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Positronium–atom collisions
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Abstract

New results are presented for Ps(1s) scattering by H(1s), He(11S) and Li(2s). Calculations have been performed in a

coupled state framework, usually employing pseudostates, and allowing for excitation of both the Ps and the atom. In

the Ps(1s)–H(1s) calculations the H� formation channel has also been included using a highly accurate H� wave

function. Resonances resulting from unstable states in which the positron orbits H� have been calculated and analysed.

The new Ps(1s)–He(11S) calculations still fail to resolve existing discrepancies between theory and experiment at very

low energies. The possible importance of the Ps� formation channel in all three collision systems is discussed.

� 2004 Elsevier B.V. All rights reserved.
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1. Introduction

In this article we present some new theoretical
results for positronium(Ps)–atom scattering for

three fundamental systems: Ps–H, Ps–He and Ps–

alkali metal, taking Li as our example of an alkali

metal. In each case we assume that the incident Ps

and the target atom are both in their ground

states. Throughout we use atomic units (au) in

which �h ¼ me ¼ e ¼ 1, the symbol a0 is used to

denote the Bohr radius, a0 ¼ �h2=me2. To express
energies derived in atomic units, e.g., the calcu-

lated position and width of a resonance, in elec-

tron volts (eV) we have used the conversion

1 au¼ 27.21138344(106) eV [1].
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2. Positronium scattering by atomic hydrogen

(Ps(1s)–H(1s))

2.1. Event line

Fig. 1 shows an event line for this system. In a

non-relativistic treatment of Ps–H collisions the

total electronic spin, Se, is conserved. Since the

system contains two electrons the possible values

of Se are 0 and 1. Fig. 1 illustrates the case of

scattering in the electronic spin singlet state Se ¼ 0.
From Fig. 1 we see that the system possesses a

single S-wave bound state [2], positronium hydride

(PsH), with a binding energy of 1.0666 eV [3]. As

far as scattering is concerned, the significance of

this bound state is that it corresponds mathemat-

ically to a pole at an impact energy of )1.0666 eV

in the S-wave singlet scattering amplitude. As we

approach zero impact energy the singlet elastic
cross section, which becomes increasingly S-wave,
ved.
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Fig. 1. Event line for Ps(1s)–H(1s) scattering in the electronic

spin singlet state. Events are shown as a function of the impact

energy E (in eV). The diagram is purely schematic and not to

scale.

150 H.R.J. Walters et al. / Nucl. Instr. and Meth. in Phys. Res. B 221 (2004) 149–159
rises towards the pole, see Fig. 2. The precise value

of the zero energy singlet cross section in a calcu-
lation therefore depends upon how well this pole is

represented.

Up until 5.1 eV only elastic Ps(1s)–H(1s) scat-

tering is possible. At 5.1 eV Ps (n ¼ 2) excitation
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Fig. 2. Electronic spin singlet partial wave cross sections for

Ps(1s)–H(1s) elastic scattering in the energy range 0–3.5 eV.

Approximations: solid curve, 9Ps9H+H�; dashed curve,

9Ps9H; dash–dot curve, 9Ps1H.
becomes feasible, the atom still remaining in its

ground state. At 6.0470 eV Ps (n ¼ 3) excitation

comes on line. Interestingly, this threshold is al-

most coincident with that for H� formation
(PsþH ) H� þ eþ) at 6.0477 eV [4]. In quoting

these numbers we have ignored relativistic effects

and have assumed that the proton has infinite

mass. One wonders whether this near degeneracy

might present some interesting experimental

opportunities. Certainly, it should lead to a com-

petition between the two channels and since, as we

shall see later (Fig. 3), there is a rich Rydberg
resonance structure associated with the H�

threshold, it presumably has some effect upon this

structure.

Between 6.0477 and 6.8 eV the full Rydberg

spectrum of Ps becomes accessible until, at last, at
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Fig. 3. Electronic spin singlet partial wave cross sections for

Ps(1s)–H(1s) elastic scattering in the energy range 3.5–6.5 eV.

Approximations: solid curve, 9Ps9H+H�; dashed curve, 9Ps9H.
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6.8 eV the Ps can be ionized. Not until 10.2 eV can

the atom be excited, to the n ¼ 2 level with the Ps

remaining in its ground state. Ionization of the

atom becomes possible at 13.6 eV. However, be-
tween 10.2 and 13.6 eV another interesting thresh-

old appears, Ps� formation (PsþH ) Ps� þ p), at

13.28 eV [4]. This threshold lies in the midst of

thresholds for producing highly excited H (in fact

between the H (n ¼ 6) and H (n ¼ 7) thresholds).

