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Abstract

In the present article the available formulas for diffraction radiation (DR) by an electron near a perfectly conducting

half plane are generalized to any direction of the electron velocity, using Lorentz transformation. This allows to take

into account electron beam divergence in an exact way. A new method for determining both horizontal and vertical

beam divergence using one slit DR radiator, but two optical wavelengths, is proposed.

� 2002 Published by Elsevier Science B.V.
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1. Introduction

The problem of precision diagnostics of low

emittance electron beams is rather pressing as it is

planned in the nearest future to produce electron–

positron linear colliders and X-ray free electron

lasers using electron beams of the record parame-
ters.

Nowadays the beam diagnostics based on op-

tical transition radiation (OTR) has been used

rather widely [1–3]. This is due to the fact that

OTR has such advantages as: (i) a well developed

theory allowing to obtain information on electron

beam parameters using the characteristics of OTR

(ii) comparatively simple equipment and (iii) an

opportunity to carry out measurements in low

background conditions using so called backward

transition radiation emitted at a large angle with
respect to the electron beam. But the use of a solid

target for OTR generation (such as foil) inevitably

results in impairing the beam parameters.

During the last years a new method of nonin-

vasive beam diagnostics has been developed. The

method is based on the diffraction radiation (DR)

of ultrarelativistic electrons, i.e. radiation appear-

ing when a charged particle is moving close to the
edge of a screen. Up to now the theory has been
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developed for the case of a perfectly conducting

target (semi-infinite screen or slit in infinite screen,

see [4–11] for example).

The angular distribution of optical DR has
been calculated by Castellano for an electron beam

passing through a slit in the screen which is ori-

ented perpendicular to the beam axis, assuming a

Gaussian beam profile in the transverse directions

[7]. The point of investigation in this work was the

angular distribution of DR which is emitted close

to the direction of the initial electron beam. The

application of that geometry to beam diagnostic
measurements necessitates either to deflect the

downstream electron beam, resulting in an addi-

tional background due to the emission of syn-

chrotron radiation, or to deflect the DR light with

a mirror close to the beam, producing additional

DR from the mirror edge.
In the case of OTR beam diagnostics, the sim-

plest way to avoid these additional radiations is to

use the backward radiation geometry, in which the

target (i.e. a foil) is tilted, typically at an angle

u0 ¼ 45� from the beam axis, and OTR is detected
at an angle uD ¼ 2u0 ¼ 90�. As it is shown in [8]
by a complete analogy with transition radiation,

the DR angular distribution of ultrarelativistic
particles has the form of two cones with a char-

acteristic apex angle �c�1, c is the Lorentz factor,

Fig. 1. Coordinate system for DR produced by a charged partical moving in (a) perpendicular geometry: the polar angle between

electron beam and a target is w0 ¼ p=2, (b) parallel geometry: the azimuthal angle is u0 ¼ p=2.
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one of them being centered along the direction of

the initial particle velocity (forward DR), and the

other one along the direction of specular reflection

from the target plane (backward DR). It is obvious
from the discussion above that the preferable ge-

ometry for beam diagnostics measurements is that

one investigating the backward DR component.

In [9] the authors investigated the backward DR

angular distribution for a slit under the influence

of the electron beam divergence, assuming the di-

vergence takes place in the plane perpendicular to

the slit orientation. In [10] Fiorito and Rule pro-
posed a method for measuring the electron beam

divergences and sizes in the two transverse direc-

tions, making use of two DR slit radiators and

analyzing the polarization of the radiation. These

authors present a simple approximate method of

calculation of backward DR. In [12] Fiorito also

considered the interference between forward DR

of a first radiator and backward transition radia-
tion of a second radiator as a promising tool for

beam diagnostics.

