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Relativistic effects in the non-resonant two-photon K-shell ionization of neutral atoms are studied theo-
retically within the framework of second-order perturbation theory. The non-relativistic results are com-
pared with the relativistic calculations in the dipole and no-pair approximations as well as with the
complete relativistic approach. The calculations are performed in both velocity and length gauges. Our
results show a significant decrease of the total cross section for heavy atoms as compared to the non-
relativistic treatment, which is mainly due to the relativistic wavefunction contraction. The effects of
higher multipoles and negative continuum energy states counteract the relativistic contraction contribu-
tion, but are generally much weaker. While the effects beyond the dipole approximation are equally
important in both gauges, the inclusion of negative continuum energy states visibly contributes to the
total cross section only in the velocity gauge.

� 2017 Elsevier B.V. All rights reserved.
1. Introduction

The understanding of the limitations of non-relativistic theory
applied to light-matter interaction has been of interest for many
years. However, although theoretical studies were carried out,
the experimental possibilities to verify the theoretical predictions
were limited by the photon sources to low energies. This restric-
tion has been overcome by the development of free electron lasers
(FEL), which enable the production of intense photon beams with
ultraviolet and X-ray energies [1]. With such high-energy photon
sources, the ionization of inner-shell electrons has become possi-
ble, and hence deep understanding of the theoretical approaches
and their limitations is now required. Over the years, the one-
photon one-electron ionization has become a well-studied process
(see e.g. Refs. [2–4] and references therein). Furthermore, an exten-
sive study of the sequential two-photon double ionization[7–10] as
well as general multiphoton single ionization (e.g. [5,6] and refer-
ences therein) have also been carried out. However, not much
attention has been paid to (non-resonant) two-photon single-
ionization of any general neutral atom. Two-photon ionization
(TPI) of a single electron is one of the fundamental non-linear pro-
cesses in the light-matter interaction, which offers different selec-
tion rules and the possibility of ionization of heavier atoms in
comparison to the one-photon ionization.

The first TPI experiments utilizing the FEL facilities were carried
for the ionization of the 4d electron of neutral Xe atom [11], 1s
electrons of Ne8+ ion [12] and He atom [13]. In all of these exper-
iments, either an electron or an ion spectrometer was used to
detect the TPI process. However, in the K-shell ionization of neutral
atoms, these detection techniques may not be convenient due to
the small cross sections of TPI. More promising method to study
the TPI process is to detect the K-fluorescence photons, which
serve as a direct signature of the K-shell vacancy. This experimen-
tal approach has been utilized in the measurements of the K-shell
TPI of neutral Ge [14], Zr [15], and Cu [16] atoms.

Theoretically, TPI was studied in detail already 50 years ago,
when the first non-relativistic calculations of the TPI cross section
of atomic hydrogen were carried out and presented together with
the well-known Z�6 scaling law (Z is the nuclear charge number)
for any other hydrogenlike ion [17]. However, it was shown later
[18–20], that a rather essential deviation from the scaling law
occurs due to the relativistic effects. Recently, the retardation
effects in the above-threshold TPI of low-Z hydrogenlike ions were
also investigated in Refs. [21,22]. Although a significant difference
from the scaling law was found for hydrogenlike ions, no system-
atic study has been performed for the TPI of neutral atoms until
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now. In our recent work [23], we have shown that the screening
potential created by the electrons of the neutral atom leads to a
minimum in the non-resonant TPI cross section near the ionization
threshold, which is absent for hydrogenlike ions. Moreover, we
have investigated the deviation from the scaling law due to both
the screening as well as relativistic effects. It is the purpose of this
work to go a step further and explicitly separate the individual
contributions of relativistic effects and enumerate their corre-
sponding strengths.

In Section 2, we present a brief description of the applied theo-
retical formalism. Section 3 discusses the importance of relativistic
effects; relativistic wavefunction contraction, inclusion of higher
multipoles, and summation over the negative continuum energy
states. Finally, a summary is given in Section 4. Relativistic units
(�h ¼ c ¼ m ¼ 1) are used throughout the paper, unless stated
otherwise.

