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A deterministic computational procedure for describing the transport of electrons in condensed media is
formulated to simulate the effects and exposures from spectral distributions typical of electrons trapped
in planetary magnetic fields. The primary purpose for developing the procedure is to provide a means of
rapidly performing numerous repetitive transport calculations essential for electron radiation exposure
assessments for complex space structures. The present code utilizes well-established theoretical repre-
sentations to describe the relevant interactions and transport processes. A combined mean free path
and average trajectory approach is used in the transport formalism. For typical space environment spec-
tra, several favorable comparisons with Monte Carlo calculations are made which have indicated that
accuracy is not compromised at the expense of the computational speed.

� 2010 Elsevier B.V. All rights reserved.
1. Introduction

The concept of developing a rapid analysis electron transport
code at NASA Langley Research Center (LaRC) arose from a desire
to have a companion code for the LaRC deterministic transport
code HZETRN [1]. The algorithm developed here for electron trans-
port is based on the Continuous Slowing Down Approximation
(CSDA) combined with an elastic multiple scattering formulation
to define an electron mean free path and a transmission function
at a given target location. The cross sections relevant to CSDA
and multiple scattering are described in the following section.
The pertinent cross sections are calculated with well-established
theoretical formulas, valid over the energy range representative
of trapped electrons in planetary magnetic fields. Consequently, a
calculation of positron production and annihilation is incorporated.
The cross section equations are cast in terms of specific elemental
atomic species, from which cross sections applicable to any user
defined molecular system (mono or polyatomic) are automatically
constructed.

Details of the transport formulation are described in a subse-
quent section, and are based on motion related to some initial
direction (axis of propagation). Behavior of slowing and stopping
of electrons and their associated bremsstrahlung is evaluated in
terms of quantities contained in the direction of the hemisphere
All rights reserved.
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rman).
centered on the initial direction. The scattering and mean free path
calculations permit definition of mean trajectories relative to the
initial motion direction, so that axi-symmetric spatial and energy
distributions may be inferred.

Comparisons with the corresponding Monte Carlo (MC) calcula-
tions are shown. The MC cases utilized several hours of machine
time, whereas the LaRC calculations were practically instanta-
neous. Despite some difference in final magnitudes, general func-
tional behavior is consistent in the results. Consequently, the
deterministic code can be reliably used in trade studies where
rapid analyses are necessary.

The present code has the desirable feature that the required in-
puts are user defined through files specifying material composition
along with the incident environment differential energy spectra for
electrons and photons. In the present version, the incident particles
(boundary conditions) are strictly electrons; a corresponding pho-
ton energy grid is established with initial photon environment
specified as a vanishingly small number (e.g. 1.0E�20), to be pop-
ulated during the transport process with the bremsstrahlung pho-
tons. An applicable energy range for electrons and photons
between 0.001 and 1000 MeV has been established, even though
trapped electron energies are predominantly less than 100 MeV.
The present code will transport photons from the boundary as well.
Also included with the code is a permanent atomic database file
which details the pertinent atomic properties. Most results in this
paper are presented for three selected materials: aluminum (Al),
tantalum (Ta), and water ðH2OÞ. This selection of target materials
was chosen to provide examples of light and heavy materials in
addition to examples of elemental and compound materials. The
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materials were also selected for their uses in space applications.
Aluminum is a common spacecraft structural material, water clo-
sely approximates human tissue, and tantalum is used in shielding
sensitive electronics from electron and photon exposure in the
planetary trapped radiation belts.

2. Cross sections

The theoretical description of propagation of energetic electrons
and photons in condensed media requires some representation of
interaction cross sections with constituent atoms of the medium.
Application of principles of quantum and semi-classical physics
have gone far toward providing formulations for electron and pho-
ton interaction cross sections. Although many of these formula-
tions are mathematically complicated, they are often amenable
to approximation and parameterizations that greatly simplify their
practical application. The following subsections describe the for-
mulations used here for interactions of electrons and photons.

2.1. Electrons

Free energetic electrons passing through a material are slowed
and may eventually be stopped as they interact with the fields of
the nuclei and bound electrons of the material. Interactions also re-
sult in a change of direction (scattering). In the present analysis,
the electron deceleration process is expressed in terms of energy
loss by collisions and the accompanying photon production
(bremsstrahlung). The dominant scattering process is assumed to
be that of small angle elastic (Rutherford) scattering and is the only
scattering process taken into account in the present formulation.

2.1.1. Collisional slowing and stopping
Electron deceleration by collision processes, in which energy

from the projectile electron is imparted to the electrons of the
medium, is usually cast in terms of the stopping power, S, which
is defined as the energy loss per unit scaled distance, �dE=dx. Note
that the distance x is measured in units of g=cm2. The resultant
expression for the collisional stopping power has been often re-
ferred to as the modified Bethe–Bloch formula and is given here
in the notation of Anderson [2],

Scol � �
dE
dx
¼ 2pr2

e mec2q0ðN0Z=AÞGT C�; ð1Þ

where

GT ¼
ðT þmec2Þ2

TðT þ 2mec2Þ

and

C� ¼ ln
2ðT þ 2mec2Þ
mec2ðI=mec2Þ2

" #
þ F� � d� k

( )
: ð2Þ

The superscript ð�Þ indicates applicability to both electrons (�) and
positrons (+). Here, re is the classical electron radius, me is the rest
mass of the electron, c is the speed of light in vacuum, q0 is the
scaled mass density with distance measured in g=cm2, N0 is Avoga-
dro’s constant, Z is the atomic number of the material, A is the
atomic mass of the material, T is the kinetic energy of the electron
or positron, I is the mean atomic ionization potential, d is the den-
sity correction term, and k is the shell correction term. The F� quan-
tity in Eq. (2) is a function only of projectile energy and is slightly
different (a few percent) for electrons and positrons. The present
formulation implements only the F� function that applies to elec-
trons. It may be written as the sum of three terms [2],

F� � F� ¼ f1 þ f2 � f3; ð3Þ
where

f1 ¼ 2þ 2 ln
T

2mec2

� �
;

f2 ¼
T2=8þmec2ð2T þmec2Þ ln 1

2

� �
ðT þmec2Þ2

;

and

f3 ¼ 1þ TðT þ 2mec2Þ
ðT þmec2Þ2

:

The quantity d in Eq. (2) represents a modification to the Bethe–
Bloch stopping power usually referred to as the ‘‘density correc-
tion.” For this work, a parameterized form of d based on extensive
experimental data [3] is used.