Exact formulas for the DR spectral-angular

distribution of a particle moving close to a semi-

infinite ideally conducting target were obtained

more than 30 years ago [4,5]. The obtained for-

mulas represent two special cases. The first one

considers a geometry in which the projection of the
electron trajectory onto the target plane is per-

pendicular to the target edge (perpendicular case,

w0 ¼ p=2, u0 arbitrary; Fig. 1(a)). In the second
case the projection is parallel to the target edge

(parallel case, w0 arbitrary; u0 ¼ p=2; Fig. 1(b)). It
is evident that for precision diagnostics purposes it

is necessary to obtain general formulas describing

the DR characteristics for any incoming angles of
electrons. It will allow to analyze the influence of a

real electron beam with finite divergences in the

two perpendicular planes.

Later in [8] it was shown that in the ultrarela-

tivistic approximation (c � 1) the formulas of DR

spectral-angular distribution for both geometries

coincide. The authors of [10] also reproduce this

formula and use it for geometries which differ from
the two above-mentioned special ones for the case

when an electron beam has both horizontal and

vertical divergences. In the present article, using

Lorentz transformation (LT), we will get the gen-

eralization of the exact formula [4] to any geom-

etry, i.e. we will give the DR spectral-angular

distribution when the projection of an electron

trajectory onto the target plane is inclined at any
angle with respect to the target edge. This will al-

low to calculate the effect of the initial electron

beam divergence on the DR radiation character-

istics for any electron energy, and in the case

c � 1, to justify the use of an universal approxi-

mate formula for DR.

2. DR spectral-angular distribution, general case

Let us consider the perpendicular case (Fig.

1(a)), where u0 is the azimuthal angle between the
electron beam and the target plane. As it is shown

in [4], in this case the DR spectral-angular distri-

bution is described by the following expression:

d2W
dxdX

¼ a
4p2

b
sinw

exp

�
� 4ph

kb

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� b2 sin2 w

q �
� ðð1� b2 sin2 wÞð1þ bx sinwÞð1� cosuÞ
þ cos2 wð1� bx sinwÞð1þ cosuÞÞ
=ðð1� b2 sin2 wÞ½ð1� bx sinw cosuÞ2

� b2y sin
2 w sin2 u
Þ: ð1Þ

The system of units used in Eq. (1) and in the

following is �h ¼ c ¼ 1; ~bb ¼ fbx; by ; 0g ¼ bfcosu0;
sinu0; 0g, b is the electron velocity, u, w are the

azimuthal and polar angles of photon emission as

shown in Fig. 2; x is the DR photon energy; c the

Fig. 2. Coordinate system for DR. General case, the electron

beam has arbitrary angle u0, w0 with respect to the target plane.
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Lorentz factor; a the fine structure constant; h the
shortest distance to the target. The dependence on

the electron angleu0 with respect to the target plane
is expressed in Eq. (1) by the components bx, by .

Let us now consider the case when the electron

moves strictly perpendicular to the target plane
~bb ¼ f0; by ; 0g. Then, in the system of coordinates

of an observer which moves along the Z-axis with
velocity ~VV , according to the LT, the electron ve-
locity will have two components (0, b0

y ¼
byð1� b02

z Þ
1=2
, b0

z ¼ V =c). Thus, in a moving sys-
tem, where all variables are indicated by a prime,

we have the parallel case considered in [5]. The

validity of such an approach rely on the homoge-

neity of the screen along the Z-axis and the in-
variance of the boundary conditions for the total

field at the surface of the screen,

Ex ¼ Ez ¼ By ¼ 0;
under the considered LT (strictly speaking, this
invariance needs a perfectly conducting screen).

