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a b s t r a c t

The close spacing of electron energy levels at the Fermi surface of a metal allows for a ready exchange of
energy between ionic and electronic subsystems. In molecular dynamics (MD) simulations of fast moving
ions, the heat transfer to electrons is sometimes modelled as a frictional force that slows the ions. Quan-
tum mechanical simulations lay bare these processes and reveal how best to characterise electronic fric-
tion and heating for direct incorporation into MD. In this paper, we discuss the limitations of the
description of electronic damping as a viscous force, the validity of the two-temperature model, and
how the non-adiabatic movement of electrons between bonds leads to directional stopping.

� 2010 Elsevier B.V. All rights reserved.
1. Introduction pling strength, the electronic system is heated more rapidly than
Metals differ from insulators in that they have a finite density of
electronic energy states at the Fermi level. The existence of large
numbers of possible electronic excitations at low energy allows
for a constant interchange of small amounts of energy between io-
nic and electronic degrees of freedom. In equilibrium, when there
is no net flow of energy between ions and electrons, the fluctua-
tions in the ionic energy resulting from this interchange are small.
Furthermore, since the thermal energy scale kT is normally much
smaller than the Fermi energy EF , the electronic subsystem re-
mains close to its ground state and the metal may be successfully
modelled using the Born-Oppenheimer separation. When the ionic
and electronic sub-systems are far from equilibrium, however, the
exchange of energy between them can be important. In radiation
damage, sputtering, or ion channelling, the high-energy ions lose
a significant fraction of their energy to the colder electron gas
[1–6], a process known as electronic stopping. In a current-carry-
ing wire, by contrast, the excited electrons lose energy to the ions
by generating phonons [7,8].

Recent molecular dynamics (MD) simulations of radiation dam-
age cascades [9,10] have shown that electronic stopping can pro-
mote or inhibit the rate of defect production, depending on the
strength of the coupling between ions and electrons. As the ion-
electron coupling strength is increased from zero, the rate at which
the ions lose energy to electrons rises, enhancing the rate of cool-
ing of the cascade and so quenching in defects. At high enough cou-
All rights reserved.
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the electrons can carry the heat away. The electrons then act as a
thermal reservoir, allowing defects to anneal. Sputtering simula-
tions [4,5] have shown that electronic heating can lead to a hot
spot forming at the surface centred on the impact, strongly affect-
ing secondary ion formation.

In the standard picture of electronic stopping, an ion moves in a
homogeneous electron gas [11,12]. The electrons take a finite time
to respond to the movement of the ion and the electronic screening
cloud lags the ionic motion, producing Coulomb forces that pull the
ion back and slow it down. The energy transfer from ions to elec-
trons is described to first order by the imaginary part of the inverse
of the frequency-dependent dielectric function, which is known as
the electron loss function. In 1954, Lindhard showed how, in the
low ionic velocity limit of this model, the electrons provide a vis-
cous drag on a moving ion, proportional to and anti-parallel to
the velocity.

But this physical picture of an electronic ether is at odds with
the standard MD picture, where forces depend on the instanta-
neous positions of all the atoms. Surely, in reality, the lagged elec-
tron currents induced by the ionic motion strengthen some bonds
and weaken others, producing directional forces that may not al-
ways oppose the velocity. This paper discusses results obtained
using a more chemically realistic approach to electronic stopping
and explains how they suggest better methods for including elec-
tronic effects in MD simulations.

2. A quantum mechanical description of ion dynamics

A complete theoretical treatment of the coupling between ions
and electrons requires a quantum mechanical description of both
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electrons and phonons. Computations based on such theories are
currently too expensive to allow direct simulation of the dynamics
of more than a handful of atoms. Fortunately, the energy transfer
from hot ions to cold electrons can be accurately captured using
an approximate scheme known as Ehrenfest dynamics [13]. In this
approach, the ions are treated as classical point-like particles, as in
MD, but experience forces that depend on the instantaneous elec-
tronic state, obtained by solving the time-dependent Schrödinger
equation [14]. (This is in contrast to Car-Parrinello dynamics
[15], where the Born-Oppenheimer separation of time scales is
used to justify the assumption that the electrons remain in their
ground state at all times.) The difference between the evolved
Ehrenfest electronic state and the electronic ground state accumu-
lates over time. The energy of the electrons therefore rises steadily
while that of the ions reduces.

