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We discuss a class of exact finite energy solutions to the vacuum source-free Maxwell field equations as
models for multi- and single cycle laser pulses in classical interaction with relativistic charged test par-
ticles. These solutions are classified in terms of their chiral content based on their influence on particular
charge configurations in space. Such solutions offer a computationally efficient parameterization of com-
pact laser pulses used in laser-matter simulations and provide a potential means for experimentally

bounding the fundamental length scale in the generalized electrodynamics of Bopp, Landé and Podolsky.
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Advances in laser technology have made possible the explo-
ration of physical processes on unprecedented temporal and spa-
tial scales. They have also opened up new possibilities for
accelerating charged particles using laser-matter interactions.
Multi- and single cycle high intensity (10'° — 10" W cm~2) laser
pulses can be produced using Q-switching or mode-locking tech-
niques [1]. Such pulses can accelerate charged particles such as
electrons to relativistic speeds where radiation reaction and quan-
tum effects may influence their dynamics. Lower intensity pulses
have also been used as diagnostic tools for exploring the structure
of plasmas in various states [2,3]. In order to interpret experimen-
tal data involving classical laser interactions with both charged and
neutral matter, theoretical models [4-7] rely crucially on parame-
terizations of the electromagnetic fields in laser pulses, particularly
in situations where traditional formulations using monochromatic
or paraxial-beam approximations have limitations [8-10].

In this Letter we discuss a viable methodology for parameteriz-
ing a particular class of propagating solutions to the source free
classical Maxwell equations in vacuo that offers an efficient means
to explore the classical effects of compact laser pulses on free elec-
trons in dynamical regimes where quantum effects are absent. The
parameterization is based on a remarkable class of explicit solu-
tions of the scalar wave equation found by Ziolkowski [11-15]
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following pioneering work by Brittingham [16]. Such solutions
can be used to construct classical Maxwell solutions with bounded
total electromagnetic energy and fields bounded in all three spatial
directions. With simple analytic structures their diffractive proper-
ties can be readily determined together with the behavior of
charged particle-pulse interactions over a broad parameter range
without recourse to expensive numerical computation. Finally,
we argue that such parameterizations can be used to find compact
finite energy solutions to other linear wave equations. This is illus-
trated by showing that the generalized theory of Bopp [17], Landé
[18] and Podolsky [19] admits such particular solutions that reduce
to the Maxwell solutions when a fundamental length parameter in
their theory tends to zero. Compact laser pulses in this theory
might be used to explore properties of the theory by searching
experimentally for bounds on this parameter.

If a complex scalar field « satisfies Oo = 0 on spacetime and IT,,
is any covariantly constant (degree 2) anti-symmetric tensor field
on spacetime (i.e. Iy, =0) for all u,v,6=0,1,2,3, then the
complex tensor field F,, = d,A, — 0,A, satisfies the source free
Maxwell equations in vacuo with:

A, = 0y (aTlp) erlgl (1)

where | g | is the determinant of the spacetime metric and €
denotes the Levi-Civita alternating symbol. In the following g refers
to the Minkowski metric tensor field, in which case the components
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IT,, can be used to encode three independent Hertz vector fields
and their duals’.

General solutions to 0o =0 can be constructed by Fourier
analysis. In cylindrical polar Minkowski coordinates {t,r,z, 0},
axially symmetric solutions propagating along the z-axis have,
for z>0, the double integral representation o(t,r,z)=
7, dwe o (w,r,z) where:

a(w,r,z) = %kfw( k) Jo (kr) exp (iiz (%)2 k2> dk

in terms of the zero order Bessel function and the speed of light in
vacuo c.

Conditions on the Fourier amplitudes f, (k) can be given so that
the Hertz procedure above gives rise to real singularity free
electromagnetic fields with finite total electromagnetic energy. A
particularly simple class of pulses that can be generated in this
way follows from the complex axi-symmetric scalar solution:

62
W+ iz =) (U, — T D)

where ¢, ,, , are strictly positive (real) parameters with physical
dimensions of length. The relative sizes of y; and ., determine both
the direction of propagation along the z-axis of the dominant
maximum of the pulse profile and the number of spatial cycles in
its peak magnitude. When /; > v, the dominant maximum prop-
agates along the z-axis to the right. The parameter ¢, determines the
magnitude of such a maximum. The structure of such solutions has
been extensively studied in [20,21] in conjunction with particular
choices of II,, together with generalizations discussed in [22,23].

