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Abstract 

A multiscale approach describing material excitation in the nanometric track of a swift 

heavy ion (SHI) decelerated in a solid in the electronic stopping regime is presented. This 

model consists of a combination of three different methods: (a) Monte Carlo simulations of  

excitation of the electron subsystem of a solid at the femtosecond scale due to scatterings of a 

SHI and generated fast electrons; (b) a molecular-kinetic approach describing the spatial 

spreading of electrons after finishing of ionization cascades up to timescales of a hundred 

femtoseconds; and (c) molecular dynamics simulations of reaction of the lattice on the excess 

energy transferred from the relaxing electron subsystem at the picosecond time scale. The 

Dynamic Structure Factor (DSF) formalism links together all these methods. It takes into 

account effects of spatial and temporal correlations in the atomic system of a target during its 

interaction with excited electrons in an ion track. For LiF crystals a good agreement is 

demonstrated between track heating estimated from the experimental data and that predicted 

by the model. 
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1. Introduction 

A swift heavy ion (SHI, M>20 a.m.u., Е>1 MeV/nucl) loses a larger part of its energy on 

excitation of the electronic subsystem of a target in the nanometric vicinity of the trajectory 

(>90%, 1 to 10 keV/nm along the projectile path) [1]. This energy loss is accomplished with 

target ionizations resulting in generation of fast electrons. Propagation of these electrons from 

the SHI trajectory produces new ionizations forming next generations of electrons and holes. 

During the subsequent relaxation of the excited electron ensemble a small part of its excess 

energy is transferred to target atoms resulting in transient lattice excitation in an ion track.  

Dissipation of the excess electronic energy in SHI tracks needs shorter times than the 

time of the atomic vibrations in the lattice and, thus, the time of emergence of phonons [2]. 

Therefore, an adequate description of energy transfer from the excited electrons to the lattice 

in a SHI track needs a more general approach than that based on the electron-phonon coupling 

[3-6]. Such an approach must take into account the possibility of realization of various limit 

cases of the dynamic correlations of lattice atoms during their interaction with the non-

equilibrium electron ensemble in a track.  

The presented microscopic multiscale model describes the kinetics of excitation of a SHI 

track up to picoseconds after the projectile passage. It consists of three different approaches 

combined together. 

At the initial stage, a Monte Carlo (MC) approach is applied to simulate excitation of the 

electronic subsystem of a target by a swift projectile. Ionization cascades resulting from 

scattering of fast electrons generated in a track due to the initial material ionizations by an ion, 

as well as Auger decays of holes at deep atomic shells, are also simulated with the same MC 

code up to tens of femtoseconds after the projectile passage. At the longer times (>10 fs) 

spatial spreading of electrons is accounted for by means of the molecular-kinetic method. The 

energy and momentum exchange with the lattice is calculated tracing the atomic trajectories 

with the molecular dynamics (MD) method up to picoseconds after the projectile passage. The 
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model is applied to estimate lattice heating in tracks of 2 GeV Au and 0.96 GeV Kr ions in 

LiF crystals. 

The above mentioned models use the cross sections of interaction of fast electrons (and a 

SHI in the MC) with the electron and atomic subsystems of a target. The simplest but efficient 

approach describing interaction of incident projectiles with a dynamically coupled system of 

particles is based on (a) one-particle approximation for the traced projectile; and (b) the 

assumption of a weak interaction of this projectile with the scattering system (the first Born 

approximation). In this case, the differential cross section is factored into the cross section 

describing scattering of a projectile on an isolated particle of the scattering ensemble and a 

term describing a collective response of this ensemble to the transferred energy and 

momentum.  