2. Theory

We shall not provide a detailed derivation of the total cross sec-
tion which is presented already in Ref. [23], but restrict only to the
formulae needed for general understanding and further discussion.
Let us consider the non-resonant two-photon one-electron ioniza-
tion process, where the two photons are assumed to be identical,
i.e. with equal wave and polarization vectors k and êk, respectively.
This corresponds to the most common experimental setup, where
the two photons originate from the same source. This process can
be expressed as

aiJiMij i þ 2cðk; êkÞ ! af JfMf

�� �þ pemej i; ð1Þ
where the atom is initially in the many-electron state aiJiMij i with
the total angular momentum Ji, its projection Mi, and where ai

denotes all further quantum numbers necessary for unique charac-
terization of the state. After simultaneous absorption of two identi-
cal photons cðk; êkÞwith energiesx ¼ k=jkj, the system consists of a
singly charged ion af JfMf

�� �
with quantum numbers af ; Jf ;Mf

characterizing the final state and a free electron in a state pemej i
with well-defined asymptotic momentum pe and a spin projection
me. Using the density matrix theory, we can describe the final state
of our system, in terms of the density matrices of the initial
system aiJiMi;kk1kk2 q̂j jaiJiM

0
i;kk

0
1kk

0
2

� �
and the transition

amplitude Mk1k2
JiMiJf Mf me

, which describes the electron-photon

interaction. As the atom and the incident radiation are
initially independent, the initial-state density matrix can be written
as aiJiMi; kk1kk2 q̂j jaiJiM

0
i; kk

0
1kk

0
2

� � ¼ kk1 q̂c
�� ��kk01� �

kk2 q̂c
�� ��kk02� �

aiJiMi q̂ij jaiJiM
0
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� �
. Under the assumption of an initially unpolarized

neutral atom, the corresponding density matrix simplifies to
aiJiMi q̂ij jaiJiM

0
i

� � ¼ 1=½Ji�dMiM
0
i
. The trace of the final density matrix

gives us the TPI cross section

rðxÞ ¼32p5a2
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where we presumed that the photoelectrons are detected in 4p
solid angle but their polarization is not observed, therefore we inte-
grated over the directions of the emitted electron Xp̂e and summed
over the spin projection me. As the final state of the ion is not
observed, summations over Jf and Mf have been carried out as well.

The photon helicity density matrices kk q̂c
�� ��kk0� �

allow us to conve-
niently parametrize the polarization of the photons by means of the
linear (P1; P2) and circular (P3) Stokes parameters. The second
equality in Eq. (2) expresses the total cross section in terms of so
called angle-reduced transition amplitude Tk1k2

majlmj
which comes from

further simplifications of the general many-electron transition
amplitude Mk1k2

JiMiJf Mf me
within independent-particle approximation.

The general amplitude can be represented in second-order pertur-
bation theory as

Mk1k2
JiMiJf Mf me

¼ af JfMf ;peme R̂ðk; êkÞ
�� ��amJmMm

� �
amJmMm R̂ðk; êkÞ

�� ��aiJiMi
� �

Eiþx�Em
;

ð3Þ

where R̂ðk; êkÞ is the one-particle transition operator, Ei and Em are
the energies of the initial and intermediate many-electron states.
We can simplify this expression by applying the independent-
particle approximation and the particle-hole formalism. In this
framework, we can describe the TPI process as follows. The simul-
taneous absorption of the two photons by the neutral atom ejects
an electron from an atomic subshell najalamaj i via virtual intermedi-
ate state nnjnlnmnj i into a continuum state pemej i, leaving a hole (or
vacancy) behind. The n; j; l, and m describe the one-electron princi-
ple, total angular momentum, orbital angular momentum, and pro-
jection of the total angular momentum quantum numbers,
respectively. According to the particle-hole formalism, the final ion-
ized state of the atom can be described by applying the hole cre-
ation operator to the initial state and coupling the corresponding
angular momenta. By carrying out this simplification, the many-
electron transition amplitude simplifies to an amplitude depending
only on the one-electron wavefunctions of the active electron. Fur-
thermore, we expand the continuum electron wavefunction into
partial waves and carry out the multipole expansion of the photon
wavefunction. Then, using the Wigner-Eckart theorem, we obtain
an expression depending on the reduced matrix elements, which
describe the electron-photon interaction independently of the mag-
netic quantum numbers ma;mn, and me. Finally, the second expres-
sion of the total cross Section (2) was obtained by carrying out the
integration over the 4p solid angle Xp̂e and the summation over
electron spin projection me. By performing all the above steps, the
angle-reduced transition amplitude from Eq. (2) can be written in
the independent-particle approximation as follows