As with H� we would expect Rydberg resonance

structure associated with the Ps� threshold, al-

though probably much less pronounced.
Beyond the energy range of Fig. 1, double exci-

tation of both projectile and target becomes pos-

sible at 15.3 eV and double ionization at 20.4 eV.

Scattering in the electronic spin triplet (Se ¼ 1)

channels is somewhat less interesting, although

usually the dominant component of any spin

averaged cross section. The event line for triplet

scattering is the same as Fig. 1 except that the PsH
bound state and the H� and Ps� channels are

omitted. The absence of these formation channels

means also a corresponding absence of resonance

structure.

2.2. Coupled pseudostate calculations

The challenge to theory is to represent the
events portrayed in Fig. 1 in an adequate way. A

suitable and powerful representation is provided

by the coupled pseudostate approach.

Let rpðriÞ be the position vector of the positron

(ith electron) relative to the proton, which is as-

sumed to be infinitely massive. Ri � ðrp þ riÞ=2
and ti � ðrp � riÞ then correspond to the centre of

mass of the Ps relative to the proton and to the Ps
internal coordinate when the Ps consists of the

positron and the ith electron. The non-relativistic

Hamiltonian for the Ps–H system is then

H ¼ � 1

4
r2

R1
þ HPsðt1Þ þ HAðr2Þ þ

1

rp
� 1

r1

� 1

jrp � r2j
þ 1

jr1 � r2j
; ð1Þ

where

HPsðtÞ � �r2
t �

1

t
ð2Þ
is the Hamiltonian for Ps and

HAðrÞ � � 1

2
r2

r �
1

r
ð3Þ

is the Hamiltonian for atomic hydrogen. The

Hamiltonian (1) is, of course, unchanged by the

interchange r1 $ r2.

Following previous work [5,6] we expand the

collisional wave function, W, for the system in a

particular state of total electronic spin Se accord-
ing to

W ¼
X
a;b

GabðR1Þ/aðt1Þwbðr2Þ
h

þ ð � 1ÞSeGabðR2Þ/aðt2Þwbðr1Þ
i
; ð4Þ

where the sum is over Ps states /a and H states wb.

These states may be either eigenstates or pseudo-

states and have the property that

h/aðtÞjHPsðtÞj/a0 ðtÞi ¼ Eadaa0 ; h/aðtÞj/a0 ðtÞi ¼ daa0 ;

hwbðrÞjHAðrÞjwb0 ðrÞi ¼ ebdbb0 ; hwbðrÞjwb0 ðrÞi ¼ dbb0 :

ð5Þ
Substituting (4) into the Schr€odinger equation

with the Hamiltonian (1) and projecting with

/aðt1Þwbðr2Þ leads to coupled equations for the

functions Gab of the form

ðr2
R1
þ p2abÞGabðR1Þ

¼ 4
X
a0b0

Vab;a0b0 ðR1ÞGa0b0 ðR1Þ

þ 4ð�1ÞSe
X
a0b0

Z
Lab;a0b0 ðR1;R2ÞGa0b0 ðR2ÞdR2:

ð6Þ

In (6), pab is the momentum of the Ps in the ab

channel, Vab;a0b0 gives the direct Coulombic inter-

action between the Ps and the H atom and Lab;a0b0

accounts for electron exchange between Ps and H.

The coupled equations (6) are converted to partial
wave form and solved using the R-matrix tech-

nique [7].

The approximation (4) has been employed in [6]

using 9 Ps states and 9 H states, called the 9Ps9H

approximation, and, for S-wave scattering only,

using 14 Ps and 14 H states (14Ps14H approxi-

mation). The 9 states are shown in Table 1, a more

detailed specification is given in [6]. They consist of



Table 2

PsH bound state

Approximation Binding energy (eV)

9Ps1H 0.543

9Ps9H 0.963

14Ps14H 0.994

9Ps9H+H� 1.02

14Ps14H+H� 1.03

Accurate result of [3] 1.0666

Table 1

The 9 Ps and 9 H states of the 9Ps9H approximation of [6]

State Energy (eV)