Consequently, in any reference frame moving

along that axis the Maxwell equations will describe

the same processes as in the laboratory frame. So,

using the LTs,

sinw ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� b02

z

q
sinw0

1� b0
z cosw

0 ; cosw ¼ cosw0 � b0
z

1� b0
z cosw

0 ;

ð2Þ

x ¼ x0ð1� b0
z cosw

0Þffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� b02

z

q ; bx;y ¼
b0
x;yffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� b02
z

q ;

and changing the unprimed components in Eq. (1)

with the primed ones according to formulas (2) we

get

d2W
dXdx

����ð?caseÞ
ð0;by ;0Þ

���!LT a
4p2

b0
yð1� b0

z cosw
0Þ

sinw0

� exp
 

� 4ph
k0b0

y

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� b0

z cosw
0Þ2 � b02

y sin
2 w

q !
� fð½ð1� b0

z cosw
0Þ2 � b02

y sin
2 w0
ð1� cosuÞ

þ ðcosw0 � b0
zÞ
2ð1þ cosuÞÞ=ð½ð1� b0

z cosw
0Þ2

� b02
y sin

2 w0
½ð1� b0
z cosw

0Þ2 � b02
y sin

2 w0 sin2 u
Þg

� ð1� b0
z cosw

0Þ2

1� b02
z

x02

zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{x2

1

x02

¼ d2W
dX0 dx0

����ðnon ?caseÞ

ð0;b0y ;b0zÞ

x2

x02 : ð3Þ

The last sign of equality follows from the known

Lorentz invariance of ðd2W =dXdxÞ � ð1=x2Þ.
Comparing the obtained expression with the re-

sults [5] for the parallel case we see a complete

identity of the formulas for the DR spectral den-
sity. Performing the same consideration for the

perpendicular case, but this time with two nonzero

components of velocity ~bb ¼ ðbx; by ; 0Þ, we obtain
the general case, i.e. the velocity projection has an

arbitrary angle with respect to the target edge (in

other words the electron velocity has three non-

zero projections). The spectral-angular density for

the general case (Fig. 2), i.e. for ~bb ¼ fbx; by ; bzg ¼
bfcosu0 sinw0; sinu0 sinw0; cosw0g is expressed as

d2W
dxdX

¼ a
4p2

b?ð1� bz coswÞ
sinw

exp

�
� 4ph

kb?

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� bz coswÞ

2 � b2? sin
2 w

q �
� ½ð1
�

� bz coswÞ
2 � b2? sin

2 w


� 1

�
þ bx sinw
1� bz cosw

�
ð1� cosuÞ

þ ðcosw � bzÞ
2
1

�
� bx sinw
1� bz cosw

�
� 1ð þ cosuÞ

��
ð½ð1� bz coswÞ

2

� b2? sin
2 w
½ð1� bz cosw � bx sinw cosuÞ2

� b2y sin
2 w sin2 u
Þ: ð4Þ

Here b2? ¼ b2x þ b2y . It is obvious that Eq. (4) in-
cludes both geometries as special cases: the per-

pendicular one for bz ¼ 0 and the parallel one for
bx ¼ 0. Note that the spectral-angular distribution
is even in u, implying the symmetry between for-
ward and backward DR with respect to the screen

plane (for a perfect infinite thin screen).
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3. Ultrarelativistic approximation

The spectral-angular distribution of Eq. (4) at-
tains its maximum value near the place where the

denominator is minimum. As pointed out in [8],

this gives two symmetrical cones of maximal in-

tensity, centered at w ¼ w0, u ¼ �u0. Accordingly,
for ‘‘forward’’ DR, we write

u ¼ u0 þ
hu

sinw0
; w ¼ w0 þ hw; ð5Þ

whereas for radiation along the specular direction

(‘‘backward’’ DR)

u ¼ �u0 þ
hu

sinw0
; w ¼ w0 þ hw; ð6Þ

with hw, hu � 1, as shown in Fig. 2. As an example

let us consider ‘‘backward’’ radiation. In the ul-

trarelativistic approximation c � 1 the variables

hw, hu are of the order �c�1. Expansion of nu-
merator and denominator in Eq. (4) up to the

order of c�2 results in the following expression:

d2W
dxdX

����
one edge

¼ a
4p2

exp

�
� x

xc

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ c2h2w

q �

�
c�2 þ 2h2w

ðc�2 þ h2wÞðc�2 þ h2w þ h2uÞ
:

ð7Þ

Here xc ¼ c=2h is the characteristic energy of the
DR spectrum. It should be noted that in Eq. (7)

the angles hw, hu are counted from the specular

direction. It is important to notice that in the ul-

trarelativistic approximation the DR spectral in-
tensity from a semi-infinite half plane for the

general case, Eq. (7), is the same than for the

perpendicular and the parallel geometry, cf. [8]. As

a consequence, considering DR from a slit target

for the general case it is sufficient to adopt the

results derived in [9] for the perpendicular case, as

we will point out in Section 4.