The remaining correction term, k, in Eq. (2), is called the ‘‘shell
correction” and is only important at low energies when the projec-
tile electron speed, v , approaches the speed of a bound electron, v I .
Its value, as used in the present calculations, is given by [4]

k � v I

v

� �2
� IðI þ 2mec2ÞðT þmec2Þ2

TðT þ 2mec2ÞðI þmec2Þ2
: ð4Þ

It is seen in Eq. (1) that Scol is unbounded as T ! 0 due to the GT

factor. To correct the unbounded behavior as T ! 0, the non-rela-
tivistic stopping power derivation provided by Bohr and discussed
in the paper by Sigmund [4] can be used. Bohr’s derivation results
in a stopping power that approaches zero at very low energies and
exhibits a maximum. The Bohr formula may be written in CGS
(centimeters–grams–seconds) units as

SBohr ¼
4pne4

mev2 ln
Ccmev3

e2xI

� 	
� a

T
ln bT3=2
� �

; ð5Þ

with n ¼ qN0=A is the number density, q is the mass density, e is the
electric charge, Cc ¼ 2e�c, c is Euler’s constant, xI ¼ I=�h, and �h is the
reduced Planck’s constant. The kinetic energy at which the Bohr for-
mula for stopping power exhibits a maximum is found from
dSBohr

dT ¼ 0,

ln bT3=2
B

� �
¼ 3

2
:

From Eq. (5),

b ¼ 23=2Cc= e2xI
ffiffiffiffiffiffi
me
p� �

and

TB ¼
exp3=2e2 ffiffiffiffiffiffi

me
p

I

23=2Cc�h

 !2=3

;

where TB is the projectile kinetic energy at peak stopping power and
exp is the base of natural logarithms. If Eq. (1) is compared with Eq.
(5), the natural logarithm term in Eq. (5) can be identified with the
C� in Eq. (1). This gives

C�max ¼ ln bT3=2
B

� �
;

and

Smax � 2pr2
e mec2N0GTðZ=AÞC�max:

While Eq. (1) applies to T P TB, an extension of Bohr’s stopping
power formula to low energies, for T < TB, is provided by Sigmund
[4]. For the case of T < TB, a simple functional fit for the collisional
stopping power in units of MeV cm2=g has been derived for the
present work,

Scol ¼ Smax exp �0:179 ln TB=Tð Þ½ �2:05
n o

: ð6Þ
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Three simple materials important to space exploration applica-
tions have been selected to demonstrate results of the present
model calculations: aluminum, tantalum, and water. These materi-
als were chosen to represent a broad range of atomic properties
and material densities. The collision stopping powers, as calculated
for these substances over the energy range of the code formulation,
were compared with the stopping powers obtained from the data-
base tabulations of the National Institute of Standards and Tech-
nology (NIST) [5]. The comparisons indicated that the present
formulation is quite acceptable over the energy range of interest
for space applications (0.01–1000 MeV), with the largest discrep-
ancies occurring at the lowest energies for heavy elements [6]. In
Ref. [6], extensive graphical output is presented showing compar-
isons between the NIST cross sections and those described herein.
(This NASA Technical Paper may be conveniently accessed at
http://ntrs.nasa.gov with reference to Document No. L19795 or
NASA TP-2010-216168.)

2.1.2. Radiative energy loss (bremsstrahlung)
Accelerating (and decelerating) charged particles lose energy by

photon emission. Elaborate quantum-theoretical calculations have
gone far toward quantifying these bremsstrahlung cross sections. A
detailed description of the theoretical results is given in Koch and
Motz [7]. The formulation may be greatly simplified by using sev-
eral parameterizations; the implementation for this work is essen-
tially the same as that for the default cross sections of the EGSnrc
Monte Carlo code [8]. Several pertinent parameters that lead to the
ultimate cross section formula may be defined as [8]

Fc � 4
1
3

lnðZÞ þ fc

� �
; ð7Þ

where

fc �
0:0 Em < 50 MeV;
fcc Em P 50 MeV;

�

with

fcc � ðaZÞ2
X1
b¼1

1
bðb2 þ a2Z2Þ

ffi 7:4564� 10�5Z1:9137:

Here, Em is the emitted photon energy and a is the fine structure
constant. The term Fc serves to provide a high energy Coulomb cor-
rection. Another parameter defines the effects of screening in terms
of an energy variable [8],

ds ¼
136
Z1=3

� 	
Emmec2

EeðEe � EmÞ

� �
; ð8Þ

which involves the electron total energy, Ee ¼ T þmec2. The screen-
ing functions have been specified as [8]

/1ðdsÞ ¼
20:867� 3:242ds þ 0:625d2

s ds 6 1;
21:12� 4:184 lnðds þ 0:952Þ ds > 1;

(

/2ðdsÞ ¼
20:209� 1:935ds þ 0:086d2

s ds 6 1;
/1ðdsÞ ds > 1:

( ð9Þ

To account for the triplet production process, a parameter, n, is
introduced which depends upon atomic charge and involves the
Coulomb correction above [8]. A parameterized fit for n in units
of cm2=g has been developed for this work as

n � 1:147 sinð0:42 ln ZÞ þ 0:12 sinð0:76 ln ZÞ½ �2
n o3

4
: ð10Þ

The final expression for the cross section for production of a
photon of energy Em by interaction of an electron of total energy
Ee on an atom of charge Z may be written as
drm;e

dEm
¼ ar2

e

Em

N0ZðZ þ nÞ
A

Hm; ð11Þ

where

Hm ¼ 1þ Ee � Em

Ee

� 	2
" #

ð/1 � FcÞ �
2
3

Ee � Em

Ee

� 	
ð/2 � FcÞ:

An obvious energy constraint is that only photons can be pro-
duced that have energy less than the initial electron kinetic energy.
Consequently, drm;e=dEm is calculated at each electron energy T , for
selected values of Em=T: [0.001, 0.05, 0.1, 0.2, 0.3, 0.4, 0.6, 0.8, 0.9,
0.95, 0.98, 0.99, 1.0]. This distribution of energy values has been
chosen to accurately resolve the cross section variations at both
ends of the energy spectrum. A source term f, for production of
photons by an electron flux ue, may be written in terms of the
bremsstrahlung cross section as

fðEm; TÞ ¼
Z T

Em

ueðT
0Þ drm;e

dEm
dT 0 for Em 6 T: ð12Þ

The corresponding energy loss term due to radiative processes may
be evaluated as

Srad ¼
Z Em

0
E0m

drm;e

dE0m
dE0m: ð13Þ

Using Eq. (13), the radiative loss stopping powers for the three
materials selected for this study were calculated. In contrast to the
collision stopping powers, the bremsstrahlung stopping power is
greater for higher charge elements and increases monotonically
with energy. The logarithmic stopping power for the present
approximate formulation is nearly linear with the logarithm of
the energy and begins to have substantial effects for kinetic ener-
gies greater than a few MeV. Comparison with NIST [5] data re-
vealed some disparities at low kinetic energies ðT < 0:1 MeVÞ [6],
but, as will be shown subsequently in Section 2.3, bremsstrahlung
effects on the general transport process have a significant impact
only for kinetic energies greater than several MeV.