Ps H

1s 0.0 0.0

2s, 2p 5.1 10.2

3s, 3p, 3d 6.8 13.6

4d 13.2 26.5

4p 13.9 27.9

4s 17.1 34.2

The energies are as defined in (5).
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1s, 2s, 2p eigenstates and 3s, 3p, 3d, 4s, 4p, 4d

pseudostates (pseudostates are denoted by a

‘‘bar’’). The pseudostates give a representation of

the Ps/H continua as well as giving an average

approximation to the bound eigenstates with nP 3

(the n ¼ 3 pseudostates of Table 1 have approxi-

mately a 2/3 overlap with the nP 3 eigenstate
spectrum [8]). While the 9Ps9H and 14Ps14H

approximations should be satisfactory for

describing electronic spin triplet scattering, it has

been shown in [9], but only within the context of

the frozen target approximation, that the eþ–H�

channel exerts a profound effect upon singlet

scattering. Here we try to improve upon the ear-

lier calculations of [6] for singlet scattering by
explicitly adding on the eþ–H� channel, our

approximation (4) for singlet scattering is then

extended to

W ¼
X
a;b

GabðR1Þ/aðt1Þwbðr2Þ
h

þ ð � 1ÞSeGabðR2Þ/aðt2Þwbðr1Þ
i

þ F ðrpÞw�ðr2; r2Þ; ð7Þ

where w� is the H� wave function. We refer to this

as the 9Ps9H+H� or 14Ps14H+H� approxima-

tion, etc., depending upon the number of Ps and H

states used in the sum. For w� we have used

a highly accurate 100 term Kinoshita–Koga type

wave function [10,11] giving an H� binding energy

of 0.0277510163 au. It should be noted that
the calculation of [9] was restricted not only by

the frozen target approximation but also by the

use of an approximate H� wave function, these

restrictions have now been lifted in the present

work.
The first test of the approximation (7) is how

well it reproduces the PsH binding energy. Table 2

shows the present and earlier calculations com-
pared with the very accurate result of [3]. Here we

see that the frozen target approximation 9Ps1H

gives only half of the binding energy. The allow-

ance for virtual target excitation in the 9Ps9H and

14Ps14H approximations raises this to 90–93%.

Inclusion of the eþ–H� channel brings further

improvement, as we would expect, but our best

result, 14Ps14H+H�, still remains 3.4% below the
accurate value of [3]. We estimate that our

numerical methods are good enough to yield an

answer correct to better than 1%. The deviation of

3.4% from the accurate result of [3] is therefore

significant. What is missing? The approximation

(7) should represent satisfactorily correlation in

which one electron is associated primarily with the

proton and the other electron with the positron
(the sum in (7)) and in which the two electrons are

strongly correlated in association with the proton

while the positron moves more freely around this

complex (the w� term). What is absent is correla-

tion in which the two electrons and the positron

are associated in a strongly correlated unit moving

in the field of the proton, in short, a Ps� structure

orbiting the proton. We speculate that the addition
of the Ps� +p channel to (7) might lead to signif-

icant improvement.

Recent accurate low energy S-wave calculations

by Van Reeth and Humberston [12] using the

Kohn variational principle present a further

opportunity to test our approximations. In Table 3

we make a comparison of our best calculations for

the S-wave singlet phase shifts and scattering
length with these accurate numbers. We see that

inclusion of the eþ +H� channel roughly halves

the difference between the 14Ps14H approximation



Table 3

S-wave phase shifts (in rad) and scattering length for electronic

spin singlet Ps(1s)–H(1s) scattering

Incident

momentum

(au)

14Ps14H 14Ps14H+H� Van Reeth

and Humber-

ston [12]

0.1 )0.434 )0.428 )0.425
0.2 )0.834 )0.825 )0.817
0.3 )1.178 )1.167 )1.158
0.4 )1.467 )1.453 )1.443
0.5 )1.704 )1.685 )1.674
0.6 )1.890 )1.867 )1.852
0.7 )2.018 )1.992 )1.959

Scattering

length (au)

4.41 4.327 4.311
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and the variational results for the phase shifts.
With the exception of the last point at 0.7 au, our

best phase shifts, in the 14Ps14H+H� approxi-

mation, now differ from the variational numbers

by about 1%. The agreement between the

14Ps14H+H� scattering length and the varia-

tional answer is particularly good.