4. DR from a slit

Let us now consider the case when the electron
beam passes through a slit in a tilted target in the

geometry shown in Fig. 3(a). The angles between

one individual electron trajectory and the target

plane are

w0 ¼ �ww0 þ Dw; u0 ¼ �uu0 þ Du;

with the beam divergences Dw, Du � 1 and the
coordinates of the beam axis �ww0, �uu0. As shown in
Section 3 the DR intensity for the semi-infinite half

plane in the ultrarelativistic approximation does

not depend on the geometry. Therefore, in the case

shown in Fig. 3(a) the single electron spectral-an-

gular distribution from the slit is given by the same

expression than for the exact perpendicular geo-

metry, ðw0 ¼ p=2Þ, from [10]. The only modifica-
tion is that for the general case the angular

deviations hw, hu are defined as follows:

hw ¼ w � w0; hu ¼ ðu þ u0Þ sinw0;

while for the target with a slit considered in [10]

(perpendicular geometry) the introduced angles

are defined as hw ¼ w � ðp=2Þ, hu ¼ u þ u0.
The DR spectral-angular density from the slit in

the general case is therefore expressed as

Fig. 3. (a) General view of backward DR emitted by a particle

passing through a slit, (b) top view.
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d2W
dxdX

����
slit

¼ ac2

4p2

exp � x
xc

ffiffiffiffiffiffiffiffiffiffiffiffi
1þ t2w

q� �
ð1þ t2wÞð1þ t2w þ t2uÞ

� 2ð1
(

þ 2t2wÞ cosh 2l
x
xc

ffiffiffiffiffiffiffiffiffiffiffiffi
1þ t2w

q� �
� 2

ð1þ t2w þ t2uÞ
ð1
�

þ t2w � t2uÞ

� cos x
xc

tu

� �
� 2tu

ffiffiffiffiffiffiffiffiffiffiffiffi
1þ t2w

q
� sin x

xc

tu

� ��)
¼ IðK; l; tw; tuÞ: ð8Þ

Here K stands for a set of parameters (x;xc; c),
tw;u ¼ chw;u and l is a relative parameter which
characterizes the particle coordinates with respect
to the slit center, l ¼ ðh1=a sinu0Þ � ð1=2Þ,
ð�0:5 < l < 0:5Þ. The characteristic DR energy is
expressed as xc ¼ c=a sinu0 and the slit width as
a ¼ ðh1 þ h2Þ= sinu0, where h1;2 is the minimum
distance to the upper (lower) half plane (Fig. 3(a)).

In the limit of an infinitely narrow slit, Eq. (8)

reduces to the formula for transition radiation of

a perfectly conducting mirror,

d2W
dxdX

’ a
p2

h

c�2 þ h2

� �2
ðc � 1; h � 1Þ;

with h2 ¼ h2w þ h2u. Formula (8) agrees with results
of [10], which are written for small l. It is valid for
h � 1, c � 1 and for any orientation of the elec-
tron beam with respect to the slit. In this case one

should use the angles w0 ¼ �ww0 þ Dw;u0 ¼ �uu0þ
ðDu= sin �ww0Þ in Figs. 6 and 7. It follows from Eq.

(8) that the characteristics of DR explicitly de-

pends on the distance between the electron tra-

jectory and the center of the slit, described by the

impact parameter h0 ¼ la sinu0 (cf. Fig. 3(b)). In
Section 5, Eq. (8) is used to simulate the DR
characteristics and to study the influence of the

electron beam divergence and size.