In order to provide some idea of accuracy for the present cross
section formulations, the mean deviation of total stopping power
(collision + radiative) for aluminum has been evaluated in compar-
ison to the NIST data over the energy range 0.001–1000 MeV and
found to be 2.4%.

2.1.3. Multiple elastic scattering
Strict conservation principles require that electron–atom inter-

actions generally result in energy exchange accompanied by re-
direction with respect to spatial variables. Approximations that
tend to decouple energy loss processes and directional changes
greatly simplify electron transport analysis. In the present work,
these processes are made practically independent. Energy loss is
specified by collision and radiative losses without regard for direc-
tional change, while projectile trajectories are described by elastic
scattering interactions. Such assumptions call for careful scrutiny
with regard to both broad energy spectra and the wide variety of
material types. Some precedents have been set in earlier works
[9,10] in which such approaches have been used. In the present
formulation, the elastic (Rutherford) scattering cross sections, rR,
are implemented as a basis for calculating an electron transport
mean free path,

ktr �
q

nrR
; ð14Þ

where n ¼ qN0=A is the number of scattering centers per unit vol-
ume in the medium. The present development closely follows that
of Kawrakow and Rogers [8], in which the screened Rutherford
cross section is given as

http://ntrs.nasa.gov
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drR

dh
� 2p Ze2ðT þmec2Þ

TðT þ 2mec2Þð1� cos hþ 1=�Þ

" #2

; ð15Þ

where h is the scattering angle and � is a parameterized screening
function,

� � 1413½ð1þ T=mec2Þ2 � 1�ðZaÞ�2=3
:

Integrating Eq. (15) over all scattering angles to obtain the total
cross section allows the electron transport mean free path to be
written as [6]

ktr � q=nrR ¼
A

2pN0e4Z2

ðT2 þ 2Tmec2Þ2

½lnð2�Þ � 1�ðT þmec2Þ2
: ð16Þ

The above quantity will be dealt with in the subsequent section on
the transport algorithm. Note that the behavior of the transport
mean free path increases monotonically with kinetic energy and
is nearly logarithmically linear with the log of the kinetic energy,
having generally higher values for lower atomic weight elements.

Another parameter related to elastic multiple scattering is the
mass scattering power [11]. This quantity is analogous to stopping
power, but refers to solid angle scattering rather than energy loss.
The mass scattering power is defined in Li and Rodgers [11] as

Ps � p 2rem2
e c4ZðT þmec2Þ

TðT þ 2mec2Þ

� �2 N0

Z
YðhrÞ; ð17Þ

where

YðhrÞ � lnð1þ h2
r Þ � 1þ 1

1þ h2
r

with

hr ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
TðT þ 2mec2Þ

p
amec2Z1=3 :

The mass scattering power is used in the transport algorithm to
relate electron traversal on a specific trajectory to the axial pene-
tration distance. The above formulation predicts a nearly linear
monotonically decreasing variation of the logarithm of scattering
power with the logarithm of energy.

2.2. Photons

Bremsstrahlung photons produced by electron–atom interac-
tions are attenuated and absorbed in the transport medium. In
the present work, only the three most important processes in-
volved in photon energy degradation and absorption are consid-
ered: photoelectric absorption, incoherent scattering, and
electron–positron pair production. These processes are dominant
for different energy ranges, but when taken collectively, they clo-
sely approximate the total attenuation for the energy range consid-
ered here (0.001– 1000 MeV). The contribution due to coherent (or
Rayleigh) scattering has not been included in this analysis since it
does not significantly add to the total cross section over the energy
range of interest (0.001–1000 MeV).

2.2.1. Photoelectric absorption
Photoelectric absorption involves interactions of a photon with

a bound electron in which the photon energy is absorbed with a
corresponding kinetic energy increase for the electron. The de-
tailed evaluation of the photoelectric cross sections requires the
use of complicated atomic models in sophisticated solutions of
the Schrödinger equation for all energies and elements under con-
sideration. For the present formulation, liberal use is made of para-
metric fitting formulas devised from the extensive calculations and
tabulations provided by NIST [5]. First, the energy values for the
absorption discontinuities of the K and L shells have been approx-
imated as

EK � 5:435� 10�3Z2:2038 keV ð1 6 Z 6 92Þ;
EL � 1:5754� 10�4Z2:5984 keV ð30 6 Z 6 92Þ:

ð18Þ

Note that energies in this section are in keV, and L-edge energies are
only considered for Z P 30. In addition, only the discontinuities due
to the K and L shells have been considered. The discontinuities
(edges) due to the electronic shells occur at values of the photon en-
ergy corresponding to the binding energies of electrons involved in
the interaction. When the incoming photon has an energy greater
than the binding energy of a given atomic shell or subshell, a dis-
continuity may occur.

At the edge discontinuities, the NIST data has also been used to
develop formulas for the upper ðuÞ and lower ðlÞ values of the pho-
toelectric cross section:

rKu ¼ 7165:5E�1:5474
K cm2=g;

rKl ¼ 593:59E�1:327
K cm2=g;

rLu ¼ 9620:6E�1:5113
L cm2=g;

rLl ¼ 1633:5E�1:2124
L cm2=g:

ð19Þ

Examination of typical photoelectric cross sections reveals that
the logarithmic slope,

m � dðlnrPEÞ
dðln EmÞ

;

is very nearly constant for a given atomic system between absorp-
tion edges. Using NIST [5] cross section data, parametric fits were
used to approximate the logarithmic slopes.

