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This paper investigates an information theoretic approach for formulating performance indices for the
biometric authentication. Firstly, we formulate the constrained capacity, as a performance index for bio-
metric authentication system for the finite number of users. Like Shannon capacity, constrained capacity
is formulated using signal to noise ratio which is estimated from known statistics of users’ biometric
information in the database. Constrained capacity of a user and of biometric system is fixed, given the
database and the matching function. Experimental analysis using real palmprint and hand geometry im-
ages illustrates use of constrained capacity to estimate: (i) performance gains from the cohort information,
(ii) the effective number of user-specific cohorts for a user and for the biometric system, (iii) information
content of biometric features, and (iv) the performance of score level fusion rules for multimodal biomet-
ric system. Secondly, this paper investigates a rate-distortion framework for formulating false random
correspondence probability as performance of a generic biometric. Our analysis concludes that constrained
capacity can be a promising addition to performance of a biometric system. Similarly, individuality
expressed as false random correspondence probability can be the performance index of a biometric trait.

© 2008 Elsevier Ltd. All rights reserved.

1. Introduction
1.1. Motivation

There has been a significant interest in large scale applications
of biometrics for secure personal authentication systems. The supe-
riority in using biometrics over the conventional methods for user
authentication, such as passwords and tokens, comes from the two
vital attributes of biometric information [1,2]: (i) it is unique to an
individual and hard to duplicate when properly protected and (ii) it
validates the user and not the holder (given that (i) is true). Perfor-
mance estimation is a key issue in the comparison of biometric trait
and biometric system for usage in large scale secure access technol-
ogy. The challenge lies in evolving indices that can provide measures
for security, reliability, privacy in relation to the biometric informa-
tion content [1,2]. Jain et al. [3] have discussed performance indices
like FAR, FRR, GAR, ROC as measures for the imperfect accuracy in
relation to signal capacity and representation limitations of the bio-
metric template. The ROC of biometric system is a plot of GAR against
FAR, which is defined from the genuine and imposter distributions
for continuously varying thresholds. Error rates can be defined for a
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user as well as for all users in the database, for a continuously vary-
ing threshold [1]. Error rates, specified by thresholds on ROC, give
some direction in choosing the operating point of biometric system.
However, as a probability measure the error rate itself does not give
much ‘information’ on the interplay between biometric signals (bio-
metric matching scores, biometric features) of different users that
define the probability space. Another limitation of error rate is that
it specifies authentication performance as viewed by the decision
block (classifier), at a given threshold and cost function. This means
that performance measure based on the error rates firstly depend on
thresholds and secondly, as probability measures it may be of lim-
ited use in describing the structure of signals constituting the sample
space. We next discuss use of EER (equal error rate) as a performance
measure [2] for comparing biometric systems and biometric traits.
The EER actually defines a fixed point on the ROC for which
(FAR = FRR), given a database and matching function. Therefore, EER
that is fixed, for a given database and matching function, is widely
used in the comparison and evaluation of biometric systems [1,2,4,5].
However, a limitation of EER is that it does not give much insight on
the achievable limit for performance of biometric system or of indi-
vidual users in the database for reasons that shall now follow. Firstly,
EER depends on the choice of training set and test set of biometric
templates; hence, there may be a need for an average EER from differ-
ent combinations of test and training sets. Secondly, a performance
measure given by probability densities usually can aid in giving only
point estimates of the qualitative or quantitative performance for the
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underlying sample space. EER is defined for a threshold on the ROC,
and as discussed here it is evidently not a statistics generated di-
rectly from the complete ‘signal space’ comprising of users’ biomet-
ric matching scores. Another performance measure of a biometric
system can be given by cumulative match characteristic (CMC) that
ranks biometric templates of all users in the database based on their
relative accuracy in authentication [2]. As a performance indicator
CMC provides a qualitative comparison among biometric templates
for all users and has been related to ROC [2,4]. However, again CMC
does not give much idea on interrelation of users’ based on their
biometric information nor it provides a measure of the information
content in biometric features or in matching scores.

In Ref. [6], Jain et al. have suggested the need to model informa-
tion content of biometric template in relation to the number of users
that can be ‘reliably’ identified. We point out that the terms ‘reliable’
and ‘reliability’ as used here correspond to error free biometric au-
thentication. So, instead of the probability measures, it would be in-
teresting to develop some statistics using the signal space itself to
formulate performance bound of biometric system in terms of sig-
nals (users) themselves. A key role of information theory [7] has
been in providing the achievable limit to the performance of a sig-
nal (alternately, transmitter) over noisy transmission channel which
is given by the signal capacity (Shannon capacity). Conventionally,
information capacity or Shannon capacity [7] is based on an average
signal to noise ratio (SNR) which is a ratio of the second order statis-
tics of the desired signal(s) and the noise signal(s). For our purpose,
the biometric information that assists in reliable authentication can
model the desired signal. Similarly, the biometric information that
assists in loss of reliable authentication can model the noise. In this
work, we propose that information capacity theorem [7,8] can be
applied to the biometric authentication channel given that match-
ing scores (genuine and imposter) can be modeled in terms of signal
plus noise. In doing so, information capacity of a biometric authen-
tication channel can be given by SNR estimated from second order
statistics of matching scores. This formulation for information capac-
ity is referred here after as the constrained capacity of the biometric
system as it is proposed for finite number of users. Like Shannon
capacity, it is fixed for a database (alternately, channel state informa-
tion) and matching function (alternately, receiver system), indepen-
dent of the choice of threshold. The proposed constrained capacity of
a user quantifies authentication performance of the user biometric
in presence of noise, given a database and matching function. This
noise mainly arises due to noisy acquisitions of a user’s biometric
template and also due to the variance in biometric templates of the
imposters. We propose that constrained capacity of the biometrics
system will denote the number of users in the database that can
be reliably authenticated, given a database and matching function.
The information capacity of a signal transmission system is typically
expressed in the units of bits/s/Hz [9]. In this work, constrained ca-
pacity denotes the performance of a user or of biometric system
expressed in terms of (reliable users/user population). It is necessary
to point that the information capacity does not provide a measure
for the error rate of the channel nor an answer to how erroneous is
the channel. Information capacity gives a measure for the informa-
tion rate of the source that can be transmitted reliably on a noisy
channel. Similarly, we can expect that ROC derived measures and
the proposed constrained capacity present two different aspects on
the performance of biometric authentication. Finally, we point that
the constrained capacity proposed here can also be used to motivate
information capacity of a binary hypothesis testing problem.

1.2. Contributions

The key contributions of this work can be summarized as fol-
lows: (i) in Sections 3 and 4, we formulate and quantify constrained

capacity of a biometric system based on the information capacity
theorem [7,10,11]. This framework is shown to be useful for estimat-
ing the effective number of cohorts for the performance improve-
ment [12]; (ii) in Section 5, we formulate constrained capacity for
fixed fusion rules at score level [4,13], (iii) in Section 6, we formulate
false random correspondence (FRC) of users based on their biomet-
ric features using a rate-distortion framework [8,14-17]; and (iv) in
Section 7, we present experimental analysis to illustrate (i) and (ii)
using a real database of 100 users for palmprint and hand geometry
biometrics. We also give experimental analysis that illustrates use
of constrained capacity to estimate the relevance of feature subsets
[18] and to measure the individuality of biometric features.