5. Simulation of the DR characteristics

Let us consider the influence of the initial elec-

tron beam divergence and size. If the electron

beam has zero divergence and is characterized by

the impact parameter distribution Gðh0Þ (Fig.

3(b)), then the spectral-angular density of the

emitted DR beam is determined by folding ex-
pression (9) with Gðh0Þ,

bII ðK; tw; tuÞ ¼ Z IðK; h0; tw; tuÞGðh0Þdh0: ð9Þ

The integration extends over the beam size. We

describe the divergent electron beam using a

Gaussian distribution centered around the aver-

aged direction (Fig. 4),

h~bbi ¼ hbifsin �ww0 cos �uu0; sin �ww0 sin �uu0; cos �ww0g:

Here �uu0, �ww0 are averages of the angles u0, w0
shown in Fig. 2,

F ðDw;DuÞ ¼
1

2prwru
exp

 
�

D2w
2r2w

!
exp

 
�

D2u
2r2u

!
:

We assume, for simplicity, that Dw and Du are

uncorrelated with h0. In the figures starting from
Fig. 5, ru and rw will be quoted in units of c�1.
Then the resulting DR distribution, taking into

account both, beam size and divergence, is given

by the convolution of expression (9) with the dis-

tribution F ðDw;DuÞ,

Fig. 4. Definition of the introduced angles.
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KðK; hw; huÞ ¼
Z bII ðK; hw � Dw; hu þ DuÞ

� F ðDw;DuÞdDw dDu: ð10Þ

For the simulation it is convenient to substitute the

angular deviations Dw;u in Eq. (10) by the reduced

ones dw;u ¼ cDw;u, i.e. the electron angles measured
in units of c�1, as it was the case for the photon
angles tw;u. The numerical integration was per-
formed under the simplified assumption of a tri-

angular beam profile in the vertical direction (Fig.

3(b)). After integration we can obtain the DR

spectral-angular distribution which is possible to

measure in an experiment. In Eq. (10) the inte-

gration over the variables Dw, Du was extended
over an interval �3r in each direction, and the
integration step was chosen in such a way that the

total error of simulation did not exceeded 3%. As

it was shown in [13], in its soft part (i.e. for x6xc)

the DR spectrum is determined mainly by the

beam divergence, and on the contrary for DR

photon energies x > xc by the beam size. Fig. 5(a)

and (b) shows simulation results for different
values of the reduced photon energy z (here and
later we use the reduced variable z ¼ x=xc ¼

2pa sinu0=ck). Fig. 5 confirms that for small

photon energies (z6 1) the effect of the beam size is
much smaller than the effect of the divergence.

This result is consistent with the development of

Eq. (8) at small tw, tu and l,

d2W
dxdX

’ ac2

p2
e�z t2w

�
þ 1
�

þ z
2

�2
t2u þ z2l2

�
: ð11Þ

In the following, we will assume that the beam is

sufficiently narrow and well centered in the slit, so

that z2hl2i � 1, c2hD2wi, c2hD2ui and neglect the

beam size effect.

6. Simulation results

Fig. 6 shows the DR distributions from a slit in

the direction perpendicular to the slit edge (i.e. for

hw ¼ 0), depending on the variable chu ¼ tu, and
Fig. 7 in the plane hu ¼ 0 parallel to the edge,
depending on the variable chw ¼ tw for different
values rw, ru. As it follows from that figures the

distributions in the plane parallel to the edge (i.e.

tw dependence) are more sensitive to a change in
rw or ru than in the perpendicular plane. More

Fig. 5. Result of simulation of DR spectral-angular distribution for different values z.
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Fig. 6. Angular distribution in the horizontal plane, for different values of the horizontal and vertical divergences.

Fig. 7. Angular distribution in the vertical plane, for different values of the horizontal and vertical divergences.
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precisely, the values at origin are the same in Figs.

