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a b s t r a c t

A general expression has been derived that allows computation of charge-exchange straggling of swift
heavy ions when many charge states are involved. Charge exchange is found to hinge on the variation
of the stopping cross section with the ion charge and on the transient behavior of the charge population
as a function of traveled pathlength. These effects appear factorized in the final formula. The focus of this
paper is on straggling in charge equilibrium. The case of MeV/u sulfur ions in carbon has been used as an
illustration. Charge-exchange straggling is found to be dominating straggling over a considerable range of
beam energies.

� 2010 Elsevier B.V. All rights reserved.
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1. Introduction

Straggling denotes the broadening of the energy-loss spectrum
of a beam of charged particles with increasing penetration depth
[1]. Theoretical understanding of straggling has been proceeding
slowly over many years because of a considerable number of ef-
fects that need to be analyzed. All those processes which deter-
mine the mean energy loss, such as excitation and ionization of
target electrons, projectile excitation, charge exchange, elastic nu-
clear collisions, pair creation and bremsstrahlung, contribute
potentially to straggling albeit with different weight. In addition
there are spatial correlation effects which are specific to straggling.

Charge exchange is known to play a dual role in stopping:
firstly, electron capture and loss contribute to the energy balance
in individual collisions. Secondly, charge exchange affects the sta-
tistics of particle penetration even if the associated energy loss is
negligible, since all stopping processes mentioned above depend
on the charge state of the penetrating ion. If the charge state fluc-
tuates, energy loss must fluctuate. This affects the mean energy
loss and, even more, the straggling.

Charge-exchange straggling has been mentioned early [2] and
discussed in the experimental literature [3–5]. Direct evidence
emerges from state-specific energy-loss measurements [6–9] and
subsequent work by these teams.

The first theoretical studies [3,10] focused on systems with only
two charge states. General transport equations for an arbitrary
number of states were derived by Winterbon [11], who explicitly
All rights reserved.
studied the case of 15 MeV I ions in O2 on the basis of a simple
stopping model. Emphasis was laid there on the transient behavior
as a function of pathlength. This work made it clear that straggling
by charge exchange may well exceed the Bohr prediction [12] of
‘collisional straggling’. Experimental evidence showing huge strag-
gling values for swift heavy ions has emerged subsequently [13].

A general expression governing energy-loss spectra in thin lay-
ers in the presence of charge exchange was presented in Ref. [14].
This scheme determines the energy-loss spectrum as a function of
entrance and exit charge from zero thickness up to charge equilib-
rium. General expressions were derived for mean energy loss and
variance, including transient behavior [14,15]. The expression
found in Ref. [3] for a 2-state system was generalized, and an expli-
cit expression was derived also for a 3-state system [14]. The
scheme was applied primarily to state-specific energy-loss spectra
for quasi-two-state systems as a function of thickness in Ref. [16]
and subsequent studies.

The treatment offered in Refs. [14,15] makes heavy use of an
eigenvalue expansion. This was found to be useful in a general
analysis but less convenient in practical calculations. The present
treatment, based on Ref. [14], is geared toward systems with many
charge states where a continuum description appears justified.
2. Recapitulation

2.1. General

The energy-loss spectrum of a penetrating ion as a function of
pathlength x is expressed as a matrix [14]

http://dx.doi.org/10.1016/j.nimb.2010.11.094
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FðDE; xÞ ¼ jjFIJðDE; xÞjj; ð1Þ

where I and J denote the state of the ion at depth 0 and x, respec-
tively. Talking about ‘states’ instead of ‘charge states’ allows to in-
clude excitation states of the ion. FðDE; xÞ can be expressed as a
Bothe–Landau integral [14],

FðDE; xÞ ¼ 1
2p

Z 1

�1
dkeikDEeNxQ ðkÞ; ð2Þ

where N is the number of atoms per volume and Q ðkÞ a matrix with
the elements

Q IJðkÞ ¼ Q IJ �
Z

drIJðTÞ 1� e�ikT
� �

; ð3Þ

Q IJ ¼ rIJ � dIJ

X
L

rIL: ð4Þ

Here drIJðTÞ is the differential cross section for energy loss ðT; dTÞ
and transition from I to J and rIJ ¼

R
drIJðTÞ the total transition cross

section.
Eq. (4) assumes that consecutive collisions are separated in

space and take place at random intervals, and that the total en-
ergy loss during passage through pathlength x is small so that
cross sections can be assumed independent of pathlength. One
may question the validity of the first assumption in case of a
dense medium. An attempt to take into account quantum inter-
ferences in charge-state statistics has been made in Ref. [17].
The second restriction is more technical and can, if necessary,
be circumvented by division into sublayers and subsequent
convolution.