At least two realizations of this approach are known. The first one, applied originally to 

describe scattering of neutrons [7], is based on the formalism of the dynamic structure factor 

( , )S k   of the lattice (DSF, k  and ħω are, respectively, the momentum and the energy 

transferred from a projectile into a scattering system in a collision under consideration, and ħ 

is the Plank constant). The second one, commonly used in plasma physics for description of a 

response of an ensemble of charged particle, is based on the formalism of the complex 

dielectric function ( , )k   (CDF) [6]. In this case the fluctuation-dissipation theorem [8] 

states that in a local equilibrium the DSF and CDF formalisms are equivalent (e.g. for 

electrons 2 2 2 1( , ) ( / 4 ) Im ( , )e
eS k k e n k     ). 

For the case of swift heavy ion impact, the above mentioned approximations are justified 

for both, (a) an incident ion interacting with the electronic subsystem of a target, and (b) for 

excited electrons. In this paper, the CDF formalism is used in the Monte Carlo algorithm 

describing the cross-sections of inelastic scattering of an SHI and electrons. 



  

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

   

5 
 

The DSF is used to calculate the elastic scattering of electrons, transferring their kinetic 

energy to the target lattice. MD tracing of atoms enables getting of the transient DSF and, 

thus, realistic cross-sections of the electron-lattice energy exchange in a relaxing SHI track. 

The same MD also traces the atomic relaxation and spatial dissipation of the excess energy of 

the lattice after cooling down of the electron ensemble. 

In contrast to previous multiscale approaches of SHI track modeling [9-13], the present 

one is relying neither on phonon (low excitation) nor on plasma approximation (extremely 

high excitation) for the description of electron-to-lattice coupling. The DSF/CDF formalism 

includes automatically both limit cases along with all the possible intermediate states of an 

irradiated target. 

For LiF crystals a good agreement is demonstrated between track heating estimated from 

the experimental data [14] and that predicted by the model. 

 

2. Monte Carlo model of SHI penetration and the initial kinetics of the electron 

ensemble in a SHI track 

In this paper, we use a Monte-Carlo model to describe the excitation of the electronic 

subsystem of a target. Its physical background and details of the numerics used are described 

in detail in Refs. [15, 16] where this code was tested by a comparison with the results of SHI 

irradiations of SiO2 and LiF as well as other MC simulations.  

At the first step, the model simulates the passage of an ion and its energy losses which 

accomplish with the creation of the first generation of highly excited free electrons. The 

energy transfer during a single projectile-electron interaction is negligible comparing to the 

kinetic energy of a projectile due to the large difference between the masses of an electron 

and an SHI. Indeed, for the energy of ions of 11 MeV/amu (UNILAC accelerator, GSI, 

Darmstadt) the maximum energy transferred to an electron is 24 keV. Therefore the first Born 

approximation can be used for description of scattering of an SHI on the electronic subsystem 
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of a solid. Taking this into account we have improved, in comparison to [15], the cross-

sections of scattering of an ion by applying the CDF-based formalism [17]. The dielectric 

function ( , )k   was restored from the experimental data on the optical coefficients of LiF 

[18, 19]. 

Propagation of fast electrons generated in the ion track is modeled even-by-event, 

accounting for the secondary impact ionizations, leaving holes in deep and valence shells, 

and/or elastic scattering on lattice atoms. Again, we apply the CDF-based cross-sections [17] 

to describe scattering of these electrons. Indeed, even for solid state concentrations of the 

electrons, the energy of their pair Coulomb interaction Uе-е ~ e2ne
 1/3 does not exceed 5 eV. In 

LiF we stop MC tracing of an electron when its energy falls below Etr=3Egap (Egap = 14.6 eV 

is the band gap) that occurs at ~10 fs after the projectile passage. This threshold corresponds 

to the minimal electron energy necessary for production of a stable electron-hole pair in LiF 

[16]. Due to the large difference Etr >> Uе-е we can use the first Born approximation when 

describing the scattering of such electrons on the electronic subsystem of a target. The same 

reason results in the one electron approximation for the ensemble of fast electrons.  

Created secondary fast electrons are modeled in the same manner. Production of 

secondary free electrons due to Auger decay of deep holes is also taken into account in the 

MC model.  