For Em > EK :
mK ¼
6:9068� 10�3Z � 3:014; Z 6 10;
�3:3147Z�0:08156; Z P 11:

(
ð20Þ

For :1 keV 6 Em 6 EK :

mL ¼
ln rKl

rLu

� �
ln EK

EL

� � : ð21Þ

For all Z and EK < Em < 10000 keV:

rPE ¼ rKu
Em

EK

� 	mK

: ð22Þ

For Z P 29 and EL < Em < EK :

rPE ¼ rLu
Em

EL

� 	mL

: ð23Þ
An extension to energies less than the lowest edge energy consid-
ered was extrapolated with a power law function approaching an
asymptote based on an extrapolated maximum absorption cross
section. For Z 6 29 and for energies below the K-edge, an asymptotic
cross section is calculated using the average ionization potential,

rI ¼ rKl
I

EK

� 	mK

: ð24Þ

The extrapolation formula is then

rPE ¼
rI

1þ APEp
m
; ð25Þ

where the exponent p and coefficient AP are given by

p ¼ mK

ðrKl=rIÞ � 1
; AP ¼

ðrI=rKlÞ � 1
Ep

K

: ð26Þ
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These constants are found by matching the cross section and the
slope at the K-edge. For Z P 29, the low energy extrapolation below
the L-edge is found by using an L subscript instead of K in Eqs. (22)–
(26).

For the three selected materials, the photoelectric cross sec-
tions, as calculated with the present parameterization were com-
pared with their NIST [5] counterparts and agreements were
considered to be fair to good [6].

2.2.2. Inelastic photon interactions
As the photoelectric absorption coefficient decreases rapidly

with increasing energy, the next process to dominate is when the
photon imparts a portion of its energy to an electron resulting in
scattering of a lower energy photon. The process is referred to as
inelastic (incoherent) scattering. The cross section formula for re-
lease of an electron of kinetic energy Te by a photon of initial en-
ergy Em has been taken from Anderson [2] as the free electron
Klein–Nishina process. The energy constraints are 0 6 Te 6 Tmax

where

Tmax ¼
2E2

m
mec2 þ 2Em

:

Here, Te is the kinetic energy of the emitted electron and Em is the
incident photon energy. The cross section formulation is

drKN

dTe
¼ N0Z

A
pr2

e

qEm
2þ R0

q

� 	2

þ R0Te

Em
� 2

qR0

" #
ð27Þ

with

R0 � Te

Em � Te
and q � Em

mec2 :

In order to render the cross section applicable to bound atomic
electrons, elaborate quantum theory calculations are required.
Such considerations are only appreciable at lower photon energies.
For this work, a parametric multiplying function has been devel-
oped to approximate this effect,

ln UðZ; EmÞ ¼ �
B1 lnðZÞ þ B2

Em

� �½B3�B4 lnðZÞ�

; ð28Þ

where B1 ¼ 0:471; B2 ¼ 1:5184; B3 ¼ 1:003, and B4 ¼ 0:13317
when Em is given in units of MeV. The final inelastic scattering cross
section then becomes:

drin

dTe
¼ UðZ; EmÞ

drKN

dTe
: ð29Þ

For each Em, the total inelastic cross section is found by integration
over the appropriate emitted electron energy;

rin ¼
Z Tmax

0

drin

dT 0
dT 0: ð30Þ

As a function of incident photon energy, the total inelastic cross
sections, calculated with the present model, were compared with
the corresponding NIST [5] values. The model approximation was
in better agreement for lighter materials. An exception occurred
at higher energies (greater than approximately 100 MeV) where
the model formulas are slightly inaccurate [6]. However, in this en-
ergy range, the inelastic cross section does not contribute apprecia-
bly to the total photon attenuation, as will be subsequently shown
in Section 2.3.

2.2.3. Pair production
Electron–positron pair production may occur when a photon of

sufficient energy interacts with a strong localized Coulomb field.
The photon initial energy is transformed into the combined rest
mass of the newly created particles ð2mec2Þ, with any remaining
energy appearing as kinetic energy of the new particles. A compre-
hensive description of the process may be found in Motz et al. [12],
where a variety of cross section quantities are derived for several
aspects of the phenomenon. The formulation from Li and Rogers
[11], chosen for use in the present work, applies to the cross sec-
tion for production of a positron of total energy Eþ by a photon
of initial energy Em. Only positron production associated with pair
production is considered in this work. The positron production dif-
ferential cross section may be written in simple terms as

drpp

dEþ
¼ N0

A
ar2

e ZðZ þ nÞ
E3

m

ðQ 1 þ Q 2Þ; ð31Þ

where

Q1 ¼ ½E2
þ þ ðEm � EþÞ2�½/1 � Fc�;

and

Q2 ¼
2
3

EþðEm � EþÞ½/2 � Fc�:

The terms n; /1ðd0Þ; /2ðd0Þ, and Fc are the same as for the brems-
strahlung cross section, Eqs. (7)–(10), with the exception that the
value of d0 is determined as

d0 ¼ 136mec2Em

Z1=3EþðEm � EþÞ
: ð32Þ

Energy conservation constrains the positron energy as

mec2
6 Eþ 6 Tmax þmec2;

with

Tmax ¼ Em � 2mec2:

The above formulas for pair production become somewhat inac-
curate as the pair production threshold is approached. Conse-
quently, a power law function is fit at the first energy grid value
greater than 4 MeV (� E4, see below). Now, the low energy pair
production cross section is given as

rpp ¼ AppðEm � 1:03Þy for 1:03 MeV < Em < E4; ð33Þ

with

y ¼ drpp

dEþ

����
Eþ¼E4

E4 � 1:03
rppðE4Þ

;

and

App ¼
rppðE4Þ

ðE4 � 1:03Þy
:

A source term for positron production may be derived in a man-
ner similar to that described for production of bremsstrahlung
photons. See Eq. (12). For a photon differential flux spectrum
umðEm; xÞ, positron production may occur between energies
Epp;min ¼ 2mec2 and Epp;max ¼ Em;max � 2mec2, where Em;max is the
highest photon energy value considered. The expression for the
source term becomes

fðEþ; xÞ ¼
Z Epp;max

Epp;min

umðE
0
m; xÞ

drpp

dEþ
dE0m: ð34Þ

It should be noted that in parallel with the positron production
process, a similar cross section expression applies to the creation of
the partner electron, along with the corresponding source term for
secondary electrons. Just as for the inelastic process, the pair pro-
duction cross section may be found by integrating Eq. (31) over the
allowed positron energy ranges, namely from mec2 to Em �mec2.
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Results of pair production cross sections, as calculated from the
present model were compared with the appropriate NIST [5] val-
ues. Agreement was very good except for energies near the thresh-
old region where the power law extrapolation formula was
invoked [6]. A comparison of NIST values of total photon attenua-
tion coefficient with the present formulation for the energy range
.001–1000 MeV showed a mean deviation of 7.5%.