2. Outline of previous work
2.1. Prior work on capacity of biometric system

We now briefly discuss prior work in the literature pertaining to
capacity of biometric system. Schmid et al. [19] outline a seminal
approach in formulating performance indices like recognition capac-
ity and reliability function of biometric system, refer Fig. 1. Their
work did not support numerical results to illustrate these perfor-
mance indices or demonstrate other applications using these perfor-
mance indices. Some insights from Ref. [19] support the approach in
Ref. [20] where authors have shown novel techniques to utilize the
information in iris features for enhancing authentication.

Fig. 1 can be used to summarize the approach employed by
Schimd et al. [19] to compute the recognition capacity of a biomet-
ric system. They first formulate maximization of mutual informa-
tion between a query template from any user i given by X; and user
templates Y; in the database. Mutual information itself is formulated
based on information density which is based on distribution func-
tions of the biometric features. Finally, capacity is formulated as the
ensemble average of the maximum mutual information for all users.
It should be noted that this formulation for capacity is only one of
the many approaches known in the information theory literature.
For ensemble averages to represent true estimates of the capacity,
the approach detailed in Ref. [19] finds limited applications for bio-
metric systems employing very large user database. We point the
following as regards the seminal work of authors in Ref. [19]: (i) it
employs biometric features as the signal of interest, (ii) it formulates
information density by averaging over an asymptotic user population
to give mutual information, and (iii) it uses Chernoff bound to for-
mulate a reliability function of biometric system.! The method pre-
sented in [19] has some additional concerns that can be summarized
as follows: (i) the biometric template data usually comprises of fea-
ture vectors which have high dimensions. Computing distributions
of highly dimensional signals such as features in order to formulate
the information density is computationally complex [9]. Computing
correlation matrices of features or matrix inversion employing such
correlations is also computationally complex [8,9]. The complexity
is nonlinear with the size of biometric features and user population
[8], (ii) assumption of independent identically distributed (i.i.d) is
essential to the approach shown in Ref. [19]. The following weakens
the independence of features [2,21]: (a) increase in the dimension-
ality of features and (b) increase in number of users. Furthermore,
the assumption of identical distribution of a feature for all users is
not a realistic assumption, as this undermines the user-specific na-
ture of a feature [22], and finally, (iii) in biometric authentication,
a matching score (not the features in query template) is the sig-
nal used for authentication. Hence, it is unlikely to gain significant

! Biometric authentication system is indeed some form of noisy recognition
channel.
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Fig. 2. A two channel model for biometric authentication system.

insights from a recognition capacity [19] based on biometric features
for evaluating the authentication performance.

The approach formulating capacity in Ref. [19] is quite promis-
ing but subjective to the type of features and the technique used
for feature representation. This approach may have limited practical
utility due to a finite number of acquisitions and users available for
validating its framework. This may be a possible reason as to why
experimental results on the framework of Ref. [19] have not been re-
ported, in our understanding of the literature. Furthermore, the ap-
proach developed in Ref. [19] when applied on an exhaustive set of
users or templates will give performance of the biometric features.
The performance expressed by capacity or reliability such as using
[19] is independent of the choice of matcher which is a crucial block
of the authentication system. Finally, we point out that a match-
ing score is computed basically from the template features using a
matching function. This means that capacity could be formulated for
signals comprising of the biometric features as shown in Ref. [19] as
also formulated for signals comprising of biometric matching scores
as employed in this paper.

2.2. Prior work on individuality of biometrics

In this section we summarize prior work on individuality of bio-
metrics from literature [14,15,17]. Individuality is the characteris-
tic of a biometric that defines a property to discriminate the users’
based on biometric features, for more details Ref. [6]. Authors in
Ref. [14] have detailed a promising approach to ascertain the individ-
uality of fingerprint which is represented by minutiae points. Such
feature representation localizes the minutiae from its position and
orientation on the fingerprint image. Authors [14] employ an empir-
ical tolerance circle or overlap between minutiae to determine the
minutiae correspondence between fingerprints of different users in
the population. The probability of FRC is obtained as hyper geomet-
ric for minutiae position and binomial for minutiae orientation. The
FRC for fingerprint is obtained as the product of these distributions.
Zhu et al. [15] have incorporated mixture models with Gaussian

distribution for minutiae position and Von-Mises distribution for
minutiae orientation. They also employ an empirical tolerance for
minutiae position and orientation to obtain an expression for FRC.
The FRC obtained by them is Poisson distributed. Interestingly, indi-
viduality or discriminability offered by the biometrics [6] depends
not only on the biometric features but also on the feature represen-
tation method. This latter property of individuality is not captured
in these models, as also these models quantify FRC specifically for
fingerprint.

In Ref. [17], Daugman suggested representing features of iris given
by Iris Code. He also demonstrated that Iris Code was an optimal
method for iris representation based on the distribution of a Ham-
ming distortion (and degrees of freedom) computed between fea-
tures of Iris Code. This distribution shows a binomial trend and it
peaks at a normalized hamming distance of 0.5. Results on iris as
highly individual biometric, outlined in the literature [17] strongly
support that individuality (and FRC) is dependent on both the type of
features and the method of its representation. Daugman’s work [17]
provides a fundamental basis for computing FRC that could be ap-
plicable to many biometric traits. Daugman shows an analysis only
for Iris Code [17].

Other significant contributions that show individuality model for
iris can also be seen in Bolle et al. [23]. In Section 6, we will show
that the notion of distortion or tolerance can be connected to feature
representation and finally to the individuality of the biometrics. We
also point that individuality has been formulated based on feature
level information.

3. Noisy authentication channel: review of Shannon capacity

In his seminal work Shannon showed communication model [7,9]
with a source which generates i.i.d (independent identically dis-
tributed) symbols S given by an entropy h(S). In his basic model
these symbols were transmitted on an additive white Gaussian noise
channel (AWGN) given by N (Fig. 2). Shannon formulated two pow-
erful theorems, widely known as the source coding theorem and
information capacity or capacity theorem in the literature [7,8]. Of
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these two, we first consider the information capacity theorem that
in our framework is used to formulate a limit on information of user
biometrics (some characteristic of the user biometric like matching
score) from a noisy recognition channel for reliable authentication.
The information in user biometric and its reliability measure has a
maximum (sometimes referred as suprenum) as an achievable limit
to authentication performance, given a database and matching func-
tion, which defines our framework for capacity of a biometric au-
thentication system [7].