Quantitative simulations of electronic stopping based on time-
dependent density functional theory (TDDFT) are feasible in some
restricted circumstances [16–18], but it is not yet possible to mod-
el the dynamics of a realistic cascade. If the cascade energy is high,
the damaged region grows rapidly and a large simulation is re-
quired. If the cascade energy is low, the individual energy transfers
from ions to electrons are very small – of order meV for a keV ion –
and the spectrum of available electronic excitations must be very
dense. This again requires the simulation to be large. In fact, a sys-
tem containing thousands of atoms is required to model even a
1 keV cascade [19]. To make simulations on this scale possible,
we have used a very simple s-band tight-binding Hamiltonian,
with parameters fitted to reproduce the mechanical properties of
copper [20]. The simplicity of the model aids interpretation of
the results and makes it easier to identify the relevant physical
processes, but the electronic bandstructure of the model Hamilto-
nian differs substantially from that of real copper. This means that
the results obtained, although they provide a great deal of qualita-
tive understanding, are not quantitatively accurate.

Consider a system of N classical atoms, all assumed to be of
mass M for simplicity. The atomic positions are described by the
3N-dimensional vector ~R and their momenta by the 3N-dimen-
sional vector ~P. The electronic wavefunctions and occupations
can be compactly represented in terms of the single-particle den-
sity operator,

q̂ðtÞ ¼
X

i

fij/iðtÞih/iðtÞj; ð1Þ

where fi is the occupation of orbital /iðtÞ. The orbital occupations
are set at time t ¼ 0 and depend on the initial temperature, but re-
main constant throughout the Ehrenfest simulation. The wavefunc-
tions /iðtÞ evolve in the time-dependent potential of the moving
atoms according to the time-dependent Schrödinger equation. The
energy of the coupled system is written as

E ¼ j
~Pj2

2M
þ Uð~RÞ þ Trðq̂bHð~RÞÞ; ð2Þ

where Uð~RÞ is a repulsive energy acting between ions, bH is the tight-
binding Hamiltonian,1 and the trace gives the attractive ‘‘band’’
energy arising from electronic bonding [21]. The form of this expres-
sion is reminiscent of that used in second-moment empirical models
of inter-atomic forces such as the Finnis–Sinclair potential [22],
which can be regarded as providing a specific approximation to
the final term. The equations of motion of the Ehrenfest method,
1 A self-consistent mean-field treatment of electron–electron interactions within
the Hartree approximation can be added to the equations without significantly
affecting computational speed [14,19]. Hartree terms were included in most of our
simulations, but screening is very efficient in metals and they have little effect on the
non-adiabatic transfer of energy from ions to electrons. For the sake of clarity, we
have omitted them from this discussion.
d~R
dt
¼
~P
M
;

d~P
dt
¼ �r~RUð~RÞ � Trðq̂r~R

bHÞ;
dq̂
dt
¼ @q̂
@t
¼ 1

i�h
½bH; q̂�;

ð3Þ

conserve the Ehrenfest energy E as defined in Eq. (2) [14]. The last of
these three equations, the quantum Liouville equation, describes
how the density operator evolves if the wavefunctions from which
it is constructed obey the time-dependent Schrödinger equation.
We thus have a set of quantum mechanical electrons evolving
according to a Hamiltonian that depends on the positions of a set
of classical ions. The ions satisfy the laws of Newtonian dynamics,
under the influence of forces explicitly dependent on the time-
evolved electronic state.

3. Electronic friction in MD

The simplest way to incorporate electronic stopping into an MD
simulation is to treat the electrons as a viscous fluid imparting a
frictional force �b~Va, where Va is the velocity of atom a and b is
the drag coefficient. This approach can be justified using the Fer-
mi–Teller picture, Firsov’s model of binary collisions [23], or Lind-
hard and Scharff’s scattering formula [24]. Finnis et al. [25] derive a
form for b based on the expected rate of energy transfer between
ionic and electronic subsystems. Nordlund et al. [26] use a coeffi-
cient b taken from the SRIM code [27], but assume that electronic
drag only affects atoms with kinetic energy above a threshold, ta-
ken to be 10 eV. Caro and Victoria [28] extend the drag model by
noting that b for a given atom must be a function of the local elec-
tron density.