In general the six anti-symmetric tensors with components
556:;] in a Minkowski Cartesian coordinate system are covariantly
constant and can be used to construct a complex eigen-basis
of antisymmetric chiral tensors IT*", with se {CE,CM} and
K € {—1,0,1}, satisfying

OZHS.K — KHS.K (3)

a(t,r,z) = . (2)

where the operator O, represents 0 rotations about the z-axis gen-
erated by —id, on tensors®. These in turn can be used to construct a
complex basis of chiral eigen-Maxwell tensor fields F*'*. The index s
indicates that the CE (CM) chiral family contain electric (magnetic)
fields that are orthogonal to the z-axis when x = 0. The chiral
eigen-fields F*° inherit the axial symmetry of «(t,r,z) while those
with k¥ = 41 do not. The directions of electric and magnetic fields
in any of these Maxwell solutions depend on their location in the
pulse and the concept of a pulse polarization is not strictly applica-
ble. The chiral content as defined here can be used in its place. Non-
chiral pulse configurations can be constructed by superposition
Yo >0 FoF ¢ with arbitrary complex coefficients C**.

The energy, linear and angular momentum of the pulse in vacuo
can be calculated from the components T, of the Maxwell stress-
energy tensor Ty, = — g, 7 F.3 — F 7} where F,, = Re(F,,). If
e and b denote time-dependent real electric and magnetic 3-vector
fields associated with any pulse solution, its total electromagnetic
energy 7, for a fixed set of parameters and any z, is calculated from

TIn the language of differential forms on Minkowski spacetime A=
*d(oIT), F = dA where dxdo = 0, the 2-form IT satisfies VIT = 0 and * denotes the
Hodge map associated with g.

2 In terms of the Lie derivative, O, = —iL;, and ITE*! = d(x + iy) A dt, TIE? =
dz A dt, TT™* = % TIE* where x = rcos(0),y = rsin(0)

:Mlolzdt/s(exb)-ds )

where S can be any plane with constant z =z, > 0. For spatially
compact pulse fields in vacuo this coincides with the total pulse
electromagnetic energy

00 2n 00
E:/pdV:/ dz/ d@/ rdr p(t,1,2,0) (5)
v -0 0 0

where p =1 (ege . e+%) is integrated over all space V. This fol-

lows since V- (e x b) = —u,d; p. To correlate 7 with other laser
pulse properties and the choice of parameters, we bring the pulse
into classical interaction with one or more charged point particles.
The world-line of a single particle, parameterized in arbitrary coor-
dinate as x* = &*(7) with a parameter 7, is taken as a solution of the
coupled non-linear differential equations

Au(T) = Fu(E()V'(1) (6)

myc?
in terms of the particle charge g and rest mass my, for some initial
conditions ¢(0), V(0), where the particle 4-velocity satisfies
V'V, = -1 and its 4-acceleration is expressed in terms of the
Christoffel symbols I')} as Ay = 9V, () + V,(7) Vy(T) I} (¢(7)). In
the following, radiation reaction and inter-particle forces are
assumed negligible. From the solution £(7) one can determine the
increase (or decrease) in the relativistic kinetic energy transferred
from the electromagnetic pulse to any particle and the nature of
its trajectory in the laboratory frame. This information can then
be used to correlate the dynamical properties of the interaction
with the laser pulse properties fixed by the parameters. To facilitate
this exercise, it proves important to reduce the above equations
of motion to dimensionless form and fix the physical dimensions
of the fields involved. The Minkowski metric tensor field g =
g,,dx"dx" (with g, =diag(-1,1,1,1)) in inertial coordinates
X0 =ct, x! =x, x¥2 =y, x3 =z) has SI physical dimensions [L]*. The
SI dimension of electromagnetic quantities follows by assigning to
€oF dx"dx" in any coordinate system the physical dimension of
electric charge. Furthermore, in terms of Minkowski polar coordi-
nates {t,r,z, 0}, introduce (for ease of visualization) the dimension-
less coordinates {R=g-.T={,Z=Z-} and dimensionless

LG=1, 2)Wher6[ il =[P = [E] = 1, [6] = [L].
Then with the dimensionless complex scalar field o(T,R,Z) =

a(t,r,z) and greek indices ranging over {T,R,Z,0} with €"’%0 =1,
we write

moc263 A
A; =0 ; UL ELPY (oc Huﬁ)eww\/\g 7)

parameters 4, ¥; =

for a choice of dimensionless covariantly constant tensor Il so
that [€oA, dx"] has the physical dimension of electric charge and

j/dT/dR

£= /X dZ&(T,Z).

