ,CX(p+−→u )).

Proposition 7. If Co,U is a covering cone in CB� (O,r) then for any point
q in Co,U\U\{o} there exists p such that the ball centered in q includes
the ball centered in p:

B� (O, r)�B� (p,CB� (O,r)(p))�B� (q,CB� (O,r)(q)).

Proof. If U is not empty, there is −→u ∈ U such that p = q − −→u
is in Co,U\{o}. Then, by definition of Co,U , B� (p,CB� (O,r)(p))�
B� (q,CB� (O,r)(q)). In addition, B� (O, r) ⊆ B� (p,CB� (O,r)(p)) always
holds by definition of CB� (O,r). �

Proposition 7 is used to limit the search for balls directly covering
B� (O, r) in the covering function CB� (O,r). When a covering cone is
detected, only its vertex o or the vectors of the cone (if o= O) have
to be tested.

Proposition 8. If there is an integer j ∈ [1 . . . l] and a point o such that
AMj ·−→ui , ∀−→ui ∈ U and Ĥj(B� (o, r)) are maximal then Co,U is a covering
cone in CB� (O,r).

Proof. Let j be the row number of a maximal component of
Ĥ(B� (o, r)) and AM ·−→ui , ∀−→ui ∈ U, then j is a maximal component of
any positive linear combination of these vectors. Let p be any point
in Co,U , p = o +∑

i �i
−→ui , �i ∈ N. From (22), we deduce that, in Co,U ,

CB� (O,r) takes the form of an affine function of the components �i:

CB� (O,r)(p)= max
{
Ĥ(B� (o, r))+

∑
�iAM

−→ui
}

= Ĥj(B� (o, r))+
∑

�iAMj
−→ui .

In the sameway, the radius of theminimal ball centered in p+−→u ,−→u ∈
U covering B� (O, r) is

CB� (O,r)(p+−→u )= Ĥj(B� (o, r))+
∑

�iAMj
−→ui + AMj

−→u

= CB� (p,CB � (O,r)(p))(O+−→u ).

In otherwords, B� (p,CB� (O,r)(p)) is contained in B� (p+−→u ,CB� (O,r)(p+−→u )) and Co,U is a covering cone according to
Definition 15. �

4. Triangulation of 3D chamfer balls

The first stage of the method consists in decomposing the gener-
ator cone G in unimodular cones that each intercepts a unique facet
of the rational ball. This triangulation has three goals:

1. compute the distance gradients which are vectors normal to the
facets of the rational ball. These distance gradients are the rows
of the matrix AM;

2. provide a set of unimodular cones suitable for the recursive par-
tition of the generator G used in the next stage;

3. verify that the chamfer mask generates a norm by checking ho-
mogeneity in each cone.

4.1. Convex hull vertices in the generator cone

The expected result is a triangulation of the part of the rational
ball BR that lies in the generator G. The input data consist of vectors
from the chamfer maskM|G divided by their corresponding weights
(to form the equivalent unitary ball). In the algorithm, these points
in Qn are represented as weightings, and all computations are based
on integer arithmetics. The weightings of the chamfer mask are not
sufficient alone because

G ∩ conv
(−→v
w

, (−→v ;w) ∈M
)

� conv
(−→v
w

, (−→v ;w) ∈M|G
)
.

The intersection of BR withG introduces new vertices that are points
in edges of BR that intersect the faces of G. This is illustrated in
Fig. 3(a); vectors −→e = (2 1 1) and −→o = (4 1 1) are not in the cham-
fer mask and thus cannot be vertices of BR, but they appear in the
intersection of BR with (O, {−→a ,−→c }). Since the edges of BR are not
known yet, all the intersections of the faces of G with couples of
rational vertices of BR must be added to the input of the algorithm.
These points are rational combinations of the vertices of the in-
tersected edges, but are also represented as weightings with inte-
ger coefficients. Among those, the majority of the points that lie in
the interior of BR will be discarded during the computation of the
convex hull.

4.2. Gift-wrapping convex hull and triangulation of the rational ball

Many different algorithms are available for convex hull compu-
tation. We chose to implement an modified version of the algorithm
known as gift wrapping [20] for two reasons: first, it naturally pro-
duces a triangulation of the convex hull i.e. a partition in simplicial
cones and second, a subpartition of these simplicial cones in unimod-
ular cones and the face lattice of the cones can be easily integrated
as by-products of the algorithm.
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Fig. 3. The rational ball BR of the 3D chamfer mask 7, 8, 11, 14 and a unimodular triangulation of BR ∩G. Unimodular triangulation in 3D cones (represented by triangles) of
BR ∩G (thick lines in (a)). Each Z

3 point (x, y, z) is projected onto (y/x, z/x) (Farey space).