We have used the Ehrenfest dynamics method described above
to compare these approximations. Over a large number of repre-
sentative low-energy cascades (see Fig. 1), the energy passed from
ions to electrons for a given classical model is computed as an inte-
gral along the ionic trajectories:

DEmodelðtÞ ¼
Z t

0

X
a

bað~RðsÞÞj~VaðsÞj2ds: ð4Þ
Fig. 1. A snapshot 30 fs into a 1 keV cascade simulated with Ehrenfest dynamics.
Ions moved >0.1 Å from their original positions are coloured according to their non-
adiabatic energy DEa ¼ hajbHðq̂� q̂0Þjai, where jai is an orbital centred on atom a
(see text). Velocity is indicated by a blue arrow, and the non-adiabatic force
Dfa ¼ Trðra

bHðq̂� q̂0ÞÞ by a pink arrow. Statistics from dozens of simulations like
this reveal the extent to which forces due to electronic excitation can be
approximated by a viscous damping. (For interpretation of the references to colour
in this figure legend, the reader is referred to the web version of this article.)
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We can compare this to the Ehrenfest energy transfer

DEEhrðtÞ ¼ Tr bHð~RðtÞÞ q̂ðtÞ� �
� Tr bHð~RðtÞÞ q̂0ð~RðtÞÞ

� �
; ð5Þ

where q̂0ð~RÞ is a suitably chosen electronic density operator for a
system in which the ions are fixed at ~R. If the initial electronic tem-
perature is assumed to be zero, q̂0ð~RÞ is the ground-state density
operator for ionic configuration ~R; if the initial electronic tempera-
ture is finite, q̂0ð~RÞ is the equilibrium density operator in the canon-
ical ensemble with the ions frozen at ~R.

The two measures of energy transfer can be compared using
standard linear regression to evaluate the quality of fit of the
empirical model [29]. For a low electronic temperature, we found
that a single viscous damping coefficient does a surprisingly good
job of capturing the total energy transfer, as shown in Fig. 2(a).
The addition of an environmental dependence, as suggested by
Caro and Victoria [28], further improves this result (see Fig. 2(b)).
We found no support for a low energy cutoff on ions which are
damped. This is an important result because it implies that the to-
tal rate of energy transfer from ions to electrons does not decrease
as the cascade proceeds and the initial energy is spread over more
and more ions. The ions continue to lose energy to the electrons
until the ionic and electronic systems reach similar temperatures.
Consequently, a large amount of the initial kinetic energy can be
lost from phonon-like modes, heating the electrons in the periph-
ery and late stages of a cascade [30].

4. Electronic temperature

Ehrenfest simulations provide no mechanism for the electrons to
thermally equilibrate with each other, and so the electronic energy
distribution at the end of a simulation need not be thermal. In prac-
tice, however, the motion of the atoms produces a large number of
very small electronic transitions, and the evolution of the occupa-
tion function of the electronic energy levels resembles a one-
dimensional diffusion process in energy space. If the initial elec-
tronic temperature is zero, so that all states below the Fermi level
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Fig. 2. (a) Scatter plot comparing the non-adiabatic energy transfers calculated using th
using the quantum mechanical Ehrenfest method. Points are plotted every 2.5 fs for 24 c
damping coefficient; the middle plot uses a 10 eV kinetic energy cut-off; and the bottom p
Victoria. Each axis is scaled by the energy transfer at t = 200 fs. A straight line of gradient 1
(b) R2 measures of the goodness of fit for the homogeneous and density-dependent dam
Caro–Victoria model (dashed line to guide the eye), and triangles (solid line) are results
are occupied and all states above the Fermi level are empty, this dif-
fusive evolution leads to a distribution of occupations in the form of
an error function. As shown in Fig. 3(a), the resulting electronic
energy distribution closely resembles a thermal distribution, and
a pseudo-temperature T can readily be computed [31]. An accu-
rately thermal-looking electron distribution has also been seen to
be generated by sputtering [16] and femtosecond laser pulses [32].

Further backing for the idea of an electronic pseudo-tempera-
ture is shown in Fig. 3(b), which illustrates how the measured
energy transfer may be reproduced by substituting the pseudo-
temperature into the Sommerfeld heat capacity equation [31].
The pseudo-temperature T is therefore close to the temperature
of a reservoir that would exchange no energy on average with
the excited electron gas. This lends support to the idea of using a
two-temperature model in MD simulations where ionic and elec-
tronic subsystems are out of equilibrium.

