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Abstract

The role of eicosapentaenoic acid (EPA) and do@ssdnoic acid (DHA) in browning and
thermogenesis has not been fully elucidated. Tlwasneant to evaluate the effect of EPA
and DHA, administered alone or combined, with tttevation of browning markers in
subcutaneous white adipose tissue (SWAT), and thgemc markers in brown adipose tissue
(BAT). C57BL/6 adult male mice received a contr@tar a high-fructose diet (HFru) for
eight weeks, but after the first three weeks, Hkas divided into new groups: HFru,
HFru+EPA, HFru+DHA, and HFru-EPA+DHA. EPA and DHAvdnished adipocyte
hypertrophy, recovered markers of browning in sSW&kll thermogenic factors in the BAT,
and improved gene expressions linked with mitochi@ahdiogenesis and lipid metabolism.
Importantly, EPA and DHA administrated alone showi&dnger results than the combination
of EPA+DHA. The results suggest that EPA and DHAmbe useful as adjuvant strategies

to treat metabolic-associated disorders.

Keywords. adipose tissue; fructose; browning; uncouplinggiref.; thermogenesis.
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1. Introduction

Recent reports of the activation of the brown asigtissue (BAT) in humans turned this
tissue in an essential target of studies dealirlg @besity and metabolic syndrome (Cypess,
Chen, Sze et al., 2012,Cypess, Weiner, Roberts-€ol., 2015). BAT was shown to be
inversely correlated with body mass index and agifgon humans and was also associated
with protective effects on glucose and lipid metam (Wang, Zhang, Xu et al., 2015). BAT
responds to ATP production with uncoupling mitoathaal oxidation, thus generating heat in
a process called thermogenesis, a characterisBa®fconferred by the presence of
uncoupling protein 1 (UCP1) (Crichton, Lee and Ku2917). Together with UCP1,
thermogenesis also requires the increase in mitaliad content (i.e. mitochondrial
biogenesis), which is regulated by peroxisome fanator-activated receptor gamma
coactivator 1 alpha (PGClalpha) that activatesittdear respiratory factor 1 (NRF1) that in
turn controls the expression of nuclear genes wawlin the process, including mitochondrial
transcription factor A (TFAM) (Nadal-Casellas, Batigthorbrugge, Proenza et al., 2013,Yu,

Zhang, Cui et al., 2015,Bargut, Souza-Mello, Ageilal., 2017).

However, it is questionable whether the brown aclpes seen in humans are indeed
brown, or if they are white adipocytes that undher stimulation acquire a brown-fat
phenotype (Lee, Werner, Kebebew et al., 2014).dddbeige (obrite) adipocytes are white
adipose tissue (WAT) that express UCP1, becomiingetional BAT (Fu, Li, Zhang et al.,
2015). Beige adipocytes also express specific markech as the cluster of differentiation
137 (CD137) (Wu, Bostrom, Sparks et al., 2012hdmans, this browning promotes a
metabolic reprogramming, favoring the use of faitids as energy sources for thermogenesis
(Barquissau, Beuzelin, Pisani et al., 2016). Is #@nse, four important mediators are
lipoprotein lipase (LPL), adipocyte protein 2 (aR@®rilipin 1 (PLIN1) and hormone-

sensitive lipase (HSL). LPL acts on fatty acid kptay the cell, while aP2 couples
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intracellular lipids to their biological targetsLIN and HSL are involved in lipolysis, the first
protecting the lipid droplet and the second hydzinly triglycerides (Bartelt, Bruns, Reimer
et al., 2011,Lorente-Cebrian, Mejhert, Kulyte et 2014,Garin-Shkolnik, Rudich,
Hotamisligil et al., 2014). As BAT, the beige adigtes are stimulated by a range of
pharmacological and nutritional factors (Barquisetal., 2016,Bonet, Mercader and Palou,

2017,Chen, Pan and Pfeifer, 2017).

The excessive consumption of fructose leads toloétastress since fructose acts as a
substrate and as a stimulatordefovo lipogenesis and insulin resistance (Karise, Oasell
Barbosa-da-Silva et al., 2017). In humans, chrerposure to high-fructose intake leads to
hepatic fat accumulation, hepatic insulin resistamnd hypertriglyceridemia that can
contribute to the development of metabolic dise&§appy, 2018). In adolescents, fructose-
rich beverages augmented insulin resistance thadl cee partially explained by serum uric
acid and central adiposity (Lin, Chan, Huang et2816). Regarding the adipose tissue,
fructose induces cell hypertrophy associated vadal inflammation and insulin resistance
(Magliano, Penna-de-Carvalho, Vazquez-Carrera. e2@15,Bargut, Santos, Machado et al.,
2017) and reduces UCP1 expression in female, kuhate mice (Dobner, Ress, Rufinatscha
et al., 2017). Recent studies support the ideahilyatfructose consumption leads to adipose
tissue inflammation with consequent increased @efialar glycerol, thus culminating in

visceral adiposity (DiNicolantonio, Mehta, Onkaratthy et al., 2018).