Consider the channel model with input to channel given by a
Gaussian source S > (0,S¢), where S denotes the average power per
symbol in signal constellation [24]. Let S represent the statistics from
desired signals or signals that aid reliable authentication. Similarly,
AWGN representing the noisy channel is given as N > (0, 6]2\,). Thus, N
represents the noise statistics or the mechanisms that limit reliable
authentication. Finally, capacity denoted by ‘C’ can be expressed in
terms of a SNR given by S¢/g% for the information model seen in
Fig. 2 [9]:

c=Liog, (1+5—§) )
2 o2

The choice of Gaussian distribution is motivated by the following
facts: (a) in the cumulative sense it tends to be a good reflection
of most real world distributions [21], (b) it has the highest entropy
for a given variance and is therefore useful in formulating bounds.
This means that a Gaussian source under a power constraint results
in the maximization of mutual information to give capacity. As also,
Gaussian for noise offers a maximization of noise entropy which
means transmitting on a very noisy channel [8], and (c) its closed
form expression for entropy is analytically tractable [9].

Capacity, in Eq. (1), is given in terms of bits/s/Hz and defines
a ceiling for the average information rate that can be reliably
transmitted on the noisy channel. Capacity as given in Eq. (1) gives
an average performance measure [7] of the information rate bearing
ability of the channel. It solely depends on the average statistics
of the signal information and noise information to estimate the
SNR. In the crux, Shannon’s classic work [11] edifies that error free
transmission is possible by operating/transmitting at information
rates below the capacity (channel capacity). The operational usage
of capacity as a performance measure in this work can be motivated
by considering the capacity [7] under the following three settings:
when capacity is less than one, equal to one and greater than one.
In all these cases, transmitting information actually implies trans-
mitting information in one use of the channel. When capacity is
less than one then we can reliably transmit only fraction of the
source rate on the channel. When capacity is equal to one then the
information system is said to have achieved the channel capacity.
It means that source information at this rate can be transmitted
reliably on the channel. Finally, when capacity is greater than one
then a source rate greater than the given information rate can be
reliably transmitted on the channel. Once, SNR has been formulated
from known statistics of the biometric then Eq. (1) may be used to
quantify capacity of the biometric system.

An important assumption underlying Shannon’s formulation of
capacity is the law of large numbers. Law of large numbers assumes
long delays on the channel or a large number of transmitted sym-
bols. One of the main motivations for this is that long observations
ensure a stable channel or a stationary stochastic channel. However,
when the channel is stationary for smaller delays then the require-
ment of large numbers can be relaxed. So for example, a bipolar
phase shift keying (BPSK) transmission associates only two levels of
phase information or symbols [24,25] transmitted over AWGN [11]
for which the capacity can be quantified by Eq. (1). However, a large
enough number of such 2-ary signals are assumed for transmission
for which the noise model of the channel is stable [7]. At the same

time, when channel is nonstationary such as when fading, shadow-
ing, Doppler and so on, then an average SNR is employed to estimate
the information capacity. Following Shannon’s expository work al-
ternate approaches were developed in the literature [8,9] that de-
rive results given in Shannon’s theorems. These models formulate
capacity using optimization and game theoretic approaches.

4. Constrained capacity of biometric authentication system:
proposed framework

In this section we combine tools developed so far to propose
a new model for formulating ‘constrained’ capacity of the biomet-
ric system. The term constrained refers to capacity formulated from
matching scores for a fixed choice of matching function and database.
Hereafter, capacity will mean the constrained capacity unless specif-
ically stated as otherwise. From signal theory perspective [24,25],
M users in the database could be represented by an M-ary sig-
nal probability space, with the signal space comprising of genuine
matching scores {gm} and imposter matching scores {in} for every
user m € M. This can be used to formulate the genuine and im-
poster distributions for user m. The matching scores (both genuine
and imposter) so generated employ all templates of a user, without
partitioning the database into test and training sets. The motivation
for using all templates in the database is that it gives feasibility for
formulating constrained capacity based on the complete state in-
formation of the noisy authentication channel. This is identical to
estimating information capacity of a communication system with
complete state information or complete knowledge of the noisy
channel [26]. It may also be noted that authors in Ref. [19] have
used all the biometric templates in the database for formulating the
recognition capacity, without partitioning the biometric database
into test and training sets. A challenging problem in developing con-
strained capacity based on matching scores is that different users will
have different sample spaces of matching scores (genuine and im-
poster distributions). Therefore it is very difficult to define a unique
probability space [21]. In the following we discuss an approach that
resolves this issue and facilitate formulating SNR of the biometric
system.

Fig. 2 depicts our approach for formulating capacity of biomet-
ric authentication [10]. Let {g} and {im} denote the median match-
ing scores from genuine and imposter distributions, respectively, for
user m € M. Let A be the desired source transmitting information
sequence {gn} and let B be the interfering source trying to corrupt
these symbols by transmitting an information sequence {ip;}. Thus,
for each transmitted genuine signal from {gn}, B transmits an inter-
ference symbol from (im) with the same index. The next step is to
model the noisy channel representing variability in genuine and im-
poster matching scores. In Section 3 we pointed out that Gaussian
distribution can be justifiable from the central limit theorem [21] to
characterize the noise/dispersion of scores due to cumulative effects.
It also offers significant operational ease. In the same discussion some
information theoretic properties of Gaussian were also cited that
supports its wide applicability in many frameworks. Importantly,
empirical observations based on the histograms of matching scores
(genuine and imposter) for our database show a close agreement
with Gaussian. So, we propose that information symbols {g,} and
{%m}are subject to additive white Gaussian channels as these traverse
the respective noise channels given by genuine and imposter noise,
refer Fig. 2. The noise channel for A is effectively a genuine Gaussian
channel denoted by ng,; > N(O, aé(m)) and that for B is imposter
Gaussian channel denoted by 1,y > N(O, aiz(m)). The variances from
genuine and imposter distributions are denoted by az(m) and aiz(m),
respectively. Their averages (using sample mean) are given by aé
and 01.2, respectively. Eq. (2a) gives signal model that describes signal
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received from genuine channel for user m. Similarly, Eq. (2b) gives
signal model for signal received from imposter channel of user m.

Rg(m) = &m + Ng(m) (2a)

Rigm) = im + Nim) (2b)
The authentication block in Fig. 2 receives noisy versions for all M
users (hence M-ary signal space). Here each symbol is a signal pair
{gm,%m} from the genuine and imposter distributions of m. This con-
cludes formulating an M-ary signal space model for M-ary hypothe-
ses testing problem [25]. This model is similar to Neyman-Pearson
type used in jamming/intrusion systems [24], with target A and
interferer B.