The MC procedure is iterated for ~104 times to obtain a trustworthy statistical averaging. 

The averaged spatial distributions of the electron concentration and the energy density are 

then extracted and used as the initial conditions for further modeling. Figs. 1 a and b present 

these initial radial distributions calculated in the layer of thickness of 10 nm along the ion 

path after an impact of 2 GeV Au and 0.96 GeV Kr ions in LiF.  

 

3. Spatial spreading of electronic excitations after finishing of ionization cascades 
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We stop the MC tracing of electrons when they fall below the cut off energy, as discussed 

above. Application of the many-particles kinetic equation is a general method to describe the 

kinetics of the ensemble of interacting low energy electrons. However, the spatial 

redistribution of excited electrons is the main process in the kinetics of electrons in the 

vicinity of the ion trajectory at times after finishing of the ionization cascades (~10 fs after the 

projectile passage) until the equilibration of the electronics temperature with the lattice 

temperature. Taking this into account, we use a simplified approach to describe the kinetics of 

the excited electron ensemble in this time frame.  

First, we divide the area around the projectile trajectory in the cylindrical layers of 

thicknesses larger than the mean free path of electrons. We assume a local equilibrium in the 

electron ensemble in these layers because of the significant differences between the 

characteristic times of thermalization of these electrons (~10-15 sec) [2] and the energy transfer 

from the electron ensemble to the lattice (> 10-14 sec). Taking into account that the 

concentration of excited electrons at such times is lower than the solid state one and, 

moreover, is continuously decreasing due to spatial redistribution, we apply the one particle 

(gas) approximation to description of the state of the ensemble of electrons.  

The parameters of the equilibrium Fermi distribution of electrons in the free-electron 

approximation, namely the chemical potential and the temperature, can be restored in each 

cylindrical layer from the current concentration and the average electron energy in a layer [9, 

20]: 
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Here me is the electron mass, e
gn  is a concentration of electrons, Eg is the total energy density 

of electrons in g-th layer. The initial concentrations and the energy of electrons in the layers 

are taken from the MC calculation. 

The difference between the concentrations and average electron velocities in different 

layers, i. e. their spatial gradients, provide transfer of electrons and their energy between the 

layers. To describe this transfer the molecular-kinetic method is applied at this stage lasting 

from the moment when spatial spreading of excited electrons turns into diffusive behavior [9] 

until the time when the electron temperature equilibrates with the atomic one. In the 

framework of this approach, each cylindrical layer is divided into a number of small cubes. 

Due to the equilibrium, the number of electrons ΔNe escaping from a cube centered in a point 

r trough the grain ΔS during time Δt is defined by 

1 ( ) ( )
6e e eN n r v r S t    .     (2) 

Here ( )en r   is the concentration of electrons and ( )ev r  is their average velocity in the cube. 

The time step Δt was chosen to provide gv t  much smaller than the thickness of the layer. 

The temporal evolution of the radial distributions of the concentration of electrons and 

their energy density in the cylindrical layers provides the temporal dependencies of the local 

equilibrium distribution functions of electrons kf  in any g-th layer. 

 

4. The model of electron-to-lattice energy exchange in a SHI track. 

4.1. The DSF based electron-to-lattice energy transfer rate 

Taking into account the one-electron approximation, the energy transfer rate Q=-dE/dt to 

the lattice due to elastic scattering of electrons is defined by [21]: 

4 2

3 2 (1 )
2 i f

i
i fk k

e f f f

kQ f f dk dk
m k E







 

  .   (3) 
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Here 
ikf  and 

fkf , ik  and fk  are, respectively, the equilibrium distribution functions of 

electrons and the initial and final wave vectors of an electron; Ωf is the solid angle 

corresponding to the outgoing wave vector fk , and 2 2 / 2f f eE k m  is outgoing energy of 

scattered particle,   is the change of the energy of an electron. Note, that Eq. (3) is a 

general formula, which can be applied for the case of nonequilibrium distribution functions as 

well. 