Tk1k2
majlmj

¼
X

p1J1

X
p2 J2

X
nnjnlnmn

iJ1�p1þJ2�p2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
½J1; J2�
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s
ð�k1Þp1 ð�k2Þp2 ð4Þ

�ð�1Þj�mj j;mj; J1;�k1jjn;mn
� �

jn;mn; J2;�k2jja;mah i

�
eejl a � aðp1Þ

J1

��� ���nnjnln
D E

nnjnln a � aðp2Þ
J2

��� ���najala
D E

Enajala þx� Ennjnln
;

where ½J� ¼ 2J þ 1; ::::j::h i represents a Clebsch-Gordan coefficient, ee
is the electron energy, j; l, and mj are the angular momentum quan-
tum numbers of the continuum electron, J and M are the quantum
numbers of the photon multipoles and the index p describes the
electric (p ¼ 1) and magnetic (p ¼ 0) components of the photon
wavefunction. Note, that the angle-reduced transition amplitude
Tk1k2
majlmj

is completely independent of the many-electron state quan-

tum numbers. A more general expression of the transition ampli-
tude for the two-photon ionization can be found in Ref. [23].

The results presented in the following section are obtained by
solving the Dirac equation with Core-Hartree screening potential.
In Ref. [23], we have shown that there is no significant dependence
of the total cross section nor the relativistic effects on the choice of
screening potential. However, we also showed, that the account for
the other electrons can lead to a strong decrease of the dominant
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ionization channel. The electron correlations in radiative transi-
tions have also been studied e.g. in [25,24,26]. To sum over the infi-
nite number of intermediate states, finite basis set [27] constructed
from B-splines by applying the dual-kinetic-balance approach [28]
is employed. This approach has been previously successfully
applied, for example, in the calculations of two-photon decay rates
[29,30] and Rayleigh scattering [31] in heliumlike ions. The
continuum-state wavefunctions are obtained numerically by solv-
ing the Dirac equation with the help of the RADIAL package [32].

3. Results and discussion

Calculations of the TPI cross section can be further performed
within different approximations in order to investigate the impor-
tance of various effects. Each of the approximations can be under-
Fig. 1. Total non-resonant K-shell two-photon ionization cross section r as a function of
dipole rDA (long-dashed green), dipole + no-pair rDAþNPA (short-dashed blue), and non-r
column) and (b) length (right column) gauges for ionization of neutral germanium, xeno
caption, the reader is referred to the web version of this article.)
stood as a certain simplification of Eq. (4). First, in order to study
the effects of higher-order multipoles, we restrict the infinite sum-
mations over the multipoles pJ to p ¼ 1 (electric) and J ¼ 1 (dipole)
terms only. This approximation is known as the dipole approxima-
tion (DA), and we denote the corresponding cross section as rDA.
Moreover, the summation in Eq. (4) over the virtual intermediate
states nnjnlnmnj i runs over the complete (positive and negative)
energy spectrum. The presence of negative-energy states in the
sum corresponds to the process with creation of a positron in the
intermediate state. Thus, in order to enumerate the contribution
from this process, we, in addition to the DA, restrict summation
over the intermediate states to the positive energy states only.
We refer to this calculation as dipole and no-pair approximations
(DA + NPA), and denote the corresponding cross section as
rDAþNPA. Finally, we consider also the non-relativistic limit (NR)
excess energy within different approximations; exact relativistic rExact (solid black),
elativistic rNR (dot-dashed red). The calculations are carried out in (a) velocity (left
n, and uranium atoms. (For interpretation of the references to colour in this figure