The largest calculation that we have made for

higher partial waves is in the 9Ps9H+H�

approximation. In Table 4 we list the phase shifts

in this approximation for S-, P-, D-wave scatter-

ing. Comparing Tables 3 and 4, we see that the

S-wave phase shifts in the 9Ps9H+H� approxi-

mation are only marginally better than those in the

14Ps14H approximation which does not include

the eþ–H� channel.

Fig. 2 shows S, P and D electronic spin singlet
elastic partial wave cross sections in the energy

range 0–3.5 eV. The inadequacy of the frozen
Table 4

Electronic spin singlet S-, P- and D-wave phase shifts (in rad) in

the 9Ps9H+H� approximation

Incident

momentum (au)

S P D

0.1 )0.432 0.221()1) 0.202()3)
0.2 )0.833 0.183 0.349()2)
0.3 )1.179 0.580 0.173()1)
0.4 )1.466 0.956 0.522()1)
0.5 )1.699 1.106 0.116

0.6 )1.884 1.134 0.208

0.7 )2.012 1.133 0.324

Powers of 10 are denoted in parentheses.
target approximation, 9Ps1H, in this energy range

is clear. The large zero energy 9Ps1H S-wave cross

section is the result of the small PsH binding en-

ergy obtained in this approximation, see Table 2.
Consequently, the PsH bound state pole in the

scattering amplitude is much closer to zero impact

energy than it should be, see Fig. 1, with the result

that the cross section rises to too high a value at

zero energy. Fig. 2 also illustrates the change in the

9Ps9H cross sections on including the eþ–H�

channel.

Fig. 3 shows the same cross sections in the en-
ergy range 3.5–6.5 eV. Here we see pronounced

resonance structure associated with unstable states

of the positron trapped in the field of the H� ion

[9,13]. The 9Ps9H approximation only gives the

first of these resonances, and at too high an

energy. To see the profound impact of the full

resonance structure one needs the 9Ps9H+H�

approximation, i.e. one needs to include the
eþ +H� channel explicitly in the approximation.

We have fitted the positions and widths of the

first few resonances, these are given in Table 5

where comparison is made with the complex

coordinate rotation results of Yan and Ho [3,14–

16]. We see that the first member of each partial

wave series in the 9Ps9H+H� approximation lies

higher in position than the complex coordinate
prediction. By contrast, the second member lies

lower. Generally speaking, the agreement on

positions and widths between the two theoretical

results leaves something to be desired.

By combining the electronic spin triplet results

in the 9Ps9H approximation from [6] with the

present electronic spin singlet results in the

9Ps9H+H� approximation we have calculated
the Ps(1s) +H(1s) total cross section in the energy

range 0–6.7 eV, Fig. 4. This cross section shows the

spectacular effect of the singlet resonance struc-

tures. It should be noted that the cross section of

Fig. 4 assumes that the target H atom is spin

unpolarized and that no spin analysis is made of

the final states [6,9]; the cross section is indepen-

dent of whether the incident Ps(1s) is ortho or
para and, if ortho, of its spin polarization. Partial

waves with total angular momentum J from 0 to 4

have been used in calculating the cross section of

Fig. 4.



Table 5

Positions and widths (in parentheses) for electronic spin singlet

S-, P-, D- and F-wave resonances (in eV)

Resonance 9Ps9H+H�

approximation

Yan and Ho

[3,14–16]

S(1) 4.149 4.0058± 0.0005

(0.103) (0.0952± 0.0011)

S(2) 4.877 4.9479± 0.0014

(0.0164) (0.0585± 0.0027)

S(3) 5.377 5.3757± 0.0054

(0.0091) (0.0435± 0.011)

P(1) 4.475 4.2850± 0.0014

(0.0827) (0.0435± 0.0027)

P(2) 4.905 5.0540± 0.0027

(0.0043) (0.0585± 0.0054)

D(1) 4.899 4.710± 0.0027

(0.0872) (0.0925± 0.0054)

D(2) 5.161

(0.0648)

D(3) 5.496

(0.0328)

F(1) 5.200 5.1661± 0.0014

(0.0095) (0.0174± 0.0027)

F(2) 5.494

(0.0262)

F(3) 5.661

(0.0294)
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Fig. 4. Total cross section for Ps(1s)–H(1s) scattering.
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2.3. Conclusions

It is probably fair to say that we now have a
pretty good overall idea of Ps(1s)–H(1s) scattering

in the energy range up to 6.7 eV. However, within

the context of the coupled pseudostate approach

some details remain to be cleared up – the PsH

binding energy, the exact details of the resonances,

better convergence towards the Kohn variational

phase shifts. We speculate that these may be re-

solved by explicit inclusion of the Ps� +p channel
and, for the resonances, by taking account of the

near degeneracy of the eþ–H� and Ps (n ¼ 3)

channels which all of the approximations used

here fail to do (the Ps (n ¼ 3) states used here are

pseudostates rather than eigenstates, see Table 1).