Contrarily, n-3 polyunsaturated fatty acids (n-3FA), mainly the eicosapentaenoic acid
(EPA, 20:5 n-3) and docosahexaenoic acid (DHA, 223j, have beneficial effects on
metabolic disorders and can be recommended baotgakar consumption or as
supplementation (Calder, 2015). Moreover, theevidence that EPA and fish oil (rich in
EPA and DHA) may induce adipocytes to acquire gdehenotype and may activate brown

thermogenesis (Lund, Larsen and Lauritzen, 2018 &il increased thermogenic markers in
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the BAT (Bargut, Silva-e-Silva, Souza-Mello et 2016) and WAT (Bargut, Souza-Mello,
Mandarim-de-Lacerda et al., 2016). EPA recruiteéddadipocytes in mouse subcutaneous
adipocytes (Zhao and Chen, 2014), and EPA indueagkHike markers in subcutaneous
adipocytes from overweight subjects (Laiglesia,dmte-Cebrian, Prieto-Hontoria et al.,
2016). However, a comparison between the singertsffof EPA and DHA still merits an
update. Therefore, the study aimed to assess thacinof EPA and DHA alone or combined
on the markers of browning in WAT, and of thermagm@s in BAT in mice fed a high

fructose diet.

2. Materials and methods

2.1 Animals and diets

Procedures followed the standard guidelines famahexperimentation (NIH Publication
number 85-23, revised 1996) and ARRIVE guidelingtkénny, Browne, Cuthill et al.,
2010), and were approved by the Ethics Committedfdmal Experimentation (The
University of the State of Rio de Janeiro, Protdd¢oimber CEUA/041/2015). The animals
have been maintained in ventilated cages underaltat conditions (NexGen system,
Allentown Inc., PA, USA, 20+2 °C and 12 h/12 h dhagkt cycle), with free access to food
and water. The gene symbols were italicized, withfirst letter in uppercase (Davisson,

1994).

Fifty C57BI/6 male mice with three months of agaeveandomly assigned to two groups:
control group (C, 76% of the total energy contdrtasbohydrates, n = 10) and high-fructose

group (HFru, 47.43 g/100 g diet of fructose, 76%hef total energy content of carbohydrates,



107  n =40). After three weeks, the animals were stlithe an additional period of five weeks,

108 totalizing eight weeks of the experiment (three kgeen diets plus five weeks of EPA and

109 DHA treatment). EPA (Carb - FE22647; purity > 9680y DHA (Carb - FD01734; purity >
110  85%) were purchased from Carbosynth (Compton, BédxsUK). The ingredients were

111 incorporated into the diet preparation, and thésdieere manufactured by PragSolucoes (Jau,
112 SP, Brazil) following the American Institute of Niion’s recommendations (AIN 93M)

113  (Reeves, Nielsen and Fahey, 1993) (Table 1).

114 The C and HFru groups continue for five more weék& remaining animals of the HFru

115  group were separated into three additional gronp&( each group):

116 a) HFru plus EPA (HFru-EPA, 47.43 g/100 g diet of tase, 76% of the total energy

117 content of carbohydrates, plus EPA as 2% of tatatgy content),

118 b) HFru plus DHA (HFru-DHA, 47.43 g/100 g diet of ftose, 76% of the total energy

119 content of carbohydrates, plus DHA as 2% of totalrgy content),

120 ¢) HFru plus EPA and DHA (HFru-EPA+DHA, 47.43 g/10@digt of fructose, 76% of the

121 total energy content of carbohydrates, plus EPA+#3/A2% of total energy content).

122 The analysis of the energy intake and adipositygramals were used (n=10), but we

123 should divide tissues to microscopy and molecutatysis (n = 3-5 per group). The dose of
124 2% of EPA and DHA gave for five weeks was basegrmewvious reports (LeMieux,

125 Kalupahana, Scoggin et al., 2015,Pahlavani, Razafiato, Ramalingam et al., 2017).

126  Moreover, in the HFru-EPA+DHA group, we decideddéduce by half the amount of each

127 fatty acid to maintain the same treatment and waty in the fatty acid composition.

128 Afterward, 6 h fasted animals were anesthetizediso pentobarbital, 150 mg/kg,

129  intraperitoneal), and then sacrificed by exsangiongcut of cervical vessels).
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2.2  Energyintake

Food intake was monitored daily (the differencenaein diet offered and the remaining
pellets in the cage after 24 h). The energy intaée estimated as the product of food intake

and the energy content of the diet.

2.3 Tissueextraction and analyses

WAT was obtained from the epididymal, retroperitaingnd inguinal pads, while BAT was
obtained from the interscapular region. The inguiatpad was considered as subcutaneous
fat (SWAT), comparable to the gluteofemoral subcatais depot in humans. Meanwhile,
epididymal and retroperitoneal pads were considasadsceral fat (Chusyd, Wang, Huffman
et al., 2016). Fat pads were dissected and weigatetithe adiposity index was calculated

(the ratio between the sum of the three WAT padsldd by the body mass).

SWAT and BAT samples were rapidly frozen and stated0°C. Alternatively, the
samples were kept in a freshly prepared fixativatsm (4% formaldehyde w/v, 0.1 M
phosphate buffer, pH 7.2) for microscopy. For lighitroscopy, the tissues were embedded in
Paraplast Plus (Sigma-Aldrich, St Louis, MO, UStE blocks were sectioned with 5 pm,
the slices were stained with hematoxylin and easid, digital photomicrographs were
obtained in a Nikon microscope (model 80i, and D&-dRgital camera, Nikon Instruments,

Inc., New York, USA).