Discernability, decidability index, d-prime are widely known in
the biometrics literature [1,2] and are similar to SNR as used here
from information theory [7]. Fig. 3 illustrates distance measure, be-
tween g, and ?m, denoted by dp,. As seen in Fig. 4, the transmitter
is a binary hypothesis transmitter that transmits a pair of signals
for all users. Here, dy; is a random variable indexed by m [7,25];
which is clearly dependent on values of &, and i,. From this we de-
fine an average measure such as d2,. The energy of signal constella-
tion comprising of {gn, im} must be carefully modeled to satisfy the
following requirements [24]: (i) signal pair with minimum energy
allocation per signal to model worst case performance under noisy
transmission, (ii) since binary hypothesis testing is essentially—two
category classification, therefore we propose to choose antipodal sig-
nal set, with a correlation coefficient of —1. This mainly implies that a
genuine hypothesis is negatively correlated with the imposter hy-
pothesis for a given user/signal pair [7], and (iii) the entries in
{&m} are user-specific [22] and as such can be considered to be
uncorrelated [21] for different users. A similar heuristic reasoning
may be applied to the point-estimates (median) comprising the im-
poster set {im). Fig. 4 further simplifies the model by incorporat-
ing the worst case noise from genuine and imposter distributions
[7,20]. This aids in proposing an effective AWGN channel given by

ne > N(O, max(aé,a?)), The final formulation for the linear additive

channel model from this is given by Eq. (2c), [20]

Rm = {gmvim} + Ne (20)
For this the SNR can be given as

Se dZ

- m 3)
on  4max(oz,0?)

Once the SNR has been characterized for the authentication channel,
we can now apply the information capacity theorem [9,26] to pro-
pose constrained capacity of the biometric authentication channel.

Constrained capacity of biometric authentication system: A real val-
ued function of SNR (estimated from system database) which gives
a suprenum on the average number of users that can be reliably au-
thenticated. A symbol or signal pair in {gy, i} corresponds to a user;
hence, the number of symbols transmitted in one use of the authen-
tication channel is the same as the number of users. Therefore, the
units of constrained capacity can be given as the number of users
reliably authenticated per number of users in the database.

The constrained capacity of the biometric authentication system
is denoted as C; and is given as

1 &2
G = jlogz 1+ PP (4)
4 max(ag,07)

It may be an interesting point to discuss on the difference ex-
pected, between constrained capacity of biometric authentication
system and the capacity of several other information systems. Ob-
serve that in Eq. (4); values of the statistics d2 and 4 max(c2, 0?) are
intrinsic to the biometric trait and the database. For a given matching
function, the numerator d2, is mainly dependent on the uniqueness
attribute of the biometric trait. The denominator depends on the bio-

metric trait as well as on the acquisition and processing of biometric
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features. So, the numerical range of SNR is mainly determined by
the biometric trait followed by the database size and the quality of
biometric templates. Therefore, we conjecture that constrained ca-
pacity of authentication system for a given biometric trait might not
vary over many orders. In other information systems signal statis-
tics can be controlled easily and dynamically by power variation,
coding-modulation variation and other means to combat noise. This
results in a large variation in capacity of other information systems
owing to a flexible signal design. Finally, we observe that a variation
of Eq. (4) can be used to formulate the constrained capacity per user
denoted as Cp,. This gives the authentication performance for a user
and can be given as

2
dm:| (5)

2 2
4 max(ai(m), ag(m))

Cn= %logz [1 +

Constrained capacity can be useful to give the change in per-
formance due to new information (signal or noise). Given that the
signal information is uncorrelated to existing signals, second order
statistics of this information can be added in the numerator of the
SNR indicating additional power gains from desired signal. Similarly,
additional noise statistics can be incorporated in the denominator.
One such example is that of capacity enhancement that can result
from incorporating user-quality indices at score level [22]. If we ap-
ply the fact that g is user-specific, as in it is different for differ-
ent users, then the variability in {gn,} can be used to improve the
authentication. The set {g,} can be used to extract the user-specific
signal information which comprises of the difference between gp
for different users. The absolute value of the difference between the
median genuine score of a user [ ¢ M with all other users’ median
genuine scores can give the user-specific signal set for this user. Per-
forming this difference for every I gives the user-specific signal set for
the database that can be given as {|g, — &} such that [#n; and ,n €
M. It was earlier mentioned in this section that d2, is directly depen-
dent on {gn}. Now, if we can show that the user-specific signal set
is uncorrelated with {g,;} then it follows that the new signal statis-
tics can be algebraically added in the numerator. We refer Appendix
B for a result which shows that the formulated user-specific signal
statistics is uncorrelated with d2,. The new constrained capacity C,
can be formulated by incorporating the statistics of user-specific sig-
nal set denoted as &é in the numerator of SNR. Thus, the constrained
capacity Cyof the biometric system from incorporating user-specific
quality index is given as

~2 2
Gy +d
Cy= 1log2 1+—=2 T (6)
2 4max(c%,0?)

We next investigate additional performance gains, in terms of ca-
pacity, achieved by incorporating the non-matching scores that are
in the vicinity of a user’s matching score given by gr,. In the inception
of cohorts, Authors in Ref. [12] have shown that an extended score
template comprising of the ‘neighborhood’ non-matching scores
(inter-user) along with a genuine matching score gives substantial
improvement in the recognition accuracy. However, not all the non-
matching scores (imposters) are useful for constructing the cohort
set of a user. This means that the imposter users with close match-
ing scores that lie in neighborhood of a genuine user, the closeness
determined by the respective matching scores, can guarantee an
increased confidence level. It can be expected that non-matching
scores towards the tail of the distributions may not contribute sig-
nificantly to the confidence level. Cohorts define the imposter users
that constitute this non-matching neighborhood space of a genuine
user, and as such may be regarded as ‘signal’ information [9,12].
We point that a biometric system is similar to multiuser detection

system where a user’s detection can be enhanced by incorporat-
ing the information of multiuser interference, refer Verdu [9]. The
‘dominant interfering users’ in a multiuser information system [9]
are similar to the ‘cohort users’ that constitute an appended decision
space in [12] and can be used to significantly improve in the authen-
tication accuracy. We now pose two different problems to be tack-
led in our framework of constrained capacity: firstly, to formulate
the constrained capacity of the biometric system that employs co-
horts, and secondly, to determine the dominant interferers or close
non-matching users to a given user.

We now outline the framework for formulating the constrained
capacity with cohorts. It is proposed to show one possible selec-
tion of cohorts using 3¢ bound which is a loose probability bound
in Chebyschev sense [21]. This bound mainly considers the non-
matching scores lying within 99.7% probability coverage about the
median genuine score (but not including it) on the genuine distri-
bution. The rule of 3¢ will select + ¢ = 20, + 3¢ points on the
genuine distribution about the peak matching (genuine) score for a
user to estimate cohort set of the user. Let the average variance ob-
tained from the variances of the cohort set for M-users be denoted
as o2. We incorporate this as signal statistics to formulate ‘C3’ which
denotes constrained capacity due to cohorts, given as

ot +d3,
4 max(c%,0?)