Due to the large difference in the masses of an electron and lattice atoms (me/Ma~10-

5<<1), as well as due to a screening effect, the energy transferred to the lattice during a single 

collision is small in comparison to the electron energy. Therefore, scattering of electrons on 

the lattice can be described within the first Born approximation [21]. In this case, the 

differential cross section describing scattering of an electron on the lattice is factored into the 

cross section of its scattering on an isolated atom and the of the lattice DSF ( , )S k   [7]: 

22 2

2 5( ) ( , )
4

fe

f f i

kmV k S k
E k








 
.    (4) 

Here f ik k k   is the change of wave vector of scattered electron, ( )V k  is the spatial 

Fourier transform of the interaction potential between an electron and a single atom of a 

target. We use the Thomas-Fermi screened potential to describe this interaction: 

2
2

2 2
0 0

( ) ,
4

SCR

r
Lat e

SCR k
Z e m eV r e L f dk

r  


   ,  (5) 

where LSCR is a screening length [3], Zat is the charge of a lattice ion, 0  is the vacuum 

permittivity. The DSF is the Fourier transform of the spatial and temporal pair correlation 

function  ,G r t  [7] which describes the coupled atomic dynamics in the lattice: 

( )( , ) ( , )
2

i kr tNS k dtdre G r t


  ,    (6) 
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, 1

1( , ) ( (0) ) ( ( ))
N

i j
i j

G r t dr r R r r R t
N

 


      .  (7) 

Here, the angle brackets denote the quantum mechanical and statistical averaging over the 

ensemble of eigenstates of the unperturbed Hamiltonian of the scattering system  , i.e. 

|x x  


    , where   is a statistical weight of the  -state. The statistical 

averaging is made over a volume with sizes larger than the lengths of dynamic correlations in 

the lattice; N is the number of atoms in this volume. 

 

4.2. Molecular dynamics model of DSF calculations 

The classical approximation of  ,G r t  has a simple form [22, 23]: 

, 1

1( , ) ( (0) ( ))
N

i j
i j

G r t r R R t
N




   ,    (8) 

where ...  is the statistical averaging over the classical ensemble of the lattice atoms. 

Scattering of an electron on a two component system is described by the pair correlation 

function [24]: 

1 1 1 1 1 2 1 2 2 1 2 1 2 2 2 2( , ) ( , ) ( , ) ( , ) ( , )G r t q q G r t q q G r t q q G r t q q G r t        (9) 

Here q1 and q2 are the model charges of the lattice ions (for LiF qLi=1, qF=-1 [25]). The 

functions  ,G r t   (α,β =1,2) describe the spatial and temporal correlations of atoms of α 

and β kinds: 

1 1

1( , ) ( (0) ( ))
NN

i j
i j

G r t r R R t
N


 

  

 

   .   (10) 

where N= Nα+ Nβ. 
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These classical forms (8-10) of the pair correlation function can be used in MD 

simulations. The averaging over time is invoked to obtain the statistically meaningful results 

[23]:  

1 , 1

1( , ) ( ( ) ( ))
T N

i j
i jT

G r t r R t R t t
N



 



  

    .   (11) 

Here T  is the number of timesteps necessary to obtain a trustworthy statistical averaging. T  

may differ in calculations for different swift heavy ions (typically T  is on the order of 103). 

The periodic boundary conditions are used when calculating the correlation functions. 

The characteristic time of energy transfer from the relaxing electron subsystem to the 

lattice is shorter or comparable to the time of atomic vibrations (see below), i.e. the lower 

limit of the characteristic times of dynamic correlations within the atomic subsystem. Any 

changes of the DSF are negligible during these times. Therefore, in the present work, the 

same DSF was used in Eq. (4) at each step of the model before equilibration between the 

electron and lattice temperatures.  