In addition it would be interesting to see what

resonance structure might be associated with the

Ps� +p channel. These are matters for future
investigation.
3. Positronium scattering by helium (Ps(1s)–

He(11S))

In a large frozen target calculation Blackwood

et al. [17] have highlighted significant discrepancies
between theory and theory, experiment and

experiment and theory and experiment for very

low energy o-Ps(1s)–He(11S) scattering. The work

on atomic hydrogen [6] (see Figs. 2 and 5) illus-

trates nicely the deficiencies of the frozen target

approximation at low energies and the need to

allow for virtual target excitation. Here we report

some new coupled pseudostate calculations for He
which relax the frozen target assumption. The

generalization of (4) to the case of Ps(1s)–He(11S)

scattering is

W ¼ A
X
SA¼0;1

X
a;b

X
m

Cð1=2; SA; 1=2;m;�m; 0Þ

� GSA
ab ðR1Þ/aðt1ÞwSA

b ðr2; r3Þfmðs1ÞvSA�mðs2; s3Þ;
ð8Þ

where the electron space and spin coordinates are

now (ri; si) (i ¼ 1, 2, 3), /a is the Ps state, fmðsÞ the
spin function for the Ps electron with Z-compo-
nent m, wSA

b is the spatial part of a He state with
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7Ps1He approximation for P-wave. For H: solid curve, 9Ps9H

approximation; dashed curve, 9Ps1H approximation.
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total electronic spin SA (¼ 0, 1), and vSAm is the

corresponding spin function. Since the total elec-

tronic spin of the Ps(1s)–He(11S) system is 1/2, the

Ps and He states need to be coupled together to

give total spin 1/2, that is the purpose of the Cle-

bsch–Gordan Coefficient C in (8). Finally, A is the

electron antisymmetrization operator.

We make two approximations on (8). The first
is to neglect the He triplet states SA ¼ 1. The sec-

ond is to approximate the He singlet states in the

form

wSA¼0
b ðr2; r3Þ ¼ Nbðwbðr2Þ�wðr3Þ þ wbðr3Þ�wðr2ÞÞ; ð9Þ

where �wðrÞ is taken to be the Heþ(1s) orbitalffiffiffiffiffiffiffiffi
8=p

p
e�2r and Nb is a normalisation constant. The

orbitals wbðrÞ are at our disposal to choose as we

see appropriate. The form (9) is the same as that

used in the eþ–He scattering calculations of [18].

Using (9) we have constructed 9 He states analo-

gous to the 9H states of Table 1 and labelled as
11S, 21S, 21P, 31S, 31P, 31D, 41S, 41P, 41D. As in

Table 1, the n ¼ 3 states are constructed so as to sit

at the ionization threshold of He(11S) at 24.58 eV.
The 11S, 21S and 21P states are, of course, now just

approximations to the He(11S), He(21S) and

He(21P) eigenstates.
Combining the 9 He states described above with

the 9 Ps states from Table 1 (a 9Ps9He approxi-

mation analogous to 9Ps9H) we have calculated an

S-wave Ps(1s)–He(11S) elastic scattering cross

section in the energy range 0–6.5 eV, Fig. 5. Be-

cause we encountered some bad numerical

behaviour with the higher partial waves, we have

evaluated the P-wave cross section in a reduced
approximation, 7Ps7He, in which the Ps and He

d-states have been dropped. The P-wave cross

section is shown in Fig. 5. Also included in Fig. 5

are the corresponding frozen target cross sections

calculated in the 9Ps1He (S-wave) and 7Ps1He (P-

wave) approximations. It has been remarked that

Ps(1s)–He(11S) scattering should be similar to

Ps(1s)–H(1s) scattering in the electronic spin triplet
state since in both cases antisymmetry keeps the

positronium electron and the atomic electron(s)

apart, consequently we have added the triplet

9Ps9H and 9Ps1H S- and P-wave cross sections to

Fig. 5 for comparison. We see a similar pattern for

both H and He which gives us some confidence in

our calculations. In each case allowance for virtual

target excitation produces a noticeable reduction
on the frozen target results. For He this effect

seems to be smaller than for H, presumably on

account of the higher excitation energies for a He

target.