For UCP-1 immunofluorescence, tissue sectiong{3hick) were submitted to citrate
buffer, pH 6.0 at 68 C for 20 min for antigen retrieval, glycine 2%daslocking buffer

(PBS/5% BSA). The SWAT and BAT sections were in¢catbavernight at the ZC with anti-
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UCP1 antibody (SC-6529; Santa Cruz Biotechnologjdted 1:50 in PBS/1% BSA,

followed by incubation for one hour at room tempera with fluorochrome-conjugated
secondary antibody anti-goat IgG-Alexa 488 (In\gen, Molecular Probes, Carlsbad, CA,
USA), diluted 1:50 in PBS/1% BSA. After rinsingiBS, the slides were mounted with Slow
Fade Antifade (Invitrogen, Molecular Probes, CaatsliCA, USA). Digital images were
captured using confocal microscopy (Nikon Confdacader Scanning Microscopy — Model

C2, Nikon Instruments, Inc., New York, USA).

24  Quantitativereal-time PCR (qPCR)

Total RNA of SWAT and BAT was extracted using Ttizeagent (Invitrogen, CA, USA).
Nanovue spectroscopy (GE Life Sciences) was usddteymine RNA amount. Then, 1 ug
RNA was treated with DNAse | (Invitrogen, CA, USAfterward, Oligo (dT) primers for
MRNA and Superscript Il reverse-transcriptasel{bovitrogen, CA, USA) were used for

the synthesis of first strand cDNA. gPCR used a&IdCFX96 cycler and the SYBR green
mix (Invitrogen, CA, USA). The primers are descdbe Table 2Ap2; Cd137; fibronectin

type 1l domain-containing 55ndc5); Hl; Lpl; Nrfl; Plinl; Pgcl alpha; peroxisome
proliferator-activated receptor alph@pgar alpha); Ppar gamma; Tfam, andUcpl. We used

the endogenous beta-actin to standardize the estpnesf the selected genes. After the pre-
denaturation and polymerase-activation programitan95 °C), 44 cycles of & for 10 s
and 60°C for 15 s were followed by a melting curve progr@®°C to 95°C with a heating

rate of 0.1 °C/s). Negative controls consisted efsnin which the cDNA was replaced for
deionized water. The relative expression ratidhefriRNA was calculated using the equation
2—AACt

, in which ACT represents the ratio between the number of s\€l&) of the target

genes with the endogenous control.
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25 Western-blot

Total proteins of SWAT and BAT were extracted imtomgenizing buffer containing protease
inhibitors. Equivalent quantities of total protegsuspended in SDS-containing sample buffer
were heated for 5 min at 100 °C and separated [8-BBGE. After electrophoresis, the
proteins were electroblotted onto polyvinyl diflige transfer membranes (Amersham
Biosciences, Piscataway, N.J., USA). The blockddkeomembrane was made with nonfat
dry milk. Homogenates were incubated with the pryrantibody anti-UCP1 (33 kDa; SC-
6529; Santa Cruz Biotechnology). Beta-actin (SC815anta Cruz Biotechnology) served as
a loading control. We used ECL for protein expr@ssletection system and the Bio-Rad
Molecular Imaging ChemiDoc XRS Systems (Bio-Radiddies, CA, USA). We measured
the chemiluminescence intensity of the bands vii¢ghitnageJ software, version 1.51 (NIH,

imagej.nih.gov/ij, USA).

2.6 Dataanalysis

After testing the data for normal distribution (Kadgorov-Smirnov test) and
homoscedasticity of the variances, the values sfeog/n as the mean and the standard
deviation. The differences were analyzed with org~analysis of variance (ANOVA) and
the post hoc test of Holm-Sidak (tRevalue <0.05 was considered statistically significa

GraphPad Prism version 7.04 for Windows, GraphRdth@re, La Jolla, CA, USA).
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3. Reaults

3.1 Energy intakeand adiposity

We did not observe significant differences in egangake, adiposity index and visceral fat

mass among groups (Table 3).

3.2 sSWAT

321  Adiposetissue mass

The groups did not show differences in SWAT masld 3).

3.2.2 Structure

In comparison with the C group, the HFru group sbdwypertrophied unilocular adipocytes
in SWAT, and poor browning activity (confirmed thetabsence of UCP1 expression, Fig. 1).
In the groups HFru-EPA, HFru-DHA, and HFru-EPA+DHAgre was sWAT remodeling

with smaller adipocytes and areas presenting brmogvdeposits (confirmed by the UCP1
expression, Fig. 1). Also, EPA and DHA ameliorateel adipocyte morphology and UCP1

expression in SWAT.

3.2.3 Browning

In comparison with the HFru groupgcpl was higher in the HFru-EPA (+1057%) and HFru-
DHA (+1136%). InverselytJcpl was lower in the HFru-EPA+DHA group in contrastiwi

the HFru-EPA (-58%) and HFru-DHA (-61%) groups. Ta&d37 was increased in HFru-
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EPA (+1900%) and HFru-DHA (+2300%) but reduced FritEPA+DHA (HFru-EPA, -
72%; HFru-DHA, -77%) (Fig. 2A). Also, UCP1 was e®d in the HFru-EPA (+252%),
HFru-DHA (+200%) and HFru-EPA+DHA (+189%) compatedhe HFru group (Fig. 2B

and C).