Algorithm 1. (Simplified) gift wrapping algorithm [20].

Input: A set of points S
1 find a starting edge of the convex hull (p, q)
2 push (p, q) in �, the list of active edges
3 while L is not empty do
4 pop (p, q) from �
5 take r in S\{p, q}
6 S′ ← S\{p, q, r}
7 for s in S′ do
8 if s is above (p, q, r) then
9 r← s
10 end
11 end
12 add each newly created edge (r,p) and (q, r) in � or remove

it from � if already contained
13 end

Starting with a first edge, the gift wrapping algorithm 1 iteratively
extends the convex hull by appending a new triangle and its edges.
Since the convex hull is computed in G, one vertex of the starting
edge can be chosen as the point in the first axis of G that is closest
to the origin: p= (x1, 0, 0) (with maximal x1 if several points exist on
this axis) and the second vertex is the point q that maximizes the
angle (O,p, q) in a facet of G containing p. The algorithm proceeds
until exhaustion of active edges.

4.3. Unimodular triangulation

The gift wrapping algorithm produces a set of nD simplicial cones
Co,U , each of which is unimodular if and only if det(U) = ±1. When
|det(U)|>1, a new point is introduced as an input of the convex hull
computation and the detected non-unimodular cone is discarded.
The unimodular triangulation is represented by a cone lattice L
used later as a partition of G.

The intersection of the rational ball for mask 7, 8, 11, 14 and G is
pictured in Fig. 3(b). A unimodular triangulation without any new
point of the face (

−→
b = (1 1 0),

−→
d = (2 1 0),−→e = (2 1 1),−→o = (4 1 1))

cannot be made because det(
−→
d ,−→e ,−→o ) = det(

−→
b ,−→e ,−→o ) = 2. This is

solved by introducing the vector
−→
h . The cone lattice corresponding

to this unimodular triangulation is pictured in Fig. 4.

4.4. Homogeneity check

The unimodular triangulation of BR produces a set of cones that
cover the generator G and their corresponding face normal vectors.
Using Corollary 1, by comparing d(O,O+−→u ), obtained by propagating
the chamfer weights, with

−→
Fi · −→u , where

−→
F is the normal vector of

one of the faces that intersects [O,−→u ), we determine if the distance
is homogenous in G, so by symmetry, in Z3.

5. LUT and test neighborhood computation for 3D chamfer
norms

5.1. Ĥ-representation of chamfer balls

The computation of the LUT is based on an Ĥ-representation of
the chamfer norm balls. All share the samematrix AM which depends
only on the chamfer mask (21). The Ĥ-coefficients of the balls are
computed iteratively from the ball of radius 0, B� (O, 0)={x : AMx=0}
using (14) and (11):

Ĥ(B� (O, r))= max{Ĥ(B� (O, r − 1));Ĥ(B� (O, r −wi))+ AM
−→vi ,

i ∈ [1 . . .m]}.

5.2. LUT values

LUT values are directly obtained from the covering function (22):

Lut−→vi [r]= 1+CB� (O,r−1)(O+−→vi )

= 1+max{Ĥ(B� (O, r − 1))+ AM · −→vi }.

5.3. Test neighborhood

Algorithm 2 begins with an empty test neighborhoodT and seek
direct covering relations in balls of increasing radii like the method
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{a, d, o} {b, d, o} {b, h, o} {b, e, h} {b, c, e}

{a, d} {a, o} {d, o} {b, d} {b, o} {h, o} {b, h} {e, h} {b, e} {b, c} {c, e}
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Fig. 4. Lattice of cone vector sets for the unimodular triangulation of BR ∩G (chamfer mask 7, 8, 11, 14).