Since the original calculations of Blackwood

et al. [17] three other relevant pieces of work have

appeared in the literature. In [19] Basu et al. have

included both Ps and He excitations in a Ps(1s,
2p) +He(11S, 21S, 21P) coupled eigenstate calcu-

lation. They obtain a zero energy elastic cross

section of 7.40pa20. This contrasts with our zero

energy cross section of 9.9pa20 in the much larger

9Ps9He coupled pseudostate calculation. In [20]

Mitroy and Ivanov have used a model potential

approximation which yields values for the zero

energy cross section ranging from 10.6pa20 to
8.8pa20 depending upon the choice of parameters in

the potential. Interestingly, their average cross

section of 9.83pa20 agrees well with our present

results. Finally, Chiesa et al. [21] have employed

the diffusion Monte Carlo method to calculate
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S-wave phase shifts in the momentum range 0–0.4

au. They get a zero energy cross section of 7.89pa20.
In Fig. 6 we make a comparison with the low

energy experimental data. As discussed in [22],
these low energy data, derived from annihilation

measurements, correspond to the momentum

transfer cross section.

rmom ¼
Z

ð1� cos hÞ drel

dX
dX; ð10Þ

where drel=dX is the elastic differential cross sec-

tion and h is the scattering angle. At zero impact

energy where the scattering is all S-wave rmom is
identical with the S-wave total cross section.

However, as pointed out in [22], rmom can diverge

rapidly from the total cross section with increasing

energy. In Fig. 6 the theoretical results correspond

to the momentum transfer cross section. The only

exception is the cross section of Chiesa et al. [21]

where we have only S-wave data and so the cross

section shown is just the S-wave total cross section.
The cross section of Basu et al. has been con-
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Fig. 6. Momentum transfer cross sections for Ps(1s) +He(11S)

scattering. Theory: solid curve, present results with 9Ps9He

approximation for S-wave and 7Ps7He approximation for

P-wave; dash–dot curve, frozen target results with 9Ps1He

approximation for S-wave and 7Ps1He approximation for

P-wave; long-dashed curve, S-wave total cross section of Chiesa

et al. [21]; short-dashed curve, cross section of Basu et al. [19].

Experiment: square, Nagashima et al. [23]; up triangle, Canter

et al. [24]; down triangle, Ryts€ol€a et al. [25]; circle, Skalsey et al.

[26].
structed out of the phase shift data given in their

paper [19]. Fig. 6 shows that our frozen target

approximation agrees well with the experimental
point of Nagashima et al. [23]. Our present results

are also in agreement with this measurement and

close to, but outside, the error bars of the cross

sections of Canter et al. [24] and Ryts€ol€a et al. [25].

Most striking, however, is the agreement between

these two measurements and the S-wave total cross

section of the sophisticated Monte Carlo calcula-

tion of Chiesa et al. which, as indicated above,
coincides with the momentum transfer cross sec-

tion at zero energy. Another striking point is the

lack of agreement between any of the theories

and the cross section of Skalsey et al. [26] centred

on 0.725 eV. At this energy our calculations and

that of Basu et al. show that rmom is about 20%

smaller than the total cross section, indicating the

importance of P-wave scattering. To get agreement
with the measurement of Skalsey et al. would re-

quire a more spectacular growth in P-wave scat-

tering.

There are a number of ways in which the pres-

ent calculations can be improved. Firstly, there is a

need to eliminate any doubts concerning the use of

an approximation to the He ground state wave

function, see (9). Secondly, there is the question of
the importance of He triplet states in the expan-

sion (8). Finally, we have remarked upon the

similarity of Ps(1s)–He(11S) scattering and Ps(1s)–

H(1s) triplet scattering, see Fig. 5, but there is one

mechanism in Ps(1s)–He(11S) scattering which is

not available to the Ps(1s)–H(1s) triplet case, that

mechanism is Ps� formation (Psð1sÞ þHeð11SÞ )
Ps� þHeþð1sÞ) [27]. This might be a more
important mechanism than has been realised and

may, perhaps, resolve the discrepancy between

theory and the experiment of Skalsey et al. [26]. In

addition, this mechanism would be a possible

source of resonances in Ps(1s)–He(11S) scattering

although the resonance structure may be small in

magnitude.
4. Positronium scattering by lithium (Ps(1s)–Li(2s))

Alkali metals behave in many respects like a

one-electron system in which the single valence
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electron revolves outside a frozen core. A priori,

one might therefore think that Ps–alkali scattering

would be similar to Ps–H scattering. That this is

not so is suggested by the event line for Ps(1s)–
Li(2s) scattering shown in Fig. 7. Compared with

Fig. 1 for Ps(1s)–H(1s), everything is ‘‘reversed’’.