3.2.4 Mitochondrial biogenesis

No significant differences were seen comparinggtfeeips C and HFru. However, compared
to the HFru groupPgcl alpha was higher in HFru-EPA (+352%), HFru-DHA (+226%ind
HFru-EPA+DHA (+106%). AlsoPgcl alpha was lower comparing HFru-EPA vs. HFru-
DHA (-28%); HFru-EPA vs. HFru-EPA+DHA (-54%), and~Hi-DHA vs. HFru-EPA+DHA
(-37%). All treated groups, compared to HFru, shibwigherNrf1 (more than 1500%
higher). Likewise, compared to HFffiam was higher in HFru-EPA (+655%), in HFru-DHA
(+1135%), and in HFru-EPA+DHA (+450%), but therergvsignificant differences between

HFru-EPA or HFru-EPA+DHA, and HFru-EPA+DHA (Fig..3)

3.25 Lipid uptakeand lipolysis

TheLpl was augmented in HFru-DHA (+102% than HFru; +98@ntHFru-EPA; +116%
than HFru-EPA+DHA). In turn, thAp2 was higher in HFru (+224% than C), but without
between HFru and HFru-EPA. Also, compared to HARAEAP2 was slightly diminished in

HFru-DHA (-38%), and HFru-EPA+DHA (-43%) (Fig. 4).

ThePlinl was lower in HFru (-90% than C) but augmented FrdHDHA (+1500% than
HFru; +523% than HFru-EPA; +656% than HFru-EPA+DHA3Y was higher comparing

HFru vs. C (+210%). EPA and DHA augmented the esgpom ofHsl, HFru vs. HFru-EPA
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242 (+71%), and HFru vs. HFru-DHA (+197%). EPA+DHA ditishedHs!, HFru vs. HFRu-
243 EPA+DHA (-40%), HFru-EPA vs. HFru-EPA+DHA (-66%)@HFru-DHA vs. HFru-

244 EPA+DHA (-115%) (Fig. 4).

245

246 3.2.6 Browning mediators

247  ThePpar alpha was markedly higher in the treated groups. Contptoréhe HFru group,
248  Ppar alpha was more than 2000% higher in HFru-EPA, 1700% drigh HFru-DHA, and
249  1000% higher in HFru-EPA+DHARpar gamma, in comparison to the HFu group, was
250  1700% higher in the HFru-DHA group, 160% highethia HFru-EPA, and 175% higher in
251  the HFru-EPA+DHA, but comparing HFru-EPA vs. HHARpar gamma was +615%.

252  Differently, Fndc5 was substantially augmented in HFru-EPA, more 8&00% higher than
253  HFru, 130% higher than HFru-DHA, and 155% highantiiFru-EPA+DHA. We must say
254  thatFndc5 was also significantly higher in both HFru-DHA &@0%) and HFru-EPA+DHA

255  (+1350%) than HFru (Fig. 5).

256

257 3.3 BAT

258 3.3.1 Adiposetissue mass

259  The mass of the BAT was greater in the HFru gretg®%o than the C group). EPA and DHA
260 lead to a diminished mass of the BAT compared édtkru group (HFru-EPA, -38%; HFru-

261 DHA, -42%, HFru-EPA+DHA, -41%) (Table 3).

262

263 3.3.2 Structure
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We have the C group as a basis. Thus, the HFripgioowed morphological changes in the
brown adipocytes, with greater lipid accumulatiowl &ypertrophy. However, EPA and DHA
have returned the adipocytes to a phenotype li&e&tigroup. The HFru group showed
immunofluorescence for UCP1 in brown adipocytes haarked than in the C group. Also,
EPA and DHA were efficient in augmenting the UCRfression in brown adipocytes of the

groups HFru-EPA, HFru-DHA, and HFru-EPA+DHA groupgphenotype like the C group

(Fig. 6).

3.3.3 Thermogenic markers

TheUcpl was lower in the HFru group compared to the C gre82%). EPA most
efficiently augmented)cpl, compared to DHA and EPA+DHA. In comparison whike HFru
group,Ucpl was +1465% in HFru-EPA, +980% in HFru-DHA, and 62¢HFru-EPA+DHA
(Fig. 7A). Also, in comparison with the HFru groupCP1 was higher in the HFru-EPA

(+351%), HFru-DHA (+303%), and HFru - EPA+DHA (+28) (Fig. 7B).

3.34 Mitochondrial biogenesis

In brown adipocytes, EPA and DHA increas&tl alpha, Nrfl, andTfam, but inPgcl alpha
the combination of EPA+DHA was not efficient, whiteNrfl the combination of
EPA+DHA was more efficient than EPA. The HFru gralnowed loweiTfam than the C

group (-70%), but there were no differences betws&eA, DHA or EPA+DHA (Fig. 7C).

3.3.5 Fatty acid utilization
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In brown adipocytes, the groups C and HFru didshatwv differences facpl, but the HFru
group had loweHsl than the C group. EPA and DHA augmeritpticompared to the HFru

group, but only EPA showed an effect increasiisgy(Fig. 8A).

3.3.6 Thermogenic mediators

In brown adipocyte?par alpha andPpar gamma were different with EPA and DHA
administration; both were lower in the HFru growpnpared to the C group. In comparison to
the HFru group, EPA (+650%) and DHA (+500%) inceeHpar alpha, while EPA+DHA

had less effect augmentiRpar alpha (+270%). In comparison to the untreated HFru group
EPA increase®par gamma more than 840%, while DHA and EPA+DHA were like tHFru

group (Fig. 8B).