doP(T,R,Z,0)

The parameter A controls the strength of all electric and mag-
netic fields in Fg; for fixed values of the parameters ¥4, ¥;, @, =
and the overall scale ¢, will be fixed in terms of the total electro-
magnetic energy of the pulse. For a choice of such parameters
the real fields e and b enable one to calculate a numerical value
I’ such that J = ¢I'. The diffraction of the pulse peak along the
z-axis can be used to define a pulse range relative to the maximum

of the pulse peak at z = 0. To this end, the density £(T,Z) defines
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Fig. 1. Power profile P of the (CM, 1) laser pulse at Z=0, T=0 with parameters
{4 =600, ¥, =1, ¥, = 1000, ¢ = 0.001, = =1}.

the dimensionless range Z,, by 2(0,0)/§(T1,Z,g) = 2, where the
peak at Z=Z,, >0 and T =T, > O is half the height of the peak
at Z=0,T = 0. If during the interval [0,T,] the pulse propagates
with negligible deformation in Z, one may estimate its width Z,,
at half height and the dimensionless pulse axial speed f§ = Z4/T;.
This yields the dimensionless pulse duration or temporal width
To =Z,/B. From these dimensionless values one deduces the
pulse SI characteristics in terms of ¢, and hence 7. If the
picosecond is used as a unit of time, the pulse duration becomes

to = toTo/C = loZw/(fC) = N10~'? s for some value N and hence
b = (cfN/Z,)107% m, T = (I'fcN/Z,)107], z, = Ecpn10" m
and z,g = £oEZ,;; = (EBcNZyy/Z,,) 1072 m. A dimensionless spot-size
of the pulse at Z=2, >0, T =Zy/p is then determined by the
behavior of P(R,Zy/B,Zo, 0). At each value of Z, this function of R
and 0 has a clearly defined principal maximum. If one associates
a circle of dimensionless radius Rs(Zp) with such a maximum locus
it can be used to define a spot-size at z =z, with radius
1s(z0) = loPRs(Zo) = (CBNDPR(Z0)/Z,,)107 " m.

Fig. 1 displays a clearly pronounced principle maximum in the
power density profile P as a function of X =Rcos(0) and
Y =Rsin(6) at Z=0,T = 0 for a specific choice of the parameters
(A4,¥1,¥2, @, Z). The same parameter set is used to numerically
solve (6) for a collection of trajectories for charged particles,
each arranged initially around the circumference of a circle in a
plane orthogonal to the propagation axis of incident CM type laser
pulses with different chirality. The resulting space curves in
3-dimensions, displayed in Fig. 2, clearly exhibit the different
responses to CM pulses with distinct chirality values. The instanta-
neous specific relativistic kinetic energy of a particle with labora-
tory speed v is y —1 in terms of the Lorentz factor y given by
Pl =4/1— g—f In Fig. 3, this quantity is displayed on the left for a
charged particle accelerated by a fixed chirality (CM,—1) type pulse
where the pulse energy is varied by changing A. On the right the
energy transfer dependence on pulse chirality for both CE and
CM type pulses with fixed laser energy is displayed. We deduce that
the momentum and angular momentum [24] in the propagation
direction can transfer an impulsive force and torque respectively
to charges lying in an orthogonal plane. More generally, the classical

(CM, k = 1) (CM, k = 0) (CM, ks = —1)
? | B
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Fig. 2. Three-dimensional spacecurves for particles subject to an incident (CM, 1) laser pulse (left), (CM, 0) laser pulse (center) and (CM, —1) laser pulse (right) with
parameters {4 = 600, ¥; = 1, ¥, = 1000, ® = 0.001, = = 1}. Each particle has initial velocity {R(0) = 0, §(0) = 0, Z(0) = 515} The shaded circular disc region indicates the
initial spot size (R = 10,000 for (CM, +1) laser pulses and R = 20,000 for a (CM, 0) laser pulse) relative to the black markers on the spacecurves that denote the initial positions
of the charged test particles.
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Fig. 3. Specific kinetic energy transfer to any charged test particle. On the left, the (CM, 1) pulse has parameters {¥; = 1, ¥, = 1000, @ = 0.001, £ = 1}. On the right, relative
values of y — 1 are displayed for various (s, x) pulses with parameters {4 =1, ¥; =1, ¥, = 1000, ® = 0.001, £ = 1}. The differences between the energy transfers for some
pulses appear indistinguishable relative to others owing to the logarithmic scales employed. In all cases, the charged particle has initial position {R(0) = 1, 6(0) = Z,Z(0) = 1}
and initial velocity {R(0) = 0, Z(0) = 5k, 6(0) = 0}.
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Table 1
Table showing SI laser characteristics for various (s, k) laser pulse configurations with
parameters {¥; = 1, ¥, = 1000, ¢ = 0.001, = = 1}.