The practical value of the concept of a pseudo-temperature sug-
gests separating the electronic density operator obtained from the
Ehrenfest time evolution into a ground-state contribution, a cor-
rection that describes the rise in temperature, and a remainder
[31]: q̂ðtÞ ¼ q̂0 þ ðq̂T � q̂0Þ þ ðq̂ðtÞ � q̂TÞ. The q̂0 and q̂T � q̂0 terms
depend on the ionic positions~R and temperature T but not on how
those positions and temperature were reached. The corresponding
contributions to the total energy are therefore conservative: if the
ions are moved around a closed path at constant T, returning to
their original positions, these contributions return to their original
values. The total force on an ion can therefore be viewed as the
sum of a conservative force appropriate for the zero temperature
electronic ground state, a conservative correction due to the in-
crease in electronic temperature, and a non-conservative correc-
tion due to the q̂ðtÞ � q̂T term.

It is important to note that the simplifying approximation of
treating small electronic excitations as thermal in metals is not ex-
pected to hold in insulators. Evidence for a threshold ion energy for
electronic excitation has been observed in TDDFT simulations of
wide band-gap LiF [17] and a similar effect may be present in
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Fig. 3. (a) The population of the instantaneous eigenstates 225 fs into a typical cascade simulation. A Fermi-Dirac distribution corresponding to the original electronic
temperature of 300 K is shown, along with a Fermi-Dirac function corresponding to a temperature of 6055 K as a best fit to the excited occupation distribution. (b) Plot of
DEEhr (Eq. (5)) against fitted temperature drawn from 44 cascade simulations with the primary knock-on atom given an energy of 2 keV. The solid line indicates the theoretical
curve for the electronic heat capacity based on the Sommerfeld expansion. At the earliest simulation times, only one or two atoms have moved and the electronic heating is
too local to be modelled using a single temperature for the whole cell. The fitted temperature is thus too low at early times. (Figures from ref [31].)

D.R. Mason et al. / Nuclear Instruments and Methods in Physics Research B 269 (2011) 1640–1645 1643
semi-metal graphene [18]. Such a threshold is incompatible with
electronic thermalisation due to large numbers of ions in motion.

5. Directional forces

As discussed above, electronic friction is generally incorporated
into MD simulations by the addition of a viscous damping force
�b~V . Physical intuition and our Ehrenfest simulations suggest that
this is sensible to some extent, but b is certainly not a scalar con-
stant. Firstly, as noted by Caro and Victoria [28], the strength of
the damping is a function of the local electronic density. Secondly,
at very high electronic temperatures, there is no preference for
phonon absorption rather than emission; the ions are buffeted by
electrons and undergo Brownian motion, but are not smoothly
damped. Thirdly, if all of the atoms move with uniform velocity,
so do the electrons and there is no damping; the value of b there-
fore depends on relative, rather than absolute, velocities. Fourthly,
where an impact between atoms is sufficiently energetic that it is
possible to promote electrons from low-lying energy levels,
band-structure effects are seen. Fifthly, the electronic excitation
generated by moving ions accumulates over time, so the damping
is history dependent. And lastly, the electronic excitations may
strengthen some bonds whilst weakening others, so the non-adia-
batic electronic force depends on the direction and nature of the
bonding. To summarise: b is really a tensor dependent on the posi-
tions and relative velocities of all ions and their history [33,34,19].

However, in large systems at least, it seems that the historical
accumulation of electronic excitations contributes a non-adiabatic
force with almost zero expectation value – the damping force is
thus effectively time local. Moreover, the instantaneous rate of
change of the difference between the Ehrenfest electronic density
and the ground-state density depends primarily on the gradient
of the Hamiltonian, which is spatially highly localised. We have re-
cently derived an expression for the non-adiabatic force that can be
expressed in terms of the second moments of the local density of
states. Since these quantities are already computed in any simula-
tion using a second-moment embedded atom empirical potential,
our expression is suitable for direct incorporation within MD sim-
ulations [35]. Expressed in terms of the attractive potential energy

of atom a,
ffiffiffiffiffiffi
Ua
p

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

bH2
ab

q
, as used in second-moment embedded

atom models, this new force may be written
~Fa ¼ 4�hx
X

b

ffiffiffiffiffiffiffiffiffiffiffiffi
�U

U2
aUb

s
r~Ra

Hab � ð~Vb � ~VaÞ
� �

r~Ra
Hab; ð6Þ

where �U is the average of the square of the attractive energy and x
an adjustable parameter to fit to experimental data. Electronic
damping forces in the form of a viscous drag opposing the velocity
appear when a single ion is moving down a channel in an otherwise
stationary lattice. Otherwise, these non-adiabatic forces can be in
any direction, depending on which bonds the excitation preferen-
tially modifies. As shown in Fig. 4, this model faithfully reproduces
in an MD simulation both the magnitude and direction of the non-
adiabatic forces during ion collisions in a metal in a collision cas-
cade. This is a much more stringent test than just capturing the
mean energy transfer rate.
6. Lattice heating and thermal diffusion

When the electrons have been heated, the next challenge is to
describe the movement of this energy. Some heat will diffuse
away, as the electronic thermal conductivity of metals is very high.
Some heat will be returned to the ions through stimulated and
spontaneous phonon emission. While both these processes can in
principle be described using quantum mechanical models, they
present significant challenges.