6 and 7, since they correspond to tw ¼ tu ¼ 0 in
both cases, but the maxima are lower for the tw
distributions (because the exponential factor in
Eq. (8) depends on tw). As rw;u is increasing, the

dependence in tw is considerably deformed, and it
is possible to find a transition when the minimum

at zero is changed into a maximum (see Fig. 8).

Thus, as a criterion we may take the ratio Rk ¼
ðImax � IminÞ=ðImax þ IminÞ [7], where ImaxðminÞ is the
maximum (minimum) intensity of the DR spectral-

angular distribution in the plane parallel to the slit

edge. In the following we will consider only the

parallel distribution and denote R � Rk. The value

R depends on both rw and ru, as illustrated in Fig.
9. The level lines R ¼ constant, displayed in Figs.
10 and 11 are well approximated by homothetic

ellipses for not too large values of rw and ru. The

ellipses were obtained by best fit adjustment of a
and b. Their semi-axes ratio k ¼ b=a, more pre-

Fig. 8. Evolution of DR angular distributions with increasing

of divergence in vertical plane.

Fig. 9. Tree dimensional plot dependence of the parameter R
on the beam divergence rw, ru.

Fig. 10. Level lines for parameter Rðrw;ruÞ ¼ constant for
z ¼ 0:23 – solid line and dotted line for ellipse approximation.

Fig. 11. Level lines for parameter Rðrw;ruÞ ¼ constant for
z ¼ 0:35 – solid line and dotted line for ellipse approximation.
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cisely, the mean of k over 10 level lines of R de-
pends on z as shown in Fig. 12 and is well ap-
proximated by the linear function k ¼ 1þ ðz=2Þ

(this is also the result obtained by calculating Imin
analytically using the approximation Eq. (11) and

neglecting the dependence of Imax on rw and ru).

Fig. 12. Dependence of the mean ratio b=a on DR wavelength z ¼ x=xc.

Fig. 13. Functional dependence of the intensity ratio R on the ellipse axis b for different values of the normalized frequency z (solid
lines). In addition the Gaussian approximation for R with the optimized standard deviation db is drawn (stars).
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For the case where z ¼ 0 we have transition radi-
ation, characterized by azimuthal symmetry, and

resulting in b=a ¼ 1. When the photon energy in-
creases the ellipses become more and more elon-
gated (k increases), i.e. the influence of the

divergence rw on the tw-dependence weakens in
comparison to ru. Fig. 13 shows R as a function of

b ¼ k2r2u
h

þ r2w

i1=2
; ð12Þ

which is the semi-axis of the ellipse passing

through the point ðru; rwÞ. In addition, Gaussian
approximations for the functional dependence

RðbÞ for different values of z,

R ’ exp
�
� b2

2d2b

�
; ð13Þ

are depicted in Fig. 13. The width db of these
Gaussians is well described by a linear dependence

on z, as illustrated in Fig. 14.
As an application, the procedure is described

how to derive the two unknown beam divergences

from a simple experiment. Assuming a given DR

photon energy, i.e. a fixed value of z, by Fig. 12 it
is possible to obtain the semi-axes ratio k ¼ b=a of
the ellipse characterizing the rw;u values of the

initial beam, cf. Eq. (12). The remaining ellipse

parameter b is derived by the intensity ratio R as
measured in the experiment, using Eq. (13) and the

value of db extracted from Fig. 14 with knowledge
of z. By measuring R for two fixed wavelengths k1
and k2 (i.e. two fixed relative photon energies

z1;2 ¼ 2pa sinu0=ck1;2) it is possible to define two
ellipses of parameters b1;2 and k1;2 intersecting at
the values of interest, ðrw; ruÞ (see Fig. 13). We
have thus two equations for the determination of

two unknown parameters rw, ru,

k2i r
2
u þ r2w ¼ b2i ; i ¼ 1; 2:

7. Summary and conclusions

In the present article formulas describing DR of

a particle passing near the edge of a perfectly

conducting half-plane screen are generalized to

arbitrary angles u0, w0 of the particle with respect
to the target. It justifies the use, for any incidence

angle, of previously given ultrarelativistic formu-

las, both with single-edge and slit targets. By

means of these formulas, it is possible to take into
account the beam divergence and to study its in-

fluence on the DR angular distribution from a slit

in an exact way.