The applied MD uses the Verlet algorithm with the time-step of 0.5 fs for propagating 

atomic dynamics. For LiF we use the modified interatomic Tosi-Fumi potential [25], well 

suiting for these crystals. Possible changes in the interatomic potential caused by the 

excitation of the electronic subsystem (nonthermal melting effects [26]) were not included in 

the model. Indeed, these processes might occur only in the very center of a track where the 

level of electron excitation could be sufficient to induce the nonthermal effects [27]. But this 

high ionization should be kept a sufficiently long time (a hundred of femtoseconds or longer 

[26,28]) to produce structure transformations or to affect considerably the lattice dynamics. 

Taking into account the short temporal scale (~10 fs) of ionizations decays in the track centre, 

we assume in this paper that such processes can be neglected in SHI tracks in LiF. 
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The same MD code is used to describe relaxation of the excited lattice at time after 

equilibration of the electron ensemble with the atomic subsystem (see below). It should be 

emphasized that in this paper MD calculations are stopped at times 1-10 ps, shorter than the 

characteristic times of changes in the structure (in the simplest case, changes of the density) 

and/or phase transformations observed for some systems in SHI tracks, because we are 

concentrating here on the extraction of the parameters of the excited material which form the 

driving forces for these possible structure changes. Moreover, no changes were observed in 

the atomic density of bulk LiF irradiated with SHI [14]. Some modifications could be 

observed on the surfaces of Li crystals after irradiation [14, 29], however, here we do not 

investigate such surface effects limiting ourselves to the bulk material. 

 

4.3 Verification of the MD model of DSF calculations. 

The pair-correlation function of the lattice, or the DSF, is a key function determining the 

cross-sections of electron-to-lattice coupling. Therefore, we take special care for testing the 

MD code calculating the DSF of the lattice. Liquid aluminum was chosen for this purpose, 

because there is a wide set of measurements of the structure factor of this system [30-32].  

A piece of liquid aluminum consisting of 500 atoms and thermalized at the temperature T 

= 943K and at zero pressure was simulated. We used a many-body interatomic potential 

within the Embedded Atom Method (ЕАМ) [33] in these MD simulations of aluminum. The 

time when the equilibrium occurred was determined by the coincidence of the distribution of 

the energies of atoms with the Maxwellian one (approx. 2000 MD steps) [21]. 

Fig. 2 demonstrates a very good agreement between the calculated and measured [31] 

geometrical structure factors ( ) ( ) ( , )S k S k d S k     of liquid aluminum. Presented in 

Fig.3 comparison of the energy dependence of the calculated DSF with the experimental one 
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(the dependences on  at the fixed wave vector k ) also indicates that the developed MD 

model gives reasonable values of DSF for realistic systems.  

 

5. Heating of LiF crystals during relaxation of the electron subsystem in SHI tracks. 

Summarizing above mentioned, we apply the following iterative scheme for quantitative 

estimation of the spatial and temporal dependencies of the energy transferred into the lattice 

of LiF during relaxation of the electron subsystem of a crystal in a SHI track. 

First, the MC model is used to determine the initial radial distributions of the parameters 

characterizing the excited ensemble of electrons – the concentration of electrons and their 

energy. These initial distributions are used to restore the initial local equilibrium distribution 

functions of electrons at different distances from the axis of the track.  

Then, using the DSF formalism, the rates of the energy exchange of the electron 

subsystem with the lattice in these cylindrical layers are calculated by Eq. (4). After that, 

complete energy losses of the electronic subsystem in the layers per a time-step are 

determined taking into account the calculated electron-lattice energy exchange rates there. 

The energy transferred from electrons to the lattice in a cylindrical layer is distributed among 

the different species of atoms by increasing their kinetic energy in accordance with their mass 

fractions.  