Fig. 5. The partition of a 3D unimodular cone in 23 subcones (from darkest to
lightest): 1 point, C3

1 = 3 1D cones, C3
2 = 3 2D cones and C3

3 = 1 3D cone.

in [7]. However, in [7], the covering relations are seen from the per-
spective of the covering balls (in the distance map, requiring propa-
gation of distances), whereas in our case, they are considered from
the point of view of the covered balls, i.e. in the covering function
that can be computed directly without propagation using the direct
formula (22). The algorithm uses the lattice of cones L (Fig. 4), re-
sulting from the triangulation phase, as a partition of G. Each cone
that is not a covering cone is recursively partitioned by procedure
visitCone as depicted in Fig. 5: a nD cone Co,U is divided into 2n

subcones corresponding to all the subsets of U. Direct covering rela-
tions at the vertices of all the visited cones are checked by procedure
visitPoint using a direct computation of the covering function in
all known neighbors in T.

Algorithm 2. Computation of the test neighborhood.

Input: L lattice of simplicial unimodular cones, maximal radius R
1T← ∅
2 for r← 1 to R do // inner radius
3 foreach CO,U ∈L do // cones with increasing

dimension
4 o← O+∑−→u ∈U −→u ;
5 visitCone(T,Co,U , r);
6 end
7 end

6. Results

An implementation of these algorithms was developed in the C
language. It produces output in the same format as the reference al-
gorithm [7] so that outputs can be compared character-to-character.
Tests were done on various chamfer masks and different maximal
radii and helped discover a propagation issue in the reference algo-
rithm. This problem corrected, the results are almost always iden-
tical except for insignificant cases close to the maximal radius for
which covering radii exceed the maximum. These radii are handled
differently by both algorithms but since they exceed the maximum
radius, there is no impact on the medial axis computation.

Procedure. visitCone(T, Co,U , r).

Input: T, Co,U , inner radius r, y= Ĥ(B� (o, r))
1 visitPoint (o)
// Visit subcones if Co,U is not a covering cone

2 if ∀j,∀−→u ∈ U : yj �maxk{yk} and AMj · −→u �maxk{AMk · −→u } then
3 foreach subcone Co,U′ of Co,U do
4 o′ ← o+∑−→u ∈U′−→u ;
5 visitCone(T, Co′ ,U′ ,r);
6 end
7 end

Procedure. visitPoint(T, r, p).

Input: T, inner radius r, ball center p to test
1 if ∀−→v ∈T:B� (O+−→v ,CB� (O,r)(O+−→v )) /⊂B� (p,CB� (O,r)(p)) then
2 T←T ∪ {−→Op}
3 end

The run times of both reference and proposed algorithms are
given in Table 1 for various sizes and a few masks. These figures
show that the overall mean computational complexity is linear with
the maximal radius for the proposed method, whereas it is of order
r4 in 3D for the reference algorithm.

7. Conclusion

In this paper, methods to compute both the chamfer LUT and the
test neighborhood were presented. Speed gains from the reference
algorithm [7] are attributable to the representation of chamfer balls
as H-polytopes. With this description, we avoid the use of weight
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Table 1
Run times (in seconds) of reference (ref.) and proposed (H) method implementations for four 3D masks and various volume sizes L× L× L.

L 3, 4, 5 3, 4, 5, 7 7, 8, 11, 14 4, 6, 7, 9, 10

Ref. H Ref. H Ref. H Ref. H

10 0.0006 0.0003 0.0002 0.0004 0.0013 0.0010 0.0004 0.0008
20 0.0049 0.0002 0.0032 0.0004 0.0135 0.0011 0.0047 0.0010
50 0.1079 0.0003 0.1096 0.0005 0.2886 0.0027 0.1592 0.0015
100 1.6316 0.0005 1.6831 0.0008 4.4704 0.0054 2.4626 0.0023
200 30.391 0.0010 31.126 0.0012 81.627 0.0109 53.126 0.0038
500 3523 0.0022 3537 0.0024 9333 0.0272 6465 0.0088
1000 0.0042 0.0073 0.0549 0.0220

propagation in the image domain and obtain a constant time covering
test by the direct computation of covering radii. Moreover the search
space is greatly reduced using covering cones.

While applications always using the same mask can use precom-
puted test neighborhood T and LUT, other applications that poten-
tially use several masks, adaptive masks, variable input image size
can benefit from these algorithms. A faster computation ofT is also
highly interesting to explore chamfer mask properties. Beyond im-
proved run times, the H-polytope representation helped to prove
new properties of chamfer masks. And a new formula of distance
which does not need to find in which cone lies a point was given.

Examples and source codes for the 3D and 2D cases are available
by simple email request to the authors or in the code section of the
IAPR-TC18 web site (http://www.cb.uu.se/∼tc18/).
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