2.3. Cross section implementation

The individual cross sections described previously are used in
combination to provide three critical parameters essential for
description of the electron–photon transport process. The ultimate
slowing and stopping of electrons is governed by the total stopping
power obtained from the sum of the collision and radiative stop-
ping powers. The collision process dominates at low energies (less
than approximately 1 MeV). Here, the radiative process assumes
the dominant role at high energies (greater than approximately
1 MeV). A transitional minimum occurs in the neighborhood of
1 MeV where the lower energy inaccuracies in the radiative stop-
ping power of the present model have insignificant impact on
the total stopping power.

The general attenuation and extinction of photons in a medium
is found to be closely related to the sum of the photoelectric,
inelastic, and pair production cross sections. In the present model,
the coherent (Rayleigh) scattering processes were not considered
because of their relative unimportance in space radiation effects.
The inaccuracies in the inelastic cross sections at energies larger
than approximately 100 MeV have insignificant impact on the total
attenuation of photons due to the pair production process domi-
nating at higher energies [6].

The final parameter of importance to the electron–photon
transport process is that of the photon energy deposition coeffi-
cient which is used to calculate effective photon dose. See Eq.
(63) in Section 4.1. This relates to those fractions of the photon
attenuation processes ðfPE; fin; fppÞ that produce secondary elec-
trons. For photoelectric absorption, it is assumed that the second-
ary electron is emitted with the same energy as the incident
photon (i.e. the binding energy of the released electron is ne-
glected) and the value of fPE is unity. In the case of inelastic scatter-
ing [13],

fin ¼ 1� Em;in

Em
;

where Em;in is the energy of the photon produced in the inelastic pro-
cess initiated by a photon of energy Em. For the pair production pro-
cess, fpp ¼ 1� 2mec2=Em.

An additional reduction in the photon energy deposition coeffi-
cient is required to discount secondary electrons that subsequently
produce additional bremsstrahlung. In the present model, this fac-
tor is represented by ð1� Srad=STotÞ, where STot � Srad þ Scol. This
factor is only applied to the inelastic and pair production processes,
so that the model expression for the total photon energy deposi-
tion coefficient becomes [13]

len ¼ rPE þ
Z Tmax;in

0
1� Srad

STot

� 	
fin

drin

dT 0
dT 0

þ
Z Tmax;pp

0
1� Srad

STot

� 	
fpp

drpp

dT 0
dT 0; ð35Þ

where the upper limits on the integrations apply to the maximum
allowed emitted electron energies for the respective processes.
The total photon attenuation cross section is approximated as the
sum of the photoelectric, inelastic, and pair production contribu-
tions. This coefficient is then used in the radiative transfer equation
for emitting-absorbing media (see Section 3.3). Bremsstrahlung
photons from secondary electrons are not included in the photon
transport formulation. The energy deposition coefficient is de-
scribed in detail in the X-Ray Data section of the NIST website [5].

3. Transport formulation

In the present work, the general transport process is focused
principally on the description of the penetration of a primary elec-
tron field along with secondary bremsstrahlung photons generated
by electron–atom interactions. For electrons, an essentially one-
dimensional formulation is developed with some reference given
to the effects of radially symmetric scattering. While the electron
propagation is determined by the stopping powers, the photons
are assumed to be transported along the direction of travel of the
electrons. Photon intensity is governed by the radiative transfer
equation [14], which utilizes the calculated attenuation
coefficients.

3.1. Electrons

A quantity of fundamental importance in describing the trans-
port of electrons in matter is the maximum distance of travel,
which is determined from the energy loss stopping powers calcu-
lated from the modified Bethe–Bloch and bremsstrahlung formulas
in Eqs. (1) and (13). This quantity is referred to as the CSDA range
RðEÞ. For a given energy, E, the CSDA range is defined as

RðEÞ �
Z E

0

dE0

STot
¼
Z E

0

dE0

Scol þ Srad
: ð36Þ

The inverse of the RðEÞ function, R�1ðEÞ � EðRÞ, may be used to
construct the variation of dE=dx as a function of distance traveled
by an electron of initial energy E0. Such a function, SðE0; xÞ, is anal-
ogous to the usual Bragg curve, but neglects straggling and mea-
sures energy loss as a function of distance traveled along the
particle’s path rather than perpendicular depth in a material. Strag-
gling is accounted for after the incorporation of the statistics asso-
ciated with scattering. The residual energy of an electron, at
position s, is given by

WðsÞ ¼
Z R

0
SðE0; xÞdx�

Z s

0
SðE0; xÞdx ¼ E0 �

Z s

0
SðE0; xÞdx; s 6 R:

ð37Þ

For a beam of mono-energetic electrons, it is assumed that the
maximum distance traversed is the CSDA range and straggling is
neglected. However, the average distance of penetration along
the beam axis direction is generally less than the CSDA range
due to multiple scattering effects. The average deflection for a unit
path length can be defined by the inverse mean free path ðk�1

tr Þ [9]
which yields

cos hh i ¼ dhzi
ds
¼ exp �

Z s

0

ds0

ktrðs0Þ

� �
ð38Þ

and

zðsÞh i ¼
Z s

0
exp �

Z s0

0

ds00

ktrðs00Þ

" #
ds0: ð39Þ

In general, hxi is defined to be the arithmetic average of the variable
x. For electrons, hzðRÞi is interpreted as an ‘‘effective range” or the
axial distance at which 50% of the electrons have stopped and takes
place at the z-value for which the transmission is 0.5.