Next, the molecular-kinetic Eq. (3) supplies with the changes of the concentration and the 

energy of electrons in the cylindrical layers due to electron diffusion. Then, the equilibrium 

electron distribution functions corresponding to the updated energy density and the 

concentration of electrons are restored in each cylindrical layer according to Eq. (2). These 

new functions are substituted into the next timestep of the modeling, and the procedure is 

repeated over again starting from the new initial conditions.  

The characteristic time of cooling down of the electronic subsystem in the SHI track due 

to spatial spreading of the excitation is shorter than that of thermalization of the non-
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equilibrium lattice (see Fig.4). Therefore, in this paper we model the "heating" of the lattice 

by the spatio-temporal field of the kinetic temperature [23, 34]: 

_ _

2 2

1 1

( , ) ( , )
( , )

2
1 1( ) ( )

6 ( 1) 6 ( 1)

kin kin
kin

QQ

n n
n nB B

T r t T r t
T r t

M v v M v v
k Q k Q



 

   

  


 

       
 

 
 (12) 

Here kB is the Boltzmann constant; Q  andQ are the numbers of atoms of each type in a 

volume in which the kinetic temperature is defined ( gQ N   and gQ N   for g-th 

cylindrical layer), M , M  , v  , v   are the masses and average velocities of these 

atoms. 

Fig. 4 demonstrates equilibration between the electron and the kinetic lattice temperatures 

within times <100 fs. Thus, starting from this time we adapt the Born-Oppemheimer 

approximation, assuming that the electron temperature follows the atomic one i.e. after this 

time we stop tracing the electrons, only MD modelling the atomic dynamics for tracing 

further relaxation and spreading of the excess energy through the lattice out from the ion 

trajectory.  

The temporal dependencies of the radial distributions of the kinetic temperatures of LiF 

lattice in a track of 2 GeV Au ion and 0.96 GeV Kr ion are shown in Fig.5. It demonstrates 

that the largest part of the excess energy transferred into the lattice is contained within the 

distances r < 5 nm from the ion trajectory. The maximum heating of the LiF lattice in this 

area does not exceed 100 K which is in a very good agreement with the experimental results 

[14]. 

8. Conclusions 

A combined microscopic model describing all the stages of material excitation in the 

nanometric vicinity of the SHI trajectory is presented. Simulations describe excitation of the 

electron ensemble of a target by a swift heavy projectile, the subsequent ionization cascades, 
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spatial spreading and relaxation of electrons, Auger relaxation of deep holes, energy and 

momentum transfer from the excited electron subsystem into lattice and subsequent lattice 

dynamics.  

The application of the CDF-DSF formalisms automatically takes into account a possible 

realization of the various limit cases of dynamic correlations in the electron subsystem as well 

as in the lattice. The results of application of this model to LiF irradiated with swift heavy 

ions demonstrate the low upper limit of the lattice heating (~100 K) in a good agreement with 

that estimated from the experimental results.  
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Figure Captions 

 

FIG. 1. The radial distributions of the electron concentration (a), and the energy density 

of electrons (b), in tracks of Au 2 GeV and Kr 0.96 GeV ions in LiF. 

FIG. 2. The geometrical structure factor of liquid aluminum. Red squares show the 

results of the calculations made in this paper, white circles are the results of the experiment on 

neutron scattering, black circles are the data from X-ray scattering [31]. 

FIG. 3. The DSF of liquid aluminum. Red squares are the results of our calculations, the 

black line is the experimental data from X-ray scattering [30]. 

FIG. 4. The temporal dependencies of the radial distributions of the temperature of 

electrons and the kinetic temperatures of the LiF lattice in the cylindrical layer 1 nm < R < 1.5 

nm at different times after the passage of (a) a gold ion with the energy 2 GeV and (b) a 

krypton ion with the energy 0.96 GeV  

FIG. 5. The kinetic temperature of atoms of LiF in a track of the (a) 2 GeV gold ion and 

(b) 0.96 GeV krypton ion as the functions of time.  
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Fig. 3 
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Fig. 5 