G = %logz {1 + (7)

So far, we have discussed formulation of constrained capacity
for various settings. Next, constrained capacity is proposed for de-
termining the dominant interferers or cohort users. Let C denote a
generic constrained capacity of the biometric system. For M users in
the database, based on the framework of constrained capacity the
number of users that can be reliably identified (y) can be given as

1=CM (8)

Let us consider the case when our authentication channel is un-
reliable, i.e. when the constrained capacity C is less than one. For
this, let C be such that C=1-C, 0<C<1,andC=0, C>1.We
define C as the maximum average unreliability of the biometric au-
thentication system in terms of the users in the database. Thus, C
quantifies unreliability of the authentication channel in units of (un-
reliable users/users in database). The number of unreliable users can
be viewed as the number of dominant interferers or cohorts (N) and
can be given as

N=CM (9)

For a database of M users, greater the value of C, smaller is the
effective number of cohort users estimated by Eq. (9). This is partic-
ularly expected for highly individual or strong biometrics. For such
biometrics, C is expected to get closer to 1 (also, validated by exper-
imental results in Section 7). It may be noted that the actual number
of effective cohorts vary from user to user.

5. Constrained capacity of multimodal biometric systems for
score level fusion

In this section, we investigate use of constrained capacity to
evaluate performance of fusion rules at score level. In biometrics
literature several architectures have been shown that give fusion
methodologies to justify superior performance achieved by multi-
modal biometric systems [4-6,13,27]. In fusion-algorithms authen-
tication is performed after consolidating features or matching scores
or decisions; thus resulting in three different levels of fusion. Mul-
timodal biometrics systems achieve superior performance by ex-
ploiting information diversity which increases the distance measures
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(individuality) between users [4]. Score level fusion can be performed
by consolidating matching scores from multiple representations of
a biometrics or by consolidating outputs from multiple matchers
[4,13].

We now develop a framework to evaluate score level fusion meth-
ods. Score level fusion: let {sﬁ,s‘/’;} denote the matching scores gener-

ated from the modality o and modality f3, respectively, for pth user,
such thatp =1, 2,...,M. Let ¥ be the function which combines com-
ponent scores from all different modalities or matchers to generate
a fusion score such that the combined score S’é for user p is given
by SP. = 'P{si,s%}. The function ¥ denotes a fusion operation which
could be weighted sum, difference, log product, max rule, and min
rule on component scores [4]. Eq. (4) can be used once we can for-
mulate SNR following the fusion. The statistics using S‘g to formulate

SNR includes: distance separability (dzq,), average variance genuine

a2 ), and average variance imposter (¢2 ,,). The resulting capacit
P g p oy g capacity
using this statistics can be given as

7
i } (10)

2 2
4 max(ag_q,, 07 )

Cy = %logz {1 +

Effectiveness of fusion rule can now be measured by comput-
ing capacity using Eq. (10) and comparing this to capacity obtained
from component modalities or matchers using Eq. (4). Experimen-
tal results on score level fusion using hand geometry and palmprint
biometrics are detailed in Section 7.

6. FRC probability: performance of the biometric trait

Rate-distortion subsumes a major contribution in information
theory for problems on source coding [8]. This was shown by Shan-
non in his treatise [7,9] and is known as coding theorem for source.
Source coding or feature representation often aids in finding effi-
cient methods to represent the biometric source given its statistics.
In this process, some attributes that constitute inherent properties of
the biometric source can be formulated and quantified. Thus study
of statistics at feature level leads to performance index of the bio-
metric trait itself [24]. An attribute such as uniqueness and distinc-
tiveness is important for evaluating the scalability of a biometrics
system, given a method of authentication [1]. Individuality measures
this uniqueness and distinctiveness offered by the biometric fea-
tures. The type of features and the feature representation both in-
fluence the discriminability offered by a biometric trait. The source
coding theorem [8] can be invoked to estimate the optimal number
of bits required to ‘uniquely’ represent a source. The minimum rate
condition at a distortion defines an inherent characteristic of an in-
formation source, as shown by information models in Ref. [8]. Simi-
larly, the rate-distortion framework can be proposed for formulating
a measure of the inherent information in biometrics or biometric
individuality.

In biometrics literature, individuality is related to and expressed
in terms of the probability of FRC [5,10,14,15,17]. The author’s in
Ref. [14] model FRC for the fingerprint biometric by employing an
empirical tolerance which actually is tolerable distortion measure,
as we introduce later in this section. Similarly, Zhu et al. [15] have
obtained FRC of fingerprint biometric using mixture models that
generate minutiae features for an empirical estimate of tolerance or
distortion. Section 2.2 presents a brief review of prior work on FRC.

We define Individuality: as the minimum rate achievable for an
information source comprising of biometric features from different
users (one template per user), subject to a distortion given by d. FRC:
FRC can be defined as the average probability that users based on
their biometric trait are similar, under a given similarity criteria.

In documenting iris as a highly individual biometric, Daugman
[17] showed variability measures in iris features represented by two-
dimensional Gabor features. The distribution of normalized ham-
ming distance or degrees of freedom of features, the features given
by phase information of iris biometric, was shown to fit a binomial
distribution. A binomial distribution of distortion measure given by
the degrees of freedom with peak at 0.5 depicts strong independence
among features of iris biometric. This also signifies a maximum en-
tropy code for the binomial distribution which can be realized as
sum of independent Bernoulli features (given by 1 or 0) [3]. How-
ever, after [17] there has been little work on random correspon-
dence on a rate distortion framework. A plausible explanation for
this could be that Daugman’s approach used an exhaustive database.
Thus work in Ref. [17] illustrated an empirical model for uniqueness
of iris which represents an accurate estimate for very large popu-
lation. By encoding phase variations using hamming distance, [17]
applies a hamming distortion metric to locally source code parti-
tions of the template along trajectory in the iris. This condition also
provides a ‘maximally spaced’ code book since entropy of this dis-
tribution (which is binomial distributed) peaks at 0.5, a clairvoyant
choice in favor of the Gabor representation. It is therefore reason-
able to infer that uniqueness and individuality are dependent on the
choice of feature representation. Applying rate-distortion concepts
[8] it is proposed that approach employed in Refs. [14,15] as well
as [17] are two related manifestations of a more general approach.
The rate-distortion framework (refer Appendices A and B) will be
revived to propose that: (i) individuality is a property of biometrics
that depends on feature representation and (ii) individuality can be
formulated in terms of FRC for a distortion constraint J. Condition
of a minimum information rate for an average distortion constraint
is equivalent to condition of average information rate for minimum
distortion, as shown in Ref. [8]. For a choice of feature representa-
tion (PCA, LDA, ICA, Gabor phase information, etc.) and for a given
distortion constraint ¢, smaller the rate-distortion more efficient is
the representation. In that sense, rate-distortion is a direct measure
of individuality. We propose to use minimum distortion condition
on a source code book comprising of biometric features for formu-
lating FRC of generic biometrics. This approach is rationally similar
to that discussed in [8] and is used to develop the corollary here.

Corollary: Let the complete set of biometric features given by F com-
prise of K different features for M users, the feature representation (code
book of features) is given by F for a distortion D in mean square sense
(m.s.s). If the distances between corresponding features in F, for different
users, are denoted by {d\}, k <K; and if {d;} has a binomial distribution
with probability = 0.5, then a minimum rate condition is achievable.

Note: If {d} are hamming distances then, D = 3"  xdi.