A further critical assumption is made by specifying a Gaussian
distribution about hzðRÞi, where hzðRÞi is the distance of peak elec-
tron population. In addition, it is assumed that practically all
electrons are stopped at z ¼ RðEÞ. This Gaussian represents the



Fig. 1. LEO electron spectra at several aluminum thicknesses.
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variation in electron path length due to multiple scattering effects.
By invoking the formula for half-width of the Gaussian distribu-
tion, a value for deviation, @, is found as [15]

@ ¼ R� zðRÞh i
2
ffiffiffiffiffiffiffiffiffiffiffiffi
2 ln 2
p : ð40Þ

The resultant Gaussian function may be interpreted as the probabil-
ity that an electron penetrates an axial distance z within increment
dz,

PðzÞ ¼ 1
@
ffiffiffiffiffiffiffi
2p
p exp � ½z� hzðRÞi�

2

2@2

( )
: ð41Þ

Integration of the Gaussian function results in an error function pre-
scribing the number of particles having stopped over distance z. The
complementary error function [16] results in the corresponding
transmission function,

gðzÞ ¼ 0:5 1� erf
z� hzðRÞi
@
ffiffiffi
2
p

� �� 

: ð42Þ

For simplicity, a special algorithm for the standard error function
has been utilized in the present code [17].

In addition to specifying the transmission probability of elec-
trons as a function of axial penetration distance z, it is necessary
to evaluate the variation of primary electron energy as a function
of z. A formula has been developed [10] in terms of the moments
of the mass scattering power that expresses, in cylindrical coordi-
nates ðz; rÞ, the distance covered for an average electron trajectory
having axial distance z and deflection radius r. The moments are
calculated as

ai ¼
Z z

0
PsðuÞðz� uÞidu; ð43Þ

with Ps given by Eq. (17). The moments are then used to derive an
equation [10] for distance along an average trajectory passing
through ðz; rÞ,

sðz; rÞ ¼
Z z

0
1þ a0ðz0Þ þ

r2

a2ðzÞ
� 1

� 	
a2

1ðz0Þ
a2ðz0Þ

� �1
2

dz0: ð44Þ

The quantity
ffiffiffiffiffiffiffiffiffiffiffi
a2ðzÞ

p
has been identified [10] as the half-width at

half-height of the distribution of deflection radius at axial distance
z. This observation leads to the inference that a ‘‘most typical” tra-
jectory intersects the point ðz; ffiffiffiffiffi

a2
p Þ. The third term in Eq. (44) then

vanishes. An ‘‘average mean path” now becomes,

hsðzÞi ¼
Z z

0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ a0ðz0Þ

p
dz0: ð45Þ

Reference to Eqs. (39) and (45) shows that the relationship be-
tween the mean axial distance and average mean path is such that
hzi 6 z 6 hsi. An average residual energy hWi may be associated
with an average distance along a path length hsi by again interpo-
lating on a table of CSDA range-energy relations. However, the
interpolated value hWi reaches zero before z ¼ R is attained be-
cause hsi is a value that includes average deflection and z ¼ R is
the axial distance traveled in the continuous slowing down
approximation assuming no angular deflection. The axial penetra-
tion, however, may extend beyond the distance at which hWi van-
ishes due to energy straggling. A provision for energy straggling is
supplied by introducing a power law function of the form

hWi ¼ AwðR� zÞk: ð46Þ

This formula is invoked somewhat arbitrarily for z-values for which
hWi 6 0:5WCSDA. When this condition pertains, the constants Aw and
k are evaluated by point-slope matching at the z-value where
hWi ¼ 0:5WCSDA.
In going from the boundary to distance z, particle number con-
servation requires that uð0; T0ÞdT0 ¼ uðz; TÞdT , where the energy
scaling corresponds to that prescribed by the CSDA range-energy
relation for the material. In general, dY is defined as a small, finite
difference in the value of Y . The above transport parameters, along
with particle number conservation, may be used to devise an
expression for the differential flux spectrum of electrons, uðz; TÞ,
at distance z with kinetic energy T , given the initial spectrum at
z ¼ 0 with initial kinetic energy T0;uð0; T0Þ:

uðz; TÞ ¼ uð0; T0ÞgðzÞSðT0Þ
SðTÞ : ð47Þ

In addition, the transmission function gðzÞ is used to account for
particles not arriving at z due to interaction not accounted for in
the stopping power. Division of the kinetic energy increments by
distance increments leads to an expression in terms of stopping
powers in Eq. (47). Thus, for a slab of thickness w, the differential
spectrum of primary electrons may be found at any axial distance
z 6 w.

If primary electrons are the only concern, the calculation could
end with Eq. (47). However, bremsstrahlung photons are generated
during the transport process. In order to take this process into ac-
count, a spatial grid is established within the slab layer. In the pres-
ent code, a slab layer is assigned a spatial grid, normally of 20–30
points, with spacing increasing monotonically according to the fol-
lowing formula:

di ¼
i� 1
N � 1

� 	2

w: ð48Þ

Here, di is the depth in the material slab of the ith point and N is the
total number of points in the spatial grid of the slab. The photon
source term may then be calculated at each spatial grid point as

fðEm;diÞ ¼
Z TðdiÞ

Em

ueðT
0Þdrm;e

dEm
dT 0: ð49Þ

Finally, the primary electron spectra provided by the present
code are calculated at each spatial grid point as

ue;iðdi; TÞ ¼
uð0; E0Þgðdi; E0ÞSðE0Þ

SðTÞ : ð50Þ

Implementation of Eq. (47) for the illustrative low Earth orbit
(LEO) spectrum [18] normally incident on aluminum provides the re-
sults shown in Fig. 1 (the environment spectrum is labeled Z = 0.0).
The stopping of low energy electrons and the transfer of high energy
electrons to lower energies is evident in the spectral functions at
increasing penetration depths. Similar results for Jovian trapped



Fig. 3. Photon spectra from Europa electrons [19] at several aluminum thicknesses.
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electrons in the vicinity of Europa in aluminum are shown in Fig. 2
using an environment from the NASA Jet Propulsion Laboratory
(JPL) Galileo Interim Radiation Electron (GIRE) Model [19]. The much
greater penetration and more gradual attenuation is clearly evident
for this very high energy environment. The peak in the flux occurs be-
cause low energy electrons are more likely to be stopped in alumi-
num which appears as a decrease in flux at low energies. High
energy electrons, on the other hand, will be shifted to lower energies
but not lost from the spectrum which leads the shift in the peak of the
flux to higher energies with a decrease in peak flux.