Yes, there is a bound state of Ps and Li [28]

analogous to PsH, but with increasing energy it is

atom excitation and ionization that precede Ps

excitation and ionization, the opposite of Fig. 1.

We also see that the order of Ps� and Li� forma-

tion is reversed compared to that of Ps� and
H� formation shown in Fig. 1. Ps� formation

presumably therefore plays a much more promi-

nent role for the alkali systems than for H, and, in

particular, with regard to resonance formation.

An interesting feature which Fig. 1 does not

possess is a channel corresponding to the forma-

tion of a bound state of the positron with the

atom, in Fig. 7 the e� +Lieþ channel. The binding
energy of positronic lithium, as Lieþ is called, is

very small and the threshold for this channel (at

5.326 eV) is almost degenerate with that for ioni-

zation of the Li atom (at 5.392 eV), lying only

0.066 eV below [29]. Again, a priori, one would

expect Rydberg resonance structure associated

with this channel, but of what amplitude is hard to

predict. Unlike the Ps� +Liþ and eþ +Li� chan-
nels which also promise Rydberg resonance

structure but only in electronic spin singlet scat-

tering, the positronic lithium channel couples to

both electronic spin singlet and electronic spin

triplet scattering.

We are unable at this point to execute an

approximation which does justice to Fig. 7. Ra-

ther, we have elected for a simple coupled eigen-
E

Ps Li

Li(2p)
(1.85)

(5.078)

(5.063)

Li(7p)
(5.109)

nPs(  =2)
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(–0.336) Ps  + Li– +
e  + Li+ –
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Li(ion)
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+–

Fig. 7. Event line for Ps(1s)–Li(2s) scattering in the electronic

spin singlet state. Events are shown as a function of the impact

energy E (in eV). The diagram is purely schematic and not to

scale. For scattering in the electronic spin triplet state, the PsLi

bound state and the Ps� +Liþ and eþ +Li� formation channels

should be omitted.
state approximation to get a rough feeling of how

things might go. Earlier coupled eigenstate calcu-

lations have been published by Ray [30], Biswas

[31] and Chakraborty et al. [32], but in all cases
either the Ps or the Li atom has been frozen in its

ground state. Here we publish the first calculations

which allow for excitation of both the Ps and the

Li atom.

Our approximation is Ps(1s, 2s, 2p) +Li(2s, 2p).

We have constructed the Li(2s) and Li(2p) valence

orbitals using the model potential of Stein [33].

The collision formulation is the same as that given
in Eqs. (1)–(6) of Section 2.2 for Ps–H, except

that we also include potentials VpðrpÞ and �VeðriÞ
to allow for the interaction of the positron and

the electrons with the frozen 1s2 core of the Li

atom [34]. Our approximation contains a repre-

sentation of the van der Waals interaction,

�C6=R6, with C6 ¼ 288 au. In a much larger cal-

culation of C6 using pseudostates for the Ps but
keeping just the Li(2s) and Li(2p) states, we get

C6 ¼ 451 au. The present coupled eigenstate cal-

culation therefore includes about 60% of the full

van der Waals effect. For Ps(1s)–H(1s), C6 ¼ 34:8
au [6]. The van der Waals force is therefore an

order of magnitude stronger for Ps interacting

with Li. Our approximation gives a PsLi bound

state with binding energy 0.224 eV, somewhat less
than 0.336 eV, the most accurate calculated value

[28].

Fig. 8 shows our calculated total cross section

and its components. We have assumed that the Li

atom is spin unpolarized and that final state spins

are not resolved, the cross section is then 1/4 times

singlet plus 3/4 times triplet [6]. Our results apply

either for o-Ps or p-Ps scattering and are inde-
pendent of any spin polarization of the o-Ps [6].