Proof. We use results from Appendix A. The expression of rate dis-
tortion is detailed in Ref. [8]. Expressing information rate (mutual
information) for f}, € F likewise f} € F in terms of entropies given by
variable h.

I(fi: fi) = h(f) — h(fic — fi) (11)

(S0 Slog2me)of — h(i ~ fi) (12)

We use the following inequality for biometric source coding model
based on minimizing the rate distortion constraint as detailed in
Ref. [8]

h(fi) = h(f) > h(dy) > h(f — fi.) (13)

where h(d,) denotes the entropy of hamming distance distribution
with hamming distance computed among corresponding binarized
feature vectors for all users. The variability/uncertainty in d, denotes
average distortion. Constraint h(d; ) > h(f,— fk) is important to tighten
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the inequality further in Eq. (12). Thus, k independent observations
(Appendices A and B)

Y if)> Y 5log2ne)a} — hidy) = R(D) (14)

vkeK vkeK

Given dy € (0,1,...,N) is a discrete random variable, {d}} gives inde-
pendent realizations of K random variables for K different features.
We define D=Y"\.xdy that consolidates realizations from K indepen-
dent partitions or independent random variables. Eq. (14) shows ad-
dition of entropies from all partitions or feature sets to give the rate
for F. Hamming distortion D comes from independent features and
can be characterized by binomial distribution parameterized by >
(p,N) [16]. Eq. (14) can be minimized if the entropy h(D)= 3" h(d)
is maximized. Entropy for binomial > (p, N) maximizes for p = 0.5,
proving our claim.

We point that the minimum rate condition using Eq. (14) can
also be viewed as a test for a feature representation method that
optimally extracts uniqueness from biometric source, given a dis-
tortion constraint. Conversely, feature representation for which the
above condition is achieved gives optimal rate-distortion. As a direct
illustration, we can cite the Iris Code and its optimality in capturing
uniqueness of iris biometric using a Gabor phase representation [17].

The corollary with propositions presented in this section can
easily lead to formulating the FRC probability of biometrics. If, we ap-
proximate h(F)=h(D). Define, § > 0; where & denotes tolerable dis-
tortion which can be the Hamming distance for binarized features. An
empirical tolerance threshold (as also used in Refs. [14,15,17]) given
by & will correspond to a conditional entropy given by h(D/D < 6).
An exponent of conditional entropy to base 2 (assuming binariza-
tion of features) gives the average total number of sequences that lie
within a Hamming radius of 6 around the given features. This leads
to formulating the expression for FRC as follows:

9h(D/D < 9)

P(false correspondence) = (15)

2h(D)
Clearly, from Eq. (15), an increase in § reflects greater distortion,
thereby increasing the numerator with conditional entropy in the
exponent. This will result in a higher false correspondence. The basic
form of entropy function will depend on the choice of feature rep-
resentation and the biometric trait. An interesting observation from
this section is in noting that the Eq. (15) gives the zero noise (gen-
uine and imposter noise) reliability of the biometric system. Thus,
Eq. (15) defines a minimum (best) error rate of a noiseless biometric
system, for a user population M. It may also be noted that Eq. (15)
can give an accurate estimation of FRC if distance distributions were
computed for large user population with M — oo (asymptotically),
as also indicated in Ref. [17].

It may be noted that the prior approaches [14,15] have regarded
intra-class variance of biometric features as a limiting factor for indi-
viduality of the biometric. We may not have directly employed this
in our formulation. Our formulation employs one biometric template
per user each time, for M users, and then estimates entropies based
on the template features. We estimate FRC using Eq. (15), each time
for a different set of templates for the M users while still keeping the
one template per user condition. We average the FRC computed in
this manner from different combinations of templates for M users.
This finally gives us an estimate of FRC which characterizes perfor-
mance of a given biometric trait. [

7. Experiments and discussion
7.1. Unimodal capacity

In order to estimate real values of biometric capacity formulated
in Section 4, we perform experiments on real biometric samples.

Table 1

Parameters from the experiments.

Biometric modality  d?, a? a2 67 a?
Palmprint 148530 63585 15545 11346 72542
Hand geometry 7.71x10° 537x10°  4.00x10% 9.70x107 1.87x10°
Table 2

Constrained capacity and number of cohorts.

Biometric modality C G, (& Ny N,
Palmprint 033 0.35 0.47 67 65
Hand geometry 0.2214 0.223 0.268 79 78

The hand images from 100 users (10 images from each) were ac-
quired from the digital camera using unconstrained peg-free setup
in indoor environment. The extraction of palmprint region and hand-
shape images from each of the acquired images is similar as detailed
in Ref. [18]. The discrete cosine transform (DCT) is used for the char-
acterization of unique palmprint texture. Each of the 300x300 pixels
palmprint image is divided into 24x24 pixels overlapping blocks. The
extent of this overlapping has been empirically selected as 6 pix-
els. Thus we obtain 144 separate blocks from each palmprint image.
The standard deviation of DCT coefficients, obtained from each of
the overlapping blocks, is used to characterize the region. Thus we
obtain a feature vector of 144 values for the palmprint biometric.
The simultaneously extracted hand-shape image is used to extract
23 hand geometry features. The details on the feature extraction
methodology are available in Ref. [18]. The class genuine and im-
poster score distributions, using Euclidean distance, were generated
to extract the following parameters: 67, d2,, 62, 6;, and ¢2. Table 1
summarizes the system parameters useful for estimating constrained
capacity. The texture features extracted from the palmprint and the
hand geometry features are expected to be highly uncorrelated.

Table 2 shows the constrained capacity given by Egs. (4)-(6). From
Table 2, we observe that C; for palmprint is much higher than the
C; for hand geometry. Similar trend can also be observed for C; and
C3 of palmprint biometric which are also higher than C; and C3 of
hand geometry biometric. From this we can conclude that palmprint
biometric gives a superior authentication performance than hand
geometry biometric.

Table 2 also summarizes the number of cohorts based on Eq. (9).
In this table, Ny and N, represent the cohorts computed using con-
strained capacities C; and Cy, respectively. Since, C, is greater than
C; for a given biometric trait, this justifies the improvement in au-
thentication performance as a result of incorporating user-specific
statistics. Hence, the cohorts representation from C, (given by N3) is
smaller as compared to the cohorts representation from C; as given
by Nj. Next, in this table, we observe that the increase in the con-
strained capacity Cs from incorporating cohorts is about 50% more
than C; which denotes the constrained capacity without cohorts.
Authors in Ref. [12] have also suggested significant increase in clas-
sification accuracy by using cohort information, thus verifying the
proposed framework.