3.2. Photons

In the previous section on cross section evaluation, it was
shown that a spectral source term for bremsstrahlung photons
may be calculated. See Eq. (12). When the differential electron flux
spectra is specified as a function of axial distance z, a correspond-
ing photon flux may be determined using a solution of the radia-
tive transfer equation for an emitting-absorbing medium [14]. In
addition to the source function, the total attenuation coefficient
is required. The total attenuation coefficient is the sum of the rel-
avant cross sections,

rTot ¼ rPE þ rin þ rpp: ð51Þ

The photon flux spectrum at each spatial grid point di then involves
integration of the source term multiplied by the attenuation factor;

um;iðdi; EmÞ ¼
Z di

0
fðx; EmÞ exp �rTotðdi � xÞ½ �dx: ð52Þ

Photon spectra for the case of the Europa spectrum are illus-
trated in Fig. 3 and correspond to the electron spectra Fig. 2. The
persistence of higher energy photons at large aluminum depths
is indicative of their highly penetrating nature. The minimum
and maximum values of the flux at low energies are due to the dis-
continuity in the photoelectric absorption cross section.

3.3. Positrons

Ordinarily, exposure effects due to space environment electrons
may be adequately evaluated from specified electron and photon
flux values at a given target location. The pair production contribu-
tion to the energy absorption coefficient should provide a fair esti-
mate of exposure due to positrons. However, if details of specific
positron interactions are of interest, it becomes necessary to in-
clude explicit transport of the positrons and their associated anni-
hilation photons. In the present code, source terms and flux for
positrons are evaluated, along with source terms for the annihila-
Fig. 2. Europa electron spectra at several aluminum thicknesses.
tion photons, in an uncoupled manner with a view toward allow-
ing the user to assess the relative importance of the presence of
positrons. The positron source term, fðEþ; xÞ, has already been gi-
ven as Eq. (34). These antimatter particles have a ‘‘sink” term by
annihilation with the constituent bound electrons of the medium.
This term may be represented as [8]

NerannðsÞ ¼
Nepr2

e

sþ 2
s2 þ 6sþ 6
sðsþ 2Þ h1 � h2

� �
; ð53Þ

where Ne is the number of electrons per unit mass of material and
rannðsÞ is the total annihilation cross section, with

h1 ¼ ln sþ 1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sðsþ 2Þ

ph i
;

h2 ¼
sþ 4ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sðsþ 2Þ

p ;

and s representing the positron kinetic energy in rest mass units
(0.511 MeV).

Positrons initially at spatial location xi arriving at xi þ dx with
energy Ej began traversal of this increment at a higher energy,
E0 ¼ EðRþ dxÞ, where R is the residual range at xi þ dx. The CSDA
process over the interval dx, with no loss of positrons requires that

uðE0; xiÞSðE0Þ ¼ uðEj; xiþ1ÞSðEjÞ: ð54Þ

When annihilation takes place, the fraction of positrons from
the incident spectrum transmitted in distance dx is

ATðdxÞ ¼ exp �
Z dx

0
Nerann E Rj þ x0

� �� �
dx0

� 

: ð55Þ

The positrons transmitted through interval dx is then

uðtÞðEj; xi þ dxÞ ¼ qSATðdxÞu E Rj þ dx
� �

; xi
� �

; ð56Þ

with

qS ¼
S E Rj þ dx
� �� �
SðEjÞ

:

Additional contributions to the positron flux at xiþ1 � xi þ dx
arise from the distributed sources in the interval that must include
an additional annihilation factor, AS;

uðsÞ Ej; xþ dx
� �

¼
Z dx

0
f½EðRþ x0Þ; xi þ x0�ASðx0Þdx0; ð57Þ

with

ASðx0Þ ¼ exp �
Z x0

0
Nerann E Rj þ x00

� �� �
dx00

( )
: ð58Þ



Fig. 5. Annihilation photon source for Europa spectrum [19] in aluminum.
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Here, AS is the fraction of positrons lost from the positrons created
in the distance increment.

The total positron flux, ueþ ¼ uðtÞ þuðsÞ, is calculated in the
code by numerical integration procedures applied to each of the
established spatial grid intervals. Results for the Europa spectrum
for selected thicknesses in aluminum are shown in Fig. 4 and
may be compared with the corresponding photon flux of Fig. 3.
The peak in the positron flux shown in Fig. 4 occurs at a positron
kinetic energy of approximately 1 MeV. This peak in the positron
flux is due to a minimum in the stopping power model at 1 MeV
[6]. It is seen that the positron flux is a relatively small fraction
of the governing photon field and that the uncoupled calculation
is justified.

When the positrons are annihilated, photons are generated in
accordance with the differential cross section [8].

drann

dEm
¼ pr2

e

sðsþ 2Þ qðjÞ þ qðsþ 2� jÞ½ �; ð59Þ

where

qðxÞ � 1
x

sþ 2þ 2
sþ 1
sþ 2

� 1
x

� 	
� 1;

with s and j being the positron kinetic energy and the photon en-
ergy, respectively, in units of electron rest mass. The annihilation
photons are restricted by kinematics to an energy range of

me

1þ a0
6 Em;ann 6

me

1� a0
; ð60Þ

where

a0 �
ffiffiffiffiffiffiffiffiffiffiffiffi

s
sþ 2

r
:

Finally, a source term for the annihilation photons per unit mass of
material may be expressed as

fm;annðEm; xÞ ¼
Z Tmax

Tmin

uðEþ; xÞ
drann

dEm
dTþ: ð61Þ

Production of annihilation photons occurs with the highest
probability near the electron/positron rest mass energy. For the
Europa case of Fig. 4, the annihilation photon source terms calcu-
lated according to Eq. (61) are shown in Fig. 5 and exhibit the ex-
pected peak at 0.511 MeV. Since this contribution is small relative
to the other processes, these photons are not transported in the
present formulation.
Fig. 4. Positron flux at selected thicknesses in aluminum for Europa spectrum [19].
The curves for a depth of 8:89 g=cm2 and 15:3 g=cm2 overlap above 1 MeV.
4. Dosimetric calculations and comparisons

The conventional radiation dose for ionizing radiations in mat-
ter is defined as the energy imparted to a mass element of the
material by the particles traversing the elemental mass. In general,
only energetic charged particles are responsible for the energy
transfer. The ‘‘dose” attributed to uncharged particles (e.g. photons,
neutrons) results from the charged particles generated within the
medium by the neutrals.