2.2. Moments

The zeroth moment over FðDE; xÞ delivers the charge fractions
FIJðxÞ. The first moment delivers the mean energy loss summed
over all exit states,

dhDEi
Ndx

� �
I
¼
X

J

FIJðxÞSJ ; ð5Þ

where SJ ¼
P

LSJL is the total stopping cross section of an ion in state
J and

SJL ¼
Z

T drJLðTÞ ð6Þ

a partial stopping cross section. The expression

dhDE2i
Ndx

 !
I

¼
X

J

FIJðxÞWJ

þ 2
X
JKL

N
Z x

0
dx0 FIJðx� x0ÞSJK FKLðx0ÞSL ð7Þ

can be extracted for the second moment from Ref. [14], where
WJ ¼

P
LWJL, and

WJL ¼
Z

T2 drJLðTÞ ð8Þ

is a partial straggling parameter.

3. Straggling

The variance over the energy-loss profile follows from Eqs. (7)
and (5),

d
Ndx

DE2
D E

I
� DEh i2I

� �
¼
X

J

FIJðxÞWJ þ
dDX2

I

Ndx
; ð9Þ
where

dDX2
I

Ndx
¼ 2

X
JKL

N
Z x

0
dx0 FIJðx� x0ÞSJK FKLðx0Þ � FILðxÞ½ �SL ð10Þ

represents charge-exchange straggling. This expression is exact
within the assumptions specified above.

With increasing pathlength x the memory is lost, so that

FIJðxÞ ! FJ for x� K; ð11Þ

where FJ is the equilibrium fraction in state J and K an equilibration
distance. For x� K the integrand in Eq. (10) is nonvanishing for
x0KK and can therefore be replaced by FJ½FKLðx0Þ � FL�, so that

dDX2

Ndx
¼ 2N

X
JKL

FJSJK SL

Z 1

0
dx FKLðxÞ � FLð Þ ð12Þ

for x� K, independent of the initial state I.

4. Continuum approximation

4.1. Stopping cross section

The approximation will be made that the stopping cross section
SJ only depends on the instantaneous ion charge qJ , i.e.,

SJ ¼ SðqJÞ: ð13Þ

This implies that the effect of the detailed arrangement of the pro-
jectile electrons on the energy loss is neglected. An indication of the
accuracy of this approximation may be found in Ref. [18], Fig. 6,
where the difference between stopping cross sections for Ni in C,
evaluated for two projectile configurations reflecting the same
charge state, is barely visible. The influence of the electron configu-
ration on charge-exchange cross sections is unquestionably greater
than on energy-loss cross sections.

In charge equilibrium the charge state fluctuates around its
mean value

q ¼
X

J

qJFJ : ð14Þ

In the following it will be assumed that the dependence of the stop-
ping cross section on the instantaneous ion charge can be approxi-
mated as

SJ ’ s0 þ ðqJ � qÞs1 þ
1
2
ðqJ � qÞ2s2 ð15Þ

where

s0 ¼ SðqÞ; s1 ¼
dS
dqJ

�����
qJ¼q

; s2 ¼
d2S

dq2
J

�����
qJ¼q

: ð16Þ

The quantities s0; s1 and s2 depend only on q, i.e., on the beam en-
ergy for a given ion-target combination.

Fig. 1 illustrates Eq. (15) on a representative example. The stop-
ping cross section for 1 MeV=u Brqþ ions in Ne has been calculated
for a number of charge states by means of the PASS code, which
implements binary stopping theory [18,19]. Similar results have
been found by experiments [9] and other computational schemes
[20,21]. It is evident that already a linear approximation, which
was utilized in Ref. [22] in the analysis of charge fractions, may
be well justified. By adding a quadratic term a near-perfect fit is
obtained.

Adopting Eq. (15) one findsX
L

Z 1

0
dx FKLðxÞ � FLð ÞSL ¼ ðs1 � qs2ÞbK þ

1
2

s2cK ; ð17Þ
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Fig. 1. Stopping cross section for 1 MeV=u BrqJþ ions in Ne calculated by the PASS
code [18]. Target excitation/ionization only. Also included are a linear and a
quadratic approximation, Eq. (15). q ¼ 22:5 is the mean equilibrium charge at
1 MeV/u according to ETACHA [24].
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where

bK ¼
X

L

qL

Z 1

0
dx FKLðxÞ � FLð Þ ð18Þ

and

cK ¼
X

L

q2
L

Z 1

0
dx FKLðxÞ � FLð Þ: ð19Þ

The term proportional to s0 drops out because of the sum ruleP
JFJ ¼ 1. With this, Eq. (12) reduces to

dDX2

Ndx
¼ 2N

X
JK

FJSJK s1 � qs2ð ÞbK þ
1
2

s2cK

	 