7.2. Constrained capacity with ranked features

The objective of our experiments in this section is to ascertain
change in constrained capacity with the addition of relevant features.
In this experiment, 144 features from each of the real palmprint im-
ages were firstly ranked in the order of their merit using correlation-
based feature selection algorithm as illustrated in Ref. [18]. Each of
these 144 ranked features were partitioned into 12 features per par-
tition, and used to generate statistics to compute the constrained ca-
pacity by augmenting more and more ranked features. The increase
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Fig. 5. Variation of constrained capacity with number of features for palmprint.

in constrained capacity is gradual but slow in the first few parti-
tions of adding features. The gradient becomes zero after about 72
features (Fig. 5) and is influenced by: (i) SNR of the chosen feature
partition, and (ii) loss of relevancy from the redundant features. It
may be noted that Authors in Ref. [18] have shown 69 irrelevant
features from the same dataset, thus verifying the proposed frame-
work. This experiment suggests that irrelevant (redundant) features
do not contribute in increasing the constrained capacity or perfor-
mance of biometric authentication. From Fig. 5, we also point that
the constrained capacity finally stabilizes at 0.33 after 69 relevant
features, which is in agreement with value obtained in Table 2.

The efficacy of biometric features in providing discriminatory in-
formation for authentication in literature [6,14,15] has been given
in terms of the FRC; discussed with respect to fingerprint biometric.
Authors in Ref. [14] use an empirical model to estimate overlap of
minutiae based features and employ an empirical tolerance to esti-
mate probability of random correspondence of fingerprint biomet-
ric. Authors in Ref. [15], give a more accurate model that captures
the second order statistics for variability of minutiae based features
to train a mixture model used in estimating probability of random
correspondence.

We now show that constrained capacity can also give a measure
for the discriminability or individuality [6] of biometric features.
Hand geometry features used in this experiment are basically hand
shape features extracted from the same hand image used to extract
the palmprint biometric [18]. Individuality of biometric features can
be measured by first selecting a set of features from biometric tem-
plates in the database and computing the constrained capacity for
this selection. Fig. 6 depicts plot of constrained capacity as a func-
tion of hand geometry features, where we append three new fea-
tures and then compute the corresponding constrained capacity. The
slope of plot, after fixing two points on the x-axis, gives a measure
of the differential information available from the additional features.

For instance between two points given by three features and nine
features on the x-axis, constrained capacity is seen to change (in-
crease) by 0.04. This means that the 6 additional hand geometry fea-
tures correspond to a differential information measure of 0.04 (user
per population). This works out to give a performance gain of four
users for 100 users in our case and can be interpreted as follows.
For a database of 100 users and using Eq. (9), we may conclude that
adding six hand geometry features shall maintain the authentication
performance as before, even after adding four users in the database.
Thus, the differential information of 0.04 is equivalent to and can
be expressed by an alternate gain given in terms of four additional
users for the same authentication performance. Let us now consider
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Fig. 6. Variation of constrained capacity with number of features for hand geometry.

Table 3

Constrained capacity and score distribution parameters from fixed fusion rules.
System parameters ~ Sum rule  Product rule  Log-product rule = Max rule
Cy 0.435 0.599 0.732 0.382
@ 0.053 0.003 6.831 0.037

a? 0.003 0.0007 0.742 0.002
(Té 0.016 2.66x10-° 0.976 0.013

the change in capacity at two points given by nine features and 20
features as can be seen in Fig. 6, the change in capacity is (—0.061).
This indicates a loss of individuality quantified by (—0.061) as a re-
sult of adding the 11 features.

Constrained capacity depends on SNR as seen in Eq. (4); there-
fore, we can conclude that a change in capacity basically arises due
to change in SNR. It may be further noted that SNR is ratio of d2, and
the noise variance given by max(oé, aiz). Hence, for a given biomet-
ric database, when the effective noise power or variance increases
more than signal gain in d2, then the capacity dips. From Fig. 6 it can
be seen that authentication performance is optimum for 15 hand
geometry features. We also see that the constrained capacity from
hand geometry features is constant at 0.224 at 23 features; which is
in agreement with Table 2. A similar analysis can be done from ex-
periments that discuss relevance of features for palmprint biometric,
Fig. 5. From Figs. 5 and 6, it may be concluded that given a database,
constrained capacity conveys a measure of individuality or discrim-
inability of biometric features. It may be noted that Authors in Ref.
[18] have also shown 15 relevant features from the same dataset,
thus verifying the proposed framework. We can therefore conclude
that constrained capacity as seen in Figs. 5 and 6 can be used to: (i)
quantify the information in feature subsets and (ii) sort the biomet-
ric features in their order of relevance.

7.3. Constrained capacity for score level fusion (palmprint and hand
geometry)

Table 3 summarizes experimental values of constrained capacity
using different score level fusion rules. Fixed combination rules such
as sum, product, weighted sum, logarithm of product were investi-
gated to observe the variation in the constrained capacity from the
score level fusion of scores from hand geometry and palmprint bio-
metric. The constrained capacity is computed from the distribution
of genuine and imposter scores as formulated in Section 5. The ex-
perimental results illustrated in Table 3 suggest that the log-product
rule gives best performance among the investigated fusion rules.
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Table 4
Variation of number of false rejects and number of false accepts for weighted sum
rule.

Weight Weight (hand  Threshold (matching  Number of Number of
(palmprint) geometry) score) false rejects  false accept
0.4 0.6 0.05905 2120 2120
0.5 0.5 0.0691 1937 1932
0.6 0.4 0.07834 1744 1742
0.7 03 0.08672 1825 1826
0.8 0.2 0.094234 1753 1752
0.9 0.1 0.10017 1816 1816
1 0 0.10123 2058 2058

Essentially, log-product function will nonlinearly scale scores from
each modality, so that smaller values of score are boosted in each set
to enhance the distance measures d2,, this seems a plausible reason
for its superior performance. Sum rule is known to perform better
in score level fusion while consolidating matching scores from the
relatively correlated feature set [27]. Product rule gives a superior
performance over weighted sum rule, in our case when combining
matching scores from the independent feature sets. Weighted sum
rule was employed with weights that are varied continuously in the
interval [0, 1]. Constrained capacity is used in this experiment to de-
termine optimal weights. As seen in Fig. 7, the maximum constrained
capacity of 0.46 occurs for the weights 0.6 (palmprint) and 0.4 (hand
geometry). In order to compare these results we examine an alter-
nate method to determine the optimal choice of weights. Firstly, we
partition biometric templates of each user into eight training tem-
plates and two test templates. The matching scores from both modal-
ities are normalized so in the range [0, 1]. Fusion of scores from the
two modalities is then performed using weights that vary in [0, 1], in
steps of 0.1. For a given combination of weights, all matching scores
after fusion are used to generate the genuine and imposter matching
scores. Finally, to determine an equal error point, a threshold is ob-
served for which the number of genuine scores (false rejects) lying
above this threshold is equal to the number of imposter scores (false
accepts) lying below the threshold. This condition gives equal error
count as a unique value, for a given combination of weights, using
all matching scores for which the number of false accepts are same
as the number of false rejects. It can be observed from Table 4 that
the smallest equal error count occurs for weights 0.6 on palmprint
and 0.4 on hand geometry. This concurs with our results using con-
strained capacity which attains maximum at 0.46 for these weights,
refer Fig. 7.

Constrained capacity can be computed for individual users us-
ing Eq. (5) and is illustrated in Figs. 8 and 11. It is utilized for
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Fig. 10. Number of cohort users per user for palmprint biometric.