4.1. Electron and photon dose evaluation

Energy deposition of electrons is calculated by multiplying the
local flux (differential in energy) by the total stopping power and
integrating over energy. The dose at a given location is given by

DeðxÞ ¼
Z 1

0
ueðx; EÞSðEÞdE: ð62Þ

In Eq. (62), E represents the electron energy at position x. The local
differential flux, ue, has units of electrons/(cm2 MeV). The stopping
power, S, has units of MeV cm2/g, while the units of De are MeV/g
which may be converted to cGy or rads upon multiplication by
the conversion factor 1:602� 10�8. For photons, absorbed dose is
characterized by the energy deposition coefficient, len, which is de-
scribed in Eq. (35) and is expressed herein as a mass absorption
coefficient with units cm2=g. The dose attributed to photons is then

DmðxÞ ¼
Z 1

0
lenEmumðEm; xÞdEm: ð63Þ

The use of len to calculate effective photon dose (as is done in
the present code) is a simplistic approximation method that has
been widely used and considered to be an adequate representation
of this dose contribution [2,5]. This approximation assumes that all
the energy deposited by photons is deposited by charged particles
at the point of their production. A more direct evaluation would be
to use the appropriate cross sections for generation of secondary
electrons (rPE;rin, and rpp) to compute respective source terms
in the manner expressed in Eq. (34). The corresponding flux terms
could then be determined using procedures analogous to that de-
scribed for the positron transport in Eqs. (53)–(57). Such modifica-
tions may be considered for future upgrades if the additional
complexity appears to be warranted.

4.2. Sample calculations and comparisons

Calculations performed with the present code were selected to
examine the behavior of trapped electron spectra interacting with



Fig. 8. Comparison of LaRC results in tantalum with ITS [20] for Europa spectrum
[19].
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light and heavy materials. The chosen electron environment spec-
tra (boundary conditions) are shown in Figs. 1 and 2 and represent,
respectively, the environment in LEO (400 km, 51� inclination) [18]
and the environment in the vicinity of the orbit of the Jovian moon
Europa [19]. The initial environment is shown as the curves labeled
Z = 0.0 in Figs. 1 and 2, along with the flux spectra at various depths
in aluminum. After transport through the shield medium, the doses
have been evaluated in silicon to simulate exposure of a solid state
device.

The Integrated TIGER Series (ITS) Monte Carlo code [20] was
used to calculate dose for the LEO spectrum electrons on aluminum
at normal incidence for several depths. The identical scenario was
used with the LaRC deterministic code and the results are com-
pared in Fig. 6. The LaRC code gives generally lower values for
the dose versus depth functions than the Monte Carlo results,
but the functional behavior is very similar. Greater differences
are to be expected for the low energy spectra of LEO because scat-
tering processes are more prominent in the transport process and
are treated differently in the two calculations.

For higher energy electron spectra, sample application compar-
isons have been made for a Jovian electron environment generated
by the NASA-JPL GIRE model [19]. The relevant spectrum is shown
in Fig. 2 as the curve labeled Z = 0.0 and represents electron flux in
Fig. 6. Comparison of LaRC results in aluminum with ITS [20] for LEO spectrum
[18]. The results for ITS and LaRC overlap for electrons above approximately
2 g=cm2 of aluminum.

Fig. 7. Comparison of LaRC results in aluminum with ITS [20] for Europa spectrum
[19].

Fig. 9. Comparison of LaRC results in W–Cu alloy with ITS [20] for Europa spectrum
[19].
Jupiter’s equatorial plane at the average orbital distance of Europa.
The normal incidence on a semi-infinite slab scenario was used for
the materials aluminum, tantalum, and copper–tungsten (50%–
50%) alloy. The previous LEO spectrum exhibited very few elec-
trons above 5 MeV, whereas the Europa electrons may have sub-
stantial population up to and beyond 100 MeV.

The dose versus depth curves for the Europa spectrum are given
in Figs. 7–9 for the specified materials. In general, the LaRC deter-
ministic calculations show improved agreement with the corre-
sponding Monte Carlo results compared to the lower energy LEO
environment. The range of scaled thickness for the Europa cases
is from 0.5 to 20 g=cm2. It is seen that electron stopping is practi-
cally complete at the end of this thickness range, after which the
bremsstrahlung contribution dominates.

5. Concluding remarks

The electron/photon transport code described here has been
developed with a view toward simplicity and speed in analysis of
exposure from space environment electrons. In its present form,
the code may be implemented to great advantage in shield mate-
rial trade studies, numerical and statistical experiments, uncer-
tainty analyses, etc., despite some observed differences with
Monte Carlo comparisons. Numerous comparative calculations, in
addition to those reported here, have been performed with similar
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degrees of agreement as those presented in the text. In particular,
calculations for the trapped Jovian environment compare more
favorably with corresponding Monte Carlo results than do the
comparisons for the much lower energy-range spectra of LEO. This
fact suggests that the deterministic formulas for low-energy scat-
tering should be improved in future versions.

There are several areas in which improvements to the code are
being considered. The various cross section comparisons with NIST
[5] calculations show several instances where the LaRC code cross
sections may be improved by introducing selective correction
terms, even though the cross section deviations noted have little
impact on final exposure results. In the LaRC vs. ITS comparisons,
the normal incidence/semi-infinite slab geometry was used. For
the lower energy LEO spectrum, the LaRC code results for Al–Si
were consistently 50% of the ITS results with the overall trends
being well-reproduced. The corresponding Europa comparison
showed improved agreement (average deviation 20% including
both positive and negative deviations). It has been noted that cross
section formulations used here may be subject to improvement
with added parameterizations or introduction of tabular data.
However, even with improved input data, the essentially 1-D
transport calculation, when applied to 2- and 3-D situations, must
be used with caution and an awareness of limitations. The 1-D
high-speed calculation should be most useful for indicating trends
and providing comparative trade studies related to shield compo-
sition, thickness, and layering sequence. Ultimate shield effective-
ness assessments should be verified with well-established Monte
Carlo calculations. With regard to transport, the present code is
amenable to immediate extension to a two-dimensional axi-sym-
metric representation. In addition, more explicit details pertaining
to very high energy processes involving positrons and their annihi-
lation photons may be obtained by a formal coupling of these spe-
cies to the general electron/photon transport. Although no
significant errors are indicated as a result of the decoupling of pos-
itron and annihilation photon transport for the Jovian spectral
environments, use of the present code for high energy beam simu-
lation or cosmic ray shower analysis would most likely require full
coupling of these processes. It is therefore natural to anticipate
code upgrades and extensions in the near future.
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