4 Discussion

The high-fructose diet increased BAT mass and agigcsize in SWAT and BAT, showing a
reduced UCP1 expression. EPA or DHA restored tifoagite size and UCP1 expression.
The action of EPA and DHA on adipocytes seems tiinked with increased mitochondrial
biogenesis markers and benefits in mediators af hpetabolism, probably because n-3

PUFA act through PPAR and FNDCS5.

The fructose dose was chosen based on our presiqpéesience (Magliano et al., 2015,
Bargut et al., 2017, Schultz, Neil, Aguila et @D13) and other groups (Sharma, Li and
Ecelbarger, 2015). This high-fructose intake wagppsed to maximize the effects of the diet,

thus promoting metabolic abnormalities similariie bnes seen in humans consuming
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fructose (Tappy and Le, 2010). Once the fructoseqted alterations were established, the
mice were treated with EPA and / or DHA, which doses also based on previous reports
(Depner, Philbrick and Jump, 2013,Lytle, Depner,ng/et al., 2015). The conditions we

used EPA and DHA are comparable to the use for desdipidemia (Barter and Ginsberg,
2008,Davidson, Stein, Bays et al., 2007), and es®e plasma n-3 PUFA in mice at the same
levels as patients consuming 4-6 g/day of n-3 PIBépner et al., 2013,Superko, Superko,
Nasir et al., 2013,Di Stasi, Bernasconi, Marchablal., 2004). Although it can be considered
a high-intake of the fatty acids when comparedvierygay human consumption (Calder,

2012), it is well correlated to the doses applied@pplementation treatments.

It is already known that fructose does not caugeifstant changes in body mass, but it
provokes a range of metabolic disruptions, inclgdidipocyte hypertrophy (Magliano et al.,
2015). Using the same experimental protocol inexipus study of our group, we
demonstrated that neither fructose nor EPA/DHA pkad changes in body mass (Bargut et
al., 2017). Importantly, recent literature showeat tvisceral adiposity, but not body mass, is
crucial in fructose-provoked abnormalities (DiNiaotonio et al., 2018) and both adolescents
and overweight/obese adult humans consuming fractbewed increased visceral adiposity

(Lin et al., 2016,Stanhope, Schwarz, Keim et &09.

Together with adipocyte hypertrophy, fructose glsmmotes impairment of UCP1
(Dobner et al., 2017). On the other hand, fisi{r@h in both EPA and DHA) induced UCP1
expression in SWAT and BAT and browning of SWAT (@& et al., 2016,Bargut et al.,
2016). Likewise, EPA recruited beige adipocytemuse subcutaneous adipocytes (Zhao
and Chen, 2014) and induced beige markers in saibeatis adipocytes from overweight
subjects (Laiglesia et al., 2016). EPA also incedddCP1 levels in BAT from high-fat mice
(Pahlavani et al., 2017), and a high-fat diet dratwith long-chain n-3 PUFA increased

UCP1 expression (Worsch, Heikenwalder, Hauner.g2@18). Herein, the fructose-induced
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changes observed in adipocytes were effectiveltacewith EPA and DHA (especially when
they were not combined), with increased expressidCP1 in both tissues a@tl137 in the

SWAT, despite continued fructose administration.

TheUcpl expression designates browning in sSWAT, whilaitrot be considered as an
indicator of BAT thermogenesis, and the UCP1 progpression correlates better with the
thermogenic capacity in the BAT (Nedergaard andnG@an2013). Therefore, we measured
here both gene and protein expressions as thernoogenkers. The UCP1 expression was
demonstrated be strongly correlated with the bedyperature (Rachid, Silva-Veiga, Graus-
Nunes et al., 2018,Martins, Bargut, Aguila et2017), suggesting that thermogenesis is also

happing in the present study, although we havehsbody temperature of the animals.

Mitochondria are responsible for thermogenesis,raitdchondrial biogenesis is vital to
boost mitochondrial oxidation and consequentlyrtiagenic activity (Yu et al., 2015,Bargut
et al., 2017). Mitochondrial biogenesis was dinhed in WAT, liver and skeletal muscle of
mice fed a high-fructose diet (Motta, Bargut, Aguet al., 2017). In the current study, we
found diminished markers of mitochondrial biogesesithe BAT of HFru mice, supporting
the reduced UCP1 expression seen in this grouptr&dy, EPA and DHA induced the
mitochondrial biogenesis mediators in both SWAT BAd'. In mice fed a high-fat diet, EPA
caused increasdebclal pha expression in BAT (Pahlavani et al., 2017), anthice fed a
high-fat diet enriched with long-chain n-3 PUFAjse in mitochondrial biogenesis markers
was also confirmed (Worsch et al., 2018). Moreo&A improved mitochondrial content in
cultured brown adipocytes (Pahlavani et al., 204l increased mitochondrial DNA content

andPgclalpha in mouse subcutaneous adipocytes (Zhao and Ché&d).2

Lipids are the common substrate necessary for thgemesis (Cannon and Nedergaard,

2004). Therefore, fatty acids should be continupsapplied when intracellular lipolysis is
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stimulated by thermogenic signaling (Khedoe, Ho#&lamijman et al., 2015). In this study,
corroborating literature, fructose increagga® and mediators of lipolysis in the SWAT
(Garin-Shkolnik et al., 2014,Bargut et al., 201af)d decreased these lipolytic mediators in
BAT with consequent lipid accumulation, suggestimgrmogenesis blockage (Boll, Weber
and Stampfl, 1996,Debosch, Chen, Finck et al., REBA and DHA increasddsl in

primary human adipose tissue-derived stem celeciénstein-Elsen, Dinnies, Jelenik et al.,
2016), and increased lipolysis with elevated exgoesofHs (Liu, Li, Huang et al., 2014).
We observed that EPA and DHA increased genes assdawvith fatty acids uptake and
lipolysis in SWAT and BAT, indicating that lipolysis providing a substrate for oxidation
(i.e., for thermogenesis), and stocks are beinigcep. Mice fed a high-fat diet enriched with
long-chain n-3 PUFA showed improvement of markéigpad uptake (includind_pl) in