ð20Þ

for x� K. In the present explorative study mainly the linear
approximation in Eq. (17) has been employed. The correction due
to the second-order term is a few per cent in cases investigated
explicitly. Then Eq. (20) reduces to

dDX2

Ndx
¼ 2Ns1

X
JK

FJSJKbK : ð21Þ
4.2. Diagonal and off-diagonal contributions

It is tempting to apply the approximation (15) also to the partial
stopping cross sections SJK . Here it is advisable to split Eq. (20) into
diagonal, J ¼ K , and off-diagonal terms, J – K. For the diagonal
terms Eq. (21) reduces to

dDX2

Ndx

 !
diag

¼ 2Ns1sdiag
1

X
J

FJðqJ � qÞbJ ð22Þ

in the linear approximation, where sdiag
1 relates to SJJ as s1 relates to

SJ . The lowest-order term / s1sdiag
0 has dropped out becauseX

J

FJFJLðxÞ ¼ FL; ð23Þ

which expresses the fact that the equilibrium distribution does not
change with increasing pathlength.

Off-diagonal terms represent energy loss by charge exchange.
Such terms are often neglected altogether. Keeping them neverthe-
less for a while, one may simplify the situation by only taking into
account one-electron capture and loss events. Dropping all terms
with K – J � 1 one finds
dDX2

Ndx

 !
off

¼ 2Ns1

X
J

bJ FJ�1SJ�1;J þ FJþ1SJþ1;J
� �

: ð24Þ

Here the quantity within the parentheses depends on J. One may as-
sume a dependence analogous to Eq. (15),

FJ�1SJ�1;J þ FJþ1SJþ1;J ’ FJ soff
0 ðqÞ þ ðqJ � qÞsoff

1 . . .
� �

; ð25Þ

even though the continuum description may be less accurate here
when q approaches a closing or opening shell.

After addition of this to Eq. (22), Eq. (21) reads

dDX2

Ndx
¼ 2Ns1s01

X
J

FJðqJ � qÞbJ; ð26Þ

where

s01 ¼ sdiag
1 þ soff

1 : ð27Þ
5. Evaluation

Eq. (26) is seen to be composed of a factor s1s01 governed by the
stopping dynamics and a factor

G0 ¼
X

J

FJðqJ � qÞbJ ð28Þ

governed by the statistics of charge exchange. In the following
example, energy loss by charge exchange will be neglected, so that
the energy-loss factor reduces to

s1s01 ’
dS
dqJ

 !
qJ¼q

2
4

3
5

2

: ð29Þ
5.1. Influence of the stopping cross section

The quantity s1 ¼ dSdiag
=dqJjqJ¼q has been determined by means

of the PASS code [18,19] via s1 ¼ SðqþÞ � Sðq�Þ, where q� and qþ are
the neighboring integer charge states surrounding the equilibrium
charge q.

Fig. 2 shows s2
1 for He, S, and U ions in carbon over four orders of

magnitude in beam energy. Also included is the square of the equi-
librium stopping cross section S for the respective ions. The two
quantities show qualitatively a similar behavior, but the variation
of s2

1 with Z1 is less dramatic than that of S2.

5.2. Influence of charge-exchange statistics

This section focuses on the factor G0 defined in Eq. (28). The first
step in the development of a comprehensive code, based on
charge-state statistics starting from FðxÞ ¼ expðNxQ Þ, is in progress
[23]. Preliminary results are reported here based on a manual eval-
uation for swift sulfur ions in carbon.

Charge fractions have been evaluated from the zeroth moment
over Eq. (2). The code presented in Ref. [23] is computationally effi-
cient and accurate, but cross-sectional input is incomplete. In par-
ticular, only one projectile state has been allowed for every charge
state, and spontaneous processes such as Auger decays have not
yet been incorporated.

Alternatively, charge fractions may be evaluated from the ETA-
CHA code [24] which is based on rate equations. Input from atom-
ic-collision physics includes cross sections for electron capture and
loss as well as transition probabilities for radiational decay and Au-
ger processes. Data are based on Born approximation (electron loss
and excitation) and eikonal approximation (capture).
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Fig. 2. Comparing S2, where S ¼ s0;diag is the collisional stopping cross section in
charge equilibrium, with s2

1, where s1 ¼ dSdiag=dqjjqJ¼q is the derivative of S with
respect to the ion charge. Calculated by the PASS code [18] for He, S and U in C.

Fig. 3. The quantity bK versus ion charge, defined in Eq. (18) and determined by
ETACHA for sulfur ions in carbon at five beam energies.