(a) estimating effective number of cohort users per user as seen in
Figs. 10 and 13 and (b) stability of the database in terms of the vari-
ability in constrained capacity for users. Notable are the distributions
(histograms) of constrained capacity over user population depicted



J. Bhatnagar, A. Kumar / Pattern Recognition 42 (2009) 1803 - 1815 1813

15

Wax = 14414
Min = 0.017799
Mean = 0.16287

0.5

Constrained Capacity

0 }-f"hﬁ e o s i e
0 10 20 30 40 50 60 70 80 90 100
User index

Fig. 11. Constrained capacity per user for hand geometry biometric.

Capacity

Fig. 12. Histogram plot for constrained capacity of hand geometry biometric.

100
90 Ee ’ ..‘"‘ ) ¥ :.__. ;- "”‘:n-,; >;'~“\"‘_ et e of
80 | 2 o " > | I
0
5 70
%]
2 60 | I
5]
-é 50
5 40
S 30
20
10
0

0 10 20 30 40 50 60 70 80 90 100
User index

Fig. 13. Number of cohort users per user for hand geometry biometric.

in Figs. 9 and 12. In this, a biometrics with a higher individuality
can be expected to have location parameters of its distribution (me-
dian values) close to one. This can be observed by comparing Figs. 9
and 12 which suggest that hand geometry is a weak biometrics,
while palmprint can be considered as a stronger biometrics.

8. Conclusions
This paper has developed a new framework for constrained ca-

pacity as performance index of the user as well as the biometric
system, given the database and matching function. In Sections 3 and

4, constrained capacity of biometric system was formulated using
second order statistics of the biometric information given in terms
of a SNR. For this, the available biometric information must be cate-
gorized as signal or noise information, as seen in the statistics listed
in Table 2. In real biometric applications we come across a finite
population of users and their biometric templates, and hence the
information capacity theorem gives a constrained capacity of the
biometric system. A significant advantage of constrained capacity
developed in this work is that it gives a unified framework to eval-
uate authentication performance in terms of users, where as the
traditional analysis employs probabilistic measures in terms of
matching scores. Experiments in Section 7 illustrate the use of con-
strained capacity in evaluating the authentication performance of
biometric system and for a given user as seen in Figs. 8 and 11. The
histogram plots in Section 7 substantiate that palmprint biometric
can give a superior authentication performance than hand geometry,
as seen in Figs. 9 and 12. This paper has illustrated the usage of con-
strained capacity in estimating the relevance of biometric features
[18] as well as in quantifying a measure of information or individual-
ity of biometric features [6], as seen in Figs. 5 and 6. Finally, this work
has also demonstrated use of constrained capacity for comparing
some widely used score level fusion strategies, as seen in Table 3 and
Fig. 7. In conclusion, we can expect that constrained capacity may
serve as computationally simple to handle and a useful performance
tool in gaining important information theoretic insights for the
design and evaluation of biometrics systems in the future.

In Section 6 of this work, the probability of false correspondence
of users based on their biometric features was developed using the
source coding theorem. This paper has formulated a unifying frame-
work to estimate FRC of a generic biometric trait given the intra-class
biometric variance, and feature representation technique. This work
has investigated the role of feature representation in characterizing
the individuality of users’ based on the biometric information con-
tent. In our opinion, biometric features constitute a natural code from
the physical and behavioral characteristics of humans. Thus, a real-
istic model for quantifying the biometric variance and FRC will need
detailed investigation in areas of evolution and sciences. We there-
fore feel that a holistic study of individuality is apparently closer to
epigenetic and information theory than to information theory alone.
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Appendix A

Definitions. R(D): Rate distortion function is the infinum of achiev-
able rates R, such that R(D) is in the rate-distortion region of the
source (K-feature statistics for all M users) for the corresponding dis-
tortion constraint D in mean square sense. Where, k € K denotes the
number of different features per template.

We rephrase the need of Gaussian assumption to source coding
(based on estimation theory)-for Gaussian distribution under mean
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sq. error, the conditional mean of {f}: feature representation, is op-
timal estimator of {f}: observed feature array; where f € F, f € F.
Furthermore, mean square distortion D as the distortion measure in
Gaussian frame work is effective for following reasons:

(i) Generally useful for real image data, (ii) gives the minimum
rate for representation error (tightened by the fact that rate at
minimum distortion is equivalent to distortion at minimum rate),
which is required in formulating individuality. Though the popu-
lation statistics for F: super set of all observed features of size M
(one template per user), need not actually be Gaussian, we employ
Gaussian approximation to M-user template statistics in order to
deduce the achievable lower bound for rate-distortion R(D).
Problem. To formulate rate distortion R(D) in source coding Feature
statistics of K-different features per template, for M user population,
approx. by Gaussian (for large number of users); and for average
distortion measure given by D>E|F — F,|2; k e K

Hence, to show that

K 2
| :
R(D) = min E Eloge—‘c, E Dy=D
k=1 vkeK

Solution. Let the K-different features per template be uncorrelated
(for every k € K, features are of different type hence we employ
the uncorrelated approximation). Idea is to source code each k € K
features and then concatenate the K code blocks to generate the
template code. We prove the stated result for some k, which can be
easily generalized under uncorrelatedness to all K features.

I(fii fi) = htFo) = hCfidfo
= Ylog,(2me)a} — h(fi - filfe)
> Jlog.(2ne)a} — h(fi — fi)
(conditioning reduces entrophy)
= llog,(2me)a? — h(N(O, E(fic — fi)*)
> Jlog,(2me)at — log.(2me)Dy
2

1 ak . >
R(Dk) = ilOge |:D,] =inf I(fk:fk)
lk

For K uncorrelated variables (feature sets) the result can be gen-
eralized as below

2
RD)=Y RD)=Y" %loge {gk} —inf I(F: F)
vk vk k
Appendix B

Definitions. Let the random variable g, with index m € M denote
the complete set of median genuine scores for the database. Let the
random variable g; denote selection of a median genuine score such
that | € M. For this selection, let the random variable g, denote a
complement set of the median genuine scores such that n#1, n € M.

Problem. We are interested to show that the random variables gp,
and g, — g are uncorrelated.

Proof. To prove this we will need to show that the covariance of
random variables g, and g, — g; is zero.

Let us assume that the expected value of g, exists and is denoted
as g.

If ‘E’ denotes the expectation operator then the covariance can
be given as follows:

Cov(gm,&n — &) =E[(&m — 8)(&n — &1)]
= E[(&m&n — Em& — &8n + 881)]
= [E(&m&m) — E(8m&;) — E(&8n) + E(88))]

We note that this is true in general for all m € M since there is no
constraint on the choice of the index m.

The first order moments of g; and g, can be given as g. Based on
this, the covariance can be given as

Cov(gm. &n — &) = [E(&%) — E(g%) - 8> + &% =0

This proves the claim. [

It therefore follows that g, — g; is uncorrelated with any function
of gm.
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