BAT, indicating that the fatty acids supply was tioned by an augmented lipid uptake

instead of increased lipolysis (Worsch et al., 2018

PPAR family activation is one of the ways throughiat n-3 PUFA exert their beneficial
effects. PPAR alpha regulates lipid metabolism iming mitochondrial biogenesis and
oxidation and fatty acid uptake, and UCP1 expresfiitondares, Rosell, Diaz-Delfin et al.,
2011,Barbera, Schluter, Pedraza et al., 2001) e AR gamma participates in the brown
fat function regulation (Lasar, Rosenwald, Kiehlmat al., 2018). In the present study,
fructose decreasd®par alpha andgamma in the BAT, as reported in the liver (Ohashi,
Munetsuna, Yamada et al., 2015) and visceral WAArgBt et al., 2017). Moreover, n-3
PUFA increase®par expression and were shown to be potential ligémdBPAR alpha and
gamma, with beneficial effects on adipose tissusabwism (Huang, Chien, Chen et al.,
2016). Also, fish oil increased PPAR alpha and ganexpressions in the BAT in association

with increased thermogenic markers (Bargut e28ll6).
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Irisin is also an essential mediator in SWAT brawgnilrisin is derived from the cleavage
of FNDC5 and was first demonstrated in the musglPBC1 alpha stimulation, being
released into the bloodstream, inducing SWAT brogriBostrom, Wu, Jedrychowski et al.,
2012). Moreover, FNDC5 can be produced and seclstélde adipose tissue (Roca-Rivada,
Castelao, Senin et al., 2013). In our study, EPARHA increased-ndc5 expression,
possibly due to increased PGC1 alpha. FenofibeaRPAR alpha agonist) increased irisin
circulating levels an@&ndc5 gene expression in SWAT of obese mice (Rachidn&eie-
Carvalho, Bringhenti et al., 2015). The literattgported an association between n-3 PUFA
and FNDCY5/irisin levels where the supplementatiath w-3 PUFA might augment the levels
of serum irisin (Ansari, Djalali, Mohammadzadeh ldorar et al., 2017). Nevertheless, EPA
alone was not able to change irisin circulatinglsworFndc5 gene expression (Huerta,

Prieto-Hontoria, Fernandez-Galilea et al., 2015).

In general, EPA and DHA exert several beneficitdas, especially on the adipose tissue
metabolism; however, there are significant diffeenbetween these n-3 PUFA (Martinez-
Fernandez, Laiglesia, Huerta et al., 2015). Therggd omega-3 fatty acid alpha-linolenic
acid (ALA, 18:3n3) can be converted into EPA andAHut the intake of ALA is not
enough for the increase of EPA+DHA in subjects &Mestern diet. Specifically, a high-ALA
diet results in increased EPA and declined DHA eotrations (Greupner, Kutzner, Nolte et

al., 2018).

In the current study, EPA and DHA alone inducedegahat indicate browning of SWAT
and thermogenesis in the BAT. Recent literaturedemsonstrated EPA effects on browning
(Zhao and Chen, 2014, Laiglesia et al., 2016), anthe thermogenesis of brown adipocytes
(Kim, OKla, Erickson et al., 2016) and BAT (Pahlawvet al., 2017). EPA is the most studied
n-3 PUFA, while results are scarce in the litemttwncerning DHA. Fish oils enriched with a

high dose of EPA or a high-dose of DHA induced U@Rpression and other thermogenic
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markers in SWAT and BAT. Nevertheless, EPA showedensignificant results than DHA
(Kim, Goto, Yu et al., 2015), in agreement with éindings. One possible explanation is that
the lipid mediators derived from EPA are more eddb thermogenic activity than the ones

derived from DHA (Saito, Terano, Hirai et al., 1997

A classic study suggests a higher thermogeniciictivBAT with the combination
EPA+DHA than EPA and DHA separateness (Oudart, €atas, Calgari et al., 1997), but our
findings indicate that the mixture EPA+DHA is noee effective than EPA and DHA.
Likewise, in a murine model of myocardial infaretj&ePA and DHA showed benefits
ameliorating the infarct size, while the combinatEePA+DHA showed no effect (Madingou,
Gilbert, Tomaro et al., 2016). It is reasonabledasider that the mixture of low-dose
EPA+DHA could induce competition for the same reéoefMadingou et al., 2016) reducing
the efficiency of the treatment. Also, part of yadicids effects on thermogenesis is mediated
by GRP120, a member of the G protein-coupled rece gGPCR) family (Fan, Koehler and
Chung, 2018,Quesada-Lopez, Cereijo, Turatsinzk,&(6), and GPCR was shown to
present biased signaling leading to n-3 PUFA disttell signaling profiles (Wootten,
Christopoulos, Marti-Solano et al., 2018). The firgdopens possibilities for future

researches.