Fig. 4. The quantities bJ , asymptotic charge fraction FJ and the product FJðqJ � qÞbJ

which determines the factor G0, Eq. (28), for 1 MeV/u S in C as a function of the
incoming charge qJ . Determined from ETACHA output.
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The value of G0 has been found to sensitively depend on the
quantities bK defined in Eq. (18) as well as the asymptotic charge
fractions FJ . The accuracy of these quantities is limited firstly by
the limited range of validity of the cross-sectional input. The
authors of Ref. [24] mention a lower limiting beam energy of
1 MeV/u. Moreover, the ETACHA version available to us is limited
to Z1 6 36. We note that those cross sections that do enter the ma-
trix method are taken from ETACHA.

In contrast to the matrix method, numerical inaccuracies are
significant in ETACHA. Charge fractions may show an oscillatory
behavior in the equilibrium regime ðx� KÞ, and even in the
absence of such oscillations the value of the asymptotic charge
fraction may depend on the initial charge state. Problems associ-
ated with these features can be reduced by carefully choosing
the upper limit in the integration over x and by verifying that
sum rules are obeyed. The case of sulfur ions in carbon has been
chosen here, because explicit inspection of all intermediate steps
suggests credible results for a rather broad range of beam energies.
A systematic evaluation for many ion-target combinations is in-
tended, once the project reported in Ref. [23] has been completed.

Fig. 3 shows the quantity bK defined in Eq. (18) as a function of
charge state for a series of beam energies. Fig. 4 shows bJ for
1 MeV/u together with the equilibrium charge fraction FJ as well
as the product FJðqJ � qÞbJ which determines G0 according to Eq.
(28).

Fig. 5 shows G0 as a function of the beam energy. It is seen that
the results found by ETACHA and the matrix method are similar as
far as the shape and the height of the maximum are concerned,
whereas they are displaced relative to each other horizontally.
The peak positions differ by 2.5 charge units.

This difference appears significant and warrants a decision on
what to rely on. In view of the similar shape of the curves we assert
that the difference cannot be caused primarily by numerical defi-
ciencies in ETACHA. Conversely, we know from Ref. [23] that the
present implementation of the matrix method tends to signifi-
cantly overestimate the equilibration depth and, hence, may affect
the integrals bJ over the transients. Moreover, unlike ETACHA, the
matrix method overestimates the mean equilibrium charge signif-
icantly (Fig. 6) as compared to the common Thomas-Fermi esti-
mate. Therefore we assert that the ETACHA curve is closer to the
correct result. We emphasize, however, that the asserted deficien-
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cies of the matrix method are due to incomplete input rather than
to fundamentals of the method.

Fig. 7 shows the correction for charge-exchange straggling
resulting from Eq. (26) relative to Bohr straggling,

WBohr ¼ 4pZ2
1Z2e4; ð30Þ

where Z1 ¼ 16 and Z2 ¼ 6 are atomic numbers of projectile and tar-
get, respectively. Most striking is the magnitude of the effect:
Adopting the result from ETACHA we find a straggling correction
0.1
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Fig. 7. Straggling correction DW=WBohr due to charge exchange. Results found from
the matrix method (empty symbols) and from ETACHA (solid symbols).
of five times Bohr straggling at 7.5 MeV/u. This is to be compared
with a peak value of 0.76 times Bohr straggling due to bunching
for Ar in C at 0.5 MeV/u [25]. In accordance with Fig. 5, the general
behavior is determined primarily by the charge-state factor G0. Un-
like in collisional straggling, in particular bunching and packing
[25], the influence of the stopping cross section is of secondary
importance.

6. Summary

A hierarchy of formulae has been offered, all of which allow
computation of charge-exchange straggling. Most general is Eq.
(10) which is rigorous within the basic model. Eq. (12) is likewise
rigorous but limited to charge equilibrium. Eq. (20), which invokes
the continuum description of the total stopping cross section, is as-
serted to still contain all the essentials, while its linear version Eq.
(21) is more approximate. Once the continuum approximation has
been made it appears reasonable to go all the way and to apply it to
the diagonal and nondiagonal terms of SJK . This leads to Eq. (26) or
the corresponding second-order relation (not shown).

Eq. (26) is very suited for studying trends, preferably taking into
account energy loss by charge exchange in accordance with Eq.
(15) or, if the latter is considered negligible, Eq. (21).

An interesting feature which may be hard to extract from the
general formulae, Eqs. (10) or (12), but which emerges readily from
Eq. (26), is the relative influence of energy-loss dynamics and
charge-exchange statistics on charge-exchange straggling. For the
system considered in Fig. 5 it appears that the energy dependence
is governed primarily by charge-state statistics. If this finding
should prove to be more generally valid, it would imply a means
of separating straggling by charge exchange from collisional strag-
gling, in particular the bunching effect in collisional straggling.

The numerical part of this study has revealed the importance of
accurate input in the form of transient charge fractions FIJðxÞ, what-
ever the cross-sectional input. Absolute numbers reported here are
expected to be subject to modification as the project reported in
Ref. [23] develops.
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