Fig. 14. Dependence of the optimized standard deviation db in Gaussian approximation for R on the normalized frequency z.
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In a low emittance beam as for example in an

electron storage ring the values for the horizontal

and vertical divergences can have significantly

different values. By the two-ellipse method de-
scribed at the end of Section 5 it is possible to

determine both parameters of the angular beam

divergence, rw and ru, at least when the beam size

effect can be neglected.

We have not estimated the precision of our

method. This would require further simulations,

including the beam size effect, the angular and

spectral resolution and the sensitivity of the de-
tector, etc. Here we only present the principle of

the method. Two observed wavelengths should be

as much different as possible to obtain ellipses of

significantly different b=a ratios, but z cannot be
chosen too large.

Our method can be complementary to the one

proposed in [10]. They use two orientations of

the slit as well as the information contained in the
polarization of the radiation. We instead use the

spectral information. Combining the information

of the two methods should lead to a further im-

provement.

Acknowledgements

One of the authors (N. Potylitsina) wishes to

thank the administration and the staff of the In-

stitut de Physique Nucl�eeaire de Lyon for their
hospitality and the opportunity to perform this

work, and to Prof. A.P. Potylitsin for numerous

discussions.

References

[1] L. Wartski, S. Roland, J. Lassale, et al., Appl. Phys. 46

(1975) 3644.

[2] X. Artru, M. Castellano, L. Catani, R. Chehab, et al.,

Nucl. Instr. and Meth. A 410 (1998) 148.

[3] D.W. Rule, R.B. Fiorito, Beam profiling with optical

transition radiation, in: Proc. 1993 Particle Accelerator

Conf., Washington, DC, USA, p. 2453.

[4] A.P. Kazantsev, G.I. Surdutovich, Sov. Phys. Dokl. 7

(1963) 990.

[5] D.M. Sedrakian, Izv. An ArmSSSR 17 (N4) (1964) 103.

[6] M.L. Ter-Mikaelian, High Energy Electromagnetic Pro-

cesses in Condensed Media, Wiley-Interscience, New York,

1972.

[7] M. Castellano, Nucl. Instr. and Meth. A 394 (1997) 275.

[8] A.P. Potylitsyn, Nucl. Instr. and Meth. B 145 (1998) 169.

[9] A.P. Potylitsyn, N.A. Potylitsyna, Russ. Phys. J. 43 (N4)

(2000) (arXiv, physics/0002034).

[10] R. Fiorito, D. Rule, Nucl. Instr. and Meth. B 173 (2001)

67.

[11] B.M. Bolotovskii, E.A. Galst�yan, Usp. Fiz. Nauk. 170
(2000) 8;

Phys. Usp. 43 (2000) 755.

[12] R.B. Fiorito, in: H. Wiedemann (Ed.), Electron-Photon

Interaction in Dense Media, NATO Science Series II, Vol.

49, Kluwer Academic Publishers, 2002, p. 91.

[13] J. Urakawa, A. Potylitsyn, T. Hirose, et al., Nucl. Instr.

and Meth. A 472 (2001) 309.

N. Potylitsina-Kube, X. Artru / Nucl. Instr. and Meth. in Phys. Res. B 201 (2003) 172–183 183


	Diffraction radiation from ultrarelativistic particles passing through a slit. Determination of the electron beam divergence
	Introduction
	DR spectral-angular distribution, general case
	Ultrarelativistic approximation
	DR from a slit
	Simulation of the DR characteristics
	Simulation results
	Summary and conclusions
	Acknowledgements
	References