5 Conclusions

In conclusion, in mice metabolically stressed bygh-fructose diet both EPA and DHA are
useful in enhancing the expression of genes retatélie browning of SWAT, and BAT
thermogenic markers. The improvement of the mar&ensitochondrial biogenesis and lipid

metabolism seems to be the basis of the actioB®8fand DHA, partially mediated by both
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PPAR and FNDCS5. The findings indicate that both EBADHA might be suggested as an

adjuvant strategy tackling metabolic-associatedrdeys.
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Figurelegends

Figure 1. sSWAT: structure and immunofluorescence. The HFru group, when compared to
the C group, showed hypertrophy of the unilocutipacytes and reduction in the browning
deposit, confirmed by the absence of uncouplinggamdl (UCP1) expression (Fig. 1A-B, F-
G). The HFru-EPA, HFru-DHA and HFru-EPA+DHA grougisowed improvement in SWAT
remodeling, exhibiting smaller adipocytes and aweits browning deposits, confirmed by
UCP1 expression (Fig. 1C-E, H-&-E: hematoxylin and eosin staining:J: labeling for
UCP1. Scale bars: 10 um. Groups: C, control; HRigh-fructose; EPA, eicosapentaenoic
acid; DHA, docosahexaenoic acid.

Figure 2. SWAT: gene and protein expressions of browning markers. Values are the mean
+ SD (n = 5). Significant differences were testathwne-way ANOVA and posthoc test of
Holm Sidak: P < 0.05, *P < 0.01, and **P < 0.001. Groups: C, control; HFru, high-
fructose; EPA, eicosapentaenoic acid; DHA, docosa¢reoic acid. Abbreviations: CD137,
cluster of differentiation 137; UCP1, uncouplin@&in 1.

Figure 3. SWAT: gene expressions of mitochondrial biogenesis. Values are the mean + SD
(n = 5). Significant differences were tested witleavay ANOVA and posthoc test of Holm
Sidak: *? < 0.05, *P < 0.01, and **P < 0.001._Groups: C, control; HFru, high-fructose;
EPA, eicosapentaenoic acid; DHA, docosahexaendaic Abbreviations: NRF1, nuclear
respiratory factor 1; PGC1, peroxisome proliferatotivated receptor gamma coactivator 1,

TFAM, mitochondrial transcription factor A.

Figure4. sSWAT: gene expressions of lipid metabolism and lipolysis markers. Values are
the mean + SD (n = 5). Significant differences wested with one-way ANOVA and
posthoc test of Holm SidakP*< 0.05, **P < 0.01, and **P < 0.001. Groups: C, control;
HFru, high-fructose; EPA, eicosapentaenoic acidAD#bcosahexaenoic acid.
Abbreviations: aP2, adipocyte protein 2; HSL, honesensitive lipase; LPL, lipoprotein

lipase; PLIN, perilipin.
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764  Figure5. sSWAT: geneexpressions of browning mediators. Values are the mean £ SD (n =
765 5). Significant differences were tested with onegr#&OVA and posthoc test of Holm

766  Sidak: *? < 0.05, **P < 0.01, and **P < 0.001. Groups: C, control; HFru, high-fructose;
767  EPA, eicosapentaenoic acid; DHA, docosahexaendaic Abbreviations: FNDC5,

768  fibronectin type Ill domain containing 5 (precursdririsin); PPAR, peroxisome proliferator-

769  activated receptor.

770  Figure6. BAT: structure and immunofluor escence. The HFru group, when compared to
771 the C group, showed cytoplasmic changes exhibgnegter lipid accumulation - adipocyte
772 hypertrophy (Fig. 5A-B). The HFru-EPA, HFru-DHA ahiFru-EPA+DHA groups presented
773 recovery and morphological improvement of the adypes, whose histological structure

774  remained like the C group (Fig. 5C-E). The immuunofescence for uncoupling protein 1
775  (UCP1) showed that the HFru group when comparelded group, presented a significant
776  decrease in the expression of this protein (FigG)FThe HFru-EPA, HFru-DHA and HFru-
777  EPA+DHA groups filed UCP1 expression like the CugrdFig; 5H-J)A-E: hematoxylin and
778  eosin stainingF-J: labeling for UCP1. Scale bars: 10 pum. Groupsddtrol; HFru, high-

779  fructose; EPA, eicosapentaenoic acid; DHA, docosadeoic acid.

780 Figure7. BAT: geneand protein expressions of ther mogenic markersand mitochondrial
781  biogenesis markers. Values are the mean + SD (n = 5). Significant défeces were tested
782  with one-way ANOVA and posthoc test of Holm Sid&R:< 0.05, **P < 0.01, and **P <
783  0.001. Groups: C, control; HFru, high-fructose; ER&osapentaenoic acid; DHA,

784  docosahexaenoic acid. Abbreviations: PGC1, peraxasproliferator-activated receptor
785 gamma coactivator 1; NRF1, nuclear respiratoryofatt TFAM, mitochondrial transcription
786  factor A; UCP1, uncoupling protein 1.