s CE CE M M M
K 0 +1 0 +1 +1
X0 8.07 7.69 8.41 7.69 76903
A 40,000 1 0.05 1 100
Zrg (M) 1.44 243 0.899 1.80 1.80
to (ps) 3 3 2 3 3

Zw (mm) 0.899 0.899 0.600 0.899 0.899
r5(0) (m) 0.018 0.009 0.012 0.009 0.009
[ (TW cm™2) 2.646 1.009 0.930 1.009 10090

configurations of a high energy pulse labeled CE and CM can be
distinguished by their interaction with different arrangements of
charged matter.

Furthermore, by a suitable choice of parameters, (CE, k) type
modes can be constructed that yield the same physical properties
(J,zrg, 2w, p) for all k. Similarly the (CM,x) type modes yield a k
independent set with physical properties distinct from those deter-
mined by the (CE,x) modes. The pulse group speed magnitudes (as
defined above) of all these configurations are determined numeri-
cally and are bounded above by the value c. To illustrate some of
these statements, Table 1 summarizes the SI laser pulse character-
istics for a specific choice of {¥4, ¥,, @, 5} and various values of A.

Motivated by the desire to ameliorate the divergences in pertur-
bative QED a number of generalized theories of electromagnetism
have been proposed. To date, there is little experimental evidence
for testing their predicted departures from Maxwell’s theory. How-
ever, with the increase in laser technology one may now be enter-
ing regimes that may discriminate between such theories. In
particular, Bopp-Landé-Podolsky electrodynamics is linear in the
electromagnetic fields, contains a fundamental length 4, and
approaches Maxwell’s theory when this length tends to zero.
Unlike Maxwell’s theory, it contains solutions describing static
point charges with finite electromagnetic energy.

The classical source-free Bopp-Landé-Podolsky field equations

in vacuo for the complex electromagnetic field tensor
Fuy = 0,A, — 0,A, are:
"Fyy — 25 00"Fy = 0. (8)

Clearly, all classical source-free vacuum Maxwell solutions sat-
isfy these equations. However, there exist additional solutions to
(8) that are not source-free vacuum Maxwell solutions. For exam-
ple, such additional solutions of (8) follow from (1) provided:

Do+ 207 e =0. 9)

Furthermore, it follows that as /o — 0, one recovers the class of
Maxwell solutions discussed above. For non-zero /gy, there exist
particular non-Maxwellian solutions to (9) satisfying

1
Oo+—=oa=0.
),
0
In Minkowski cylindrical coordinates {t,r, 6, z}, a non-separable
axi-symmetric compact laser solution is given for arbitrary real 4
by:
A3k (12)

Ot(t, r7 Z) = W

where

Ut r.2) = 12+ [y +iz — O, — iz +ct)]

in terms of strictly positive (real) parameters v, , that determine
propagation along the positive z-axis and where K;(z) denotes the
first order modified Bessel function of the second kind. The function
{(t,r,2) is non-zero for all real t,r,z and hence both the real and
imaginary parts of o(t,r,z) are bounded. To our knowledge, this
constitutes for the first time a new source-free finite-energy solu-
tion to Bopp-Landé-Podolsky electrodynamics that does not arise
in the classical Maxwell electrodynamics.

The interaction of the Bopp-Landé-Podolsky pulse with
classical charged test particles follows from the divergence of the
Bopp-Landé-Podolsky stress-energy-momentum tensor [25]. This
in turn leads to the same equation of motion (6) for the test
particle trajectories [25] and may offer an experimental means to
discriminate between the Maxwell and Bopp-Landé-Podolsky
descriptions of source-free electromagnetic fields in vacuo.

Further details of this approach using scalar field modulated
Hertz potentials based on the construction (1) for finding spatially
compact solutions to other linear tensor and spinor wave equa-
tions will be presented elsewhere.
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