Perhaps surprisingly, it remains an open problem to establish
Fourier’s law of heat diffusion rigorously from quantum mechanics,
although it has been possible to show the emergence of thermal
diffusion in weakly coupled systems [36] and numerically [37].
MD simulations typically take a pragmatic approach, assuming
that the electronic heat flow is described by Fourier’s law and
applying it to the electronic temperature field in a two-tempera-
ture model with an appropriate diffusion coefficient [10,4]. In this
way, electronic heat can cross the boundaries of the MD simulation
cell.

Providing a good description of the heating of ions by hot elec-
trons is also a challenge, since excited electrons cannot spontane-
ously emit phonons unless the phonons are described quantum
mechanically. Both classical MD and Ehrenfest dynamics treat
the ionic motion classically, excluding this possibility. A fruitful
line of enquiry may be to consider the moment expansion of the
ion trajectories around their (Ehrenfest) expectation values [38].
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Fig. 4. (a) The upper panel shows the work done by the non-adiabatic force on the primary knock-on atom in a sample Ehrenfest simulation of a collision cascade. In this case,
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For the present, the state of the art is to invoke the fluctuation–dis-
sipation theorem and convert damped molecular dynamics into
Langevin dynamics [28,9,10]. This allows the correct average heat
flux from electrons to ions to be computed, and thermal energy
to be returned to the ions as white spectrum noise.

7. Discussion and conclusions

The advance of computing power continually makes possible
new types of simulations capable of yielding new insights into
old physics. Recently, it has become possible to explore energy ex-
change processes between metal ions and electrons in unprece-
dented detail with quantum mechanical simulations: low-energy
radiation damage cascades can be directly simulated using time-
dependent tight-binding methods, and the heat transfer from
fast-moving ions in a system of a few hundred atoms can be com-
puted with TDDFT. These simulations are not bound by simplifying
approximations of linearity or electronic homogeneity and so add a
new level of realism to models of electronic stopping.

Quantum mechanical simulations have shown that descriptions
of electronic stopping based on the idea of electronic friction pro-
vide a successful and convenient means of modelling the average
power transfer from the ionic subsystem. A simple homogeneous
viscous damping coefficient is adequate to model the energy trans-
fer rate, but the accuracy can be improved by making the damping
constant dependent on the electron density and by computing the
probabilities of specific transitions between bands [29]. The direc-
tional nature of the non-adiabatic forces due to electronic heating
has also been investigated in detail [19,35], and an approximate
form suitable for use in MD simulations proposed. This appears
to outperform previous models with little additional computa-
tional cost.

As energy is transferred from ions to electrons in countless tiny
excitations, the pattern of holes and excited electrons produced by
the moving ions appears close to thermal [31]. For this reason, it is
meaningful to discuss electronic excitation in metals in terms of a
local electronic temperature rise, even where there has been insuf-
ficient time to allow true thermalisation to take place. If the elec-
tronic heat capacity is low, it is possible to achieve electronic
temperatures of thousands of degrees Kelvin in the vicinity of a
keV ion impact. Such high electronic temperatures weaken the
bonds between atoms [31], lowering the barriers to defect creation.
Such an effect could be studied in MD by accounting for tempera-
ture dependence in the inter-atomic potentials [39], or in quantum
mechanical simulations such as those described above, but to the
best of our knowledge the impact of this effect on the stable defect
yield is unresolved at present.

Over the next few years we expect to see TDDFT codes confirm-
ing the predictions made with simple model Hamiltonians and
providing accurate estimates of stopping parameters for use in
MD simulations. Existing theories of electronic heat transport
and spontaneous phonon emission are more difficult to turn into
practical simulation methods, but rapid progress is being made.
Fully quantitative simulations of all aspects of the transport and
exchange of energy by and between ions and electrons in solids
may be only a few years away.
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