From Fig. 8 we see that at very low energies we

can expect an elastic cross section of the order of

100pa20, the spin singlet component of this cross

section is much larger as a result of the small

binding energy of the PsLi pole in the singlet

scattering amplitude. To get the zero energy cross

section right is going to require an approximation
with an accurate representation of the PsLi bind-

ing. Away from threshold the elastic cross section

falls rapidly but then, with the opening of the

Li(2p) channel at 1.85 eV (Fig. 7), it experiences a
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sudden rise resulting in a pronounced structure.

The Psð1sÞ þ Lið2sÞ ) Psð1sÞ þ Lið2pÞ cross sec-

tion increases rapidly from threshold, reaches a

maximum of 17pa20 at 2.1 eV, then quickly turns

over and, comparatively speaking, is negligible
beyond 10 eV. Beyond 8 eV the Psð1sÞ þ Lið2sÞ )
Ps ðn ¼ 2Þ þ Lið2sÞ cross section is dominant.

The opening of this channel leads to structure in

the other open channels near 5.1 eV. By 50 eV the

double excitation cross section Psð1sÞ þ Lið2sÞ )
Ps ðn ¼ 2Þ þ Lið2pÞ has risen to meet the Ps ðn ¼
2Þ þ Lið2sÞ curve. The importance of double exci-

tation at high energies is not surprising [35]. Our
model predicts that Ps (n ¼ 2) excitation, irre-

spective of the final state of the Li atom, will be

dominant at high energies. However, we should

not accept that, in reality, this will be so. We

suspect that, in a more realistic treatment allowing

for ionization of the Ps, it will, as in other cases

[5,6,17,22], be Ps ionization which is dominant at

high energies with Ps (n ¼ 2) discrete excitation
being much less significant. The problem is that, in

the present model, there is nowhere for Ps excita-

tion to go but into the Ps (n ¼ 2) channels. Ps

excitation which otherwise would flow into ioni-

zation is possibly being deflected into the Ps

(n ¼ 2) channels. Clearly a more detailed calcula-

tion is required.
5. Conclusions

We have presented new coupled state calcula-
tions for Ps(1s) scattering by H(1s) in the elec-

tronic spin singlet state, by He(11S) at very low

energies, and by Li(2s). One interesting theme that

emerges from all three cases is the question of the

importance of Ps� formation, whether real or

virtual. For Ps(1s)–H(1s) scattering we speculate

that the inclusion of virtual Ps� formation may be

necessary to tune the calculations into agreement
with the accurate variational results of Van Reeth

and Humberston [12] and with accurate bound

state calculations of PsH binding [3]. For Ps(1s)–

He(11S) scattering, virtual Ps� formation in the

reaction Psð1sÞ þHeð11SÞ ) Ps� þHeþð1sÞ pro-

vides us with a mechanism for breaking away from

the pattern of Ps(1s)–H(1s) triplet scattering which

present coupled state calculations on He seem to
follow, and perhaps a route to agreement with the

seemingly anomalous experimental result of Skal-

sey et al. [26], Fig. 6. For Ps(1s) scattering by

Li(2s), or indeed any alkali, we have, because of

the energetics, the very interesting possibility that

Ps� formation, both real and virtual, may play a

much more profound role than had ever been

envisaged. Clearly the study of Ps� formation is an
important direction for future research.

For Ps(1s)–H(1s) scattering another interesting

feature which so far has not been properly treated,

is the near degeneracy of the Ps (n ¼ 3) excitation

channels and the H� formation channel, this must

surely have some significant effect on the reso-

nance structure associated with the H� threshold.

For Ps(1s)–He(11S) scattering there is a need to
know about sensitivity to the use of approximate

He(11S) target wave functions, as well as the role

of He triplet states in the collisional wave function

expansion (8). For Ps(1s)–alkali scattering most of

the really interesting physics would seem to lie at

impact energies below 10 eV, which is a challenge

to experimentalists. The challenge to theory in this

case is to represent the Ps� and alkali negative ion
channels, and to a lesser extent the positronic

lithium channel, as well as the Ps and alkali atom

channels. Without an adequate description of the

ion channels it is unlikely that an accurate cal-

culation of resonances can be made [31]. Also,
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because of the small binding energies of Ps–alkali

bound states [28] and their role as poles in the

scattering amplitude, near threshold electronic

spin singlet cross sections for Ps(1s)–alkali scat-
tering will be very large and very sensitive to the

pole position. Consequently, any realistic treat-

ment of Ps(1s)–alkali scattering at low energies will

need to incorporate a reasonably accurate repre-

sentation of the Ps–alkali bound state.
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