Fig. 2. The cross section ratio as a function of nuclear charge; rNR=rExact (solid black), rNR=rDA (long-dashed green), and rNR=rDAþNPA (short-dashed blue) in (a) velocity and
(b) length gauges. The results correspond to e ¼ 1:40 excess energy. (For interpretation of the references to colour in this figure caption, the reader is referred to the web
version of this article.)
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of Eq. (4). For this, we employ the wavefunctions which are the
solutions of the Schödinger equation and replace interaction oper-

ators a � aðpÞ
J by its non-relativistic limit xr=

ffiffiffiffiffiffiffi
6p

p
and also set

p1 ¼ p2 ¼ 1 and J1 ¼ J2 ¼ 1. The corresponding cross section is
denoted as rNR. If, however, no approximation is made, i.e., the
Dirac equation is used to obtain the electron wavefunctions, sum-
mation over the intermediate states runs over both positive and
negative energy states, and all multipoles are taken into account,
we refer to such calculations as ‘‘Exact”, and we write the cross sec-
tions as rExact. Actually, the multipole summation is restricted to
Jmax ¼ 5, which is sufficient to obtain convergence of the corre-
sponding total cross section at less than 0:001% level.

Fig. 1 presents the total non-resonant K-shell TPI cross section
as function of excess energy for the ionization of neutral Ge, Xe,
and U atoms by linearly polarized light. Excess energy is the com-
bined two-photon energy in units of the ionization threshold
energy Ebind, i.e., e ¼ 2x=Ebind. The minima in the total cross sec-
tions (see Fig. 1) in near-threshold energies occur as consequences
of screening effects. For more details, we refer the reader to our
previous work [23]. Here, we compare the total cross section val-
ues within various approximations and see that the major differ-
ence is present between rNR and all other approximations. The
reason for this is that the Dirac wavefunctions have been used in
all calculations, except the NR one, and solving the Dirac equation
results in a contraction of the electron wavefunction. As a conse-
quence of this contraction, the total TPI cross section is signifi-
cantly lower in the relativistic description. We would expect that
the decrease of the exact calculation (in comparison to the NR
limit) should be ‘‘stronger” with increasing nuclear charge and
photon energy. However, while it is true that the cross section drop
increases with nuclear charge, it slowly decreases with energy.
This is due to the higher multipole (beyond DA) effects, which open
further channels for the ionization. As it is clear from Fig. 1, the
cross section values in DA coincide with the exact calculation for
near threshold energies, however, the ‘‘strength” of multipole
effects increases with energy and counteracts the cross section
decrease due to wavefunction contraction. Thus, in the exact calcu-
lation, the ‘‘strength” of the overall relativistic effects slowly
decreases with energy. We can see that this is the case both in
velocity as well as length gauges. The gauge-independence does
not hold any longer for the NPA. Our results show that DA + NPA
calculations result in a decrease of the total cross section values
in the velocity gauge, while in the length gauge they result only
in negligible effect (less than 0.05%). Thus, the negative continuum
energy effects are only essential in the velocity gauge, where they
lead to an increase of the cross section by up to 10% as compared
to the length gauge. The strong gauge-dependence of negative con-
tinuum energy effects has been previously also reported for the
case of two-photon bound–bound transitions in hydrogenlike ions
[33,34].

In order to enumerate the importance of relativistic effects as a
function of nuclear charge, we compare the calculations discussed
above to the non-relativistic approximation, by introducing the
ratio rNR=r, where r represents a relativistic evaluation either in
DA, DA + NPA, or the exact calculation. Fig. 2 presents such ratios
as a function of nuclear charge in both velocity and length gauges.
This figure displays explicitly that all relativistic effects increase
with nuclear charge, and it also shows that the negative continuum
effects result in no significant effect in the length gauge across all
nuclear charges. In general, the figure demonstrates the impor-
tance of relativistic effects, as a result, we stress that in order to
obtain an agreement with future experiment, the relativistic
effects need to be taken account for heavier atoms, for which the
cross section drops by up to a factor 3 in comparison to the nonrel-
ativistic prediction. Our results are in a good agreement with avail-
able experimental data in the designated energy range [14,15], see
[23] for more elaborative comparison.

4. Summary

In summary, relativistic calculations of the total non-resonant
K-shell two-photon ionization have been performed. These results
have been compared to calculations in three different approxima-
tions; dipole, no-pair, and non-relativistic. It has been shown that
the importance of inclusion of the relativistic effects grows with
increasing nuclear charge and the main contribution to the effects
arises from the relativistic wavefunction contraction. The contribu-
tions from higher multipoles and negative continuum energy
states increase the cross section, however, they are generally much
smaller than the relativistic contraction.
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