787  Figure 8. BAT: gene expressions of lipid metabolism markers and ther mogenic

788  mediators. Values are the mean + SD (n = 5). Significanteddhces were tested with one-
789  way ANOVA and posthoc test of Holm Sidak ¥ 0.05, **P < 0.01, and **P < 0.001.

790  Groups: C, control; HFru, high-fructose; EPA, emosntaenoic acid; DHA, docosahexaenoic
791 acid. Abbreviations: HSL, hormone-sensitive lipdgel., lipoprotein lipase; PPAR,

792  peroxisome proliferator-activated receptor.



Table 1. Composition and energy content of the diets (AIN 93M based diets).

Ingredients (g/kg) C HFru HFru+EPA HFru+DHA HFru+EPA+DHA
Casein (= 85% of protein) | 140.0 140.0 140.0 140.0 140.0
Cornstarch 620.7 1464 1464 146.4 146.4
Sucrose 100.0 100.0 100.0 100.0 100.0
Fructose - 4743 474.3 474.3 474.3
Soybean oil 400 400 3153 31.53 31.53
EPA - - 8.47 - 4.235
DHA - - - 8.47 4.235
Fiber 500 500 50.0 50.0 50.0
Vitamin mix? 100 100 10.0 10.0 10.0
Mineral mix® 350 350 350 35.0 35.0
L-Cystin 1.8 1.8 1.8 1.8 1.8
Choline 25 25 25 25 25
Total mass 1000 1000 1000 1000 1000
Proteins (% Energy) 14 14 14 14 14
Carbohydrates (% Energy) | 76 76 76 76 76
Fructose (% Energy) - 50 50 50 50
Lipids (% Energy) 10 10 10 10 10
EPA (% Energy) - - 2 - 1
DHA (% Energy) - - - 2 1
Energy content (kcal/kg) | 3811 3811 3811 3811 3811

2 Mineral and vitamin mixtures are in accordance with AIN 93M

Abbreviations: control (C), high-fructose (HFru), eicosapentaenoic acid (EPA),
docosahexaenoic acid (DHA).



Table 2.Primes.

Primers FW (5'-3’) RV

Ap2 TGGAAGCTTGTCTCCAGTGA AATCCCCATTTACGCTGATG
S-Actin CTCCGGCATGTGCAA CCCACCATCACACCCT

Cd137 CCCACATATTCAAGCAACCA GCTCATAGCCTCCTCCTCCT
Fndc5 GGTGCTGATCATTGTTGTGG CGCTCTTGGTTTTCTCCTTG
Hsl GACAGAGGCAGAGGACCATT TGAGGAACAGCGAAGTGTCT
Lpl TTCAACCACAGCAGCAAGAC TTCTCTCTTGTACAGGGCGG
Nrfl GTTGGTACAGGGGCAACAGT GTAACGTGGCCCAGTTTTGT
Plinl ACGACCAGACAGACACAGAG GGCTGTAACCTCTCTGAGCA
Pgcla AACCACACCCACAGGATCAGA  TCTTCGCTTTATTGCTCCATGA
Ppara CAAGGCCTCAGGGTACCACTAC GCCGAATAGTTCGCCGAAA
Ppary CACAATGCCATCAGGTTTGG GCTGGTCGATATCACTGGAGATC
Tfam GAAGAACGCATGGAGGAGAG TTCTGGGGAGAGTTGCAGTT
Ucpl TCTCAGCCGGCTTAATGACT TGCATTCTGACCTTCACGAC

Abbreviations. aP2, adipocyte protein 2; CD, cluster of differentiation; FNDCS5, fibronectin

type 111 domain containing 5 (precursor of irisin); HSL, hormone-sensitive lipase; LPL,

lipoprotein lipase; NRF1, nuclear respiratory factor 1; PLIN, perilipin; PGC1, peroxisome

proliferator-activated receptor gamma coactivator 1; PPAR, peroxisome proliferator-activated

receptor; TFAM, mitochondrial transcription factor A; and UCP1, uncoupling protein 1.



Table 3. Energy intake and adiposity.

HFru+EPA+
Data C HFru HFru+EPA  HFru+DHA DHA
El (kJ) 43.74+8.20 44.93+990 44.01+7.19 Z23.50 43.26 +5.98
Al (%) 355097 297+0.73 2.81+041  3.25.30 3.07 £0.67

Visceral fat (g; epididymal plus
0.76 £0.22 0.63+0.16 0.57+0.09 0.68+0.12 0.59 £ 0.07

retroperitoneal pads)

SWAT mass (g) 0.17+0.05 0.17+0.02 0.14+0.03 .17@ 0.04 0.14 + 0.04

BAT mass (g) 0.09+0.01  0.12+0%2 0.07 +0.02 0.07 £0.02 0.07 +0.0%

Legend: Control (C), high-fructose (HFru), eicosapentaermiid (EPA), docosahexaenoic
acid (DHA). Values are the means + SD, n=10/grddignificant differences are indicated
(P< 0.05), one-way ANOVA and post hoc test of Holmekida# C and b# HFru.

Abbreviations: Al, adiposity index; BAT, brown adige tissue; El, energy intake; SWAT,

subcutaneous white adipose tissue.
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Highlights

N-3 polyunsaturated fatty acids have beneficial effects on metabolic disorders;
We studied the subcutaneous white adipose tissue and brown adipose tissue;
EPA and DHA may enhance the gene expressions related to browning and
thermogenesis;

EPA and DHA may improve mitochondrial biogenesis and lipid metabolism.



