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A B S T R A C T   

Thermogenic adipose tissue, which comprises classical brown and beige adipose tissue, has the ability to improve 
systemic metabolism. Its identification in adult humans has fostered extensive investigations on the therapeutic 
value to counteract obesity and metabolic disorders. Sex and gender differences of human thermogenic adipose 
tissue, however, are still understudied despite their importance for personalized treatment options. Here, we 
review studies reporting human sex differences of thermogenic adipose tissue and related potential improve
ments of systemic energy metabolism. An increasing body of evidence suggests higher prevalence, mass and 
activity of thermogenic adipose tissue in women, but the consequences for metabolic disease progression and 
mechanisms are largely unknown. Therefore, we also discuss observations on sex-specific adipose metabolism in 
experimental mouse and rat studies that may assist to establish molecular mechanisms and instruct future in
vestigations in humans.   

1. Introduction 

Although the prevalence of obesity and associated comorbidities is 
increasing in both men and women, the clinical manifestations of the 
disease vary between the genders (Lemieux et al., 1993). For instance, 
men are at greater risk of visceral obesity, despite having less body fat 
than women (Bergman et al., 2007). As a consequence, men are also at 
greater risk of developing and dying from obesity-related comorbidities 
such cardiovascular diseases (Song et al., 2014) whereas women retain a 
metabolically healthier phenotype as they gain weight (van 
Vliet-Ostaptchouk et al., 2014). In contrast, however, women with 
established diabetes are at greater risk to die from disease-associated 
complications such as heart failure (Ohkuma et al., 2019). Thus, it is 
inevitable that therapeutic treatment options are tailored to gender or 
sex. Sex is defined as unambiguous genetic evidence for male or female, 
and the term ‘sex’ is also used in experimental animal studies, although 
this is mainly based on anatomical characteristics. In clinical studies, 
one refers mostly to ‘gender’ when this is solely based on the patient’s 
statement. We simplify the use of ‘sex’ and ‘gender’ in this review by 
using ‘sex’ for animal studies and we refer to ‘gender’ in human studies. 

In the recent years, brown adipose tissue (BAT) and browning of 
white adipose tissue (WAT) have become attractive therapeutic targets 
to increase energy expenditure, thereby clearing excessive nutrients 

from circulation to combat obesity and its associated metabolic disor
ders. Although the developmental origins of brown and beige adipocytes 
are still a matter of debate (de Jong et al., 2020; Kajimura and Spie
gelman, 2020), both are generally considered thermogenic, 
energy-combusting cells. Brown/beige adipocytes mainly use mito
chondrial uncoupling protein 1 (UCP1) to short-circuit the proton 
motive force and accelerate substrate oxidation, supported by a molec
ular network that enables increased substrate delivery and energy 
turnover. Activating thermogenic metabolism in BAT and WAT may 
therefore improve several parameters of metabolic health in humans. 
For example, individuals with high BAT activity display elevated blood 
levels of high-density lipoprotein (HDL) cholesterol, and lower levels of 
glycated hemoglobin (Hb1Ac), glucose and FFA/triglycerides (Mat
sushita et al., 2014; Ouellet et al., 2011; Wang et al., 2015). Studies in 
laboratory mice established causality and molecular mechanisms, 
showing that activating BAT and browning pathways of WAT in the cold 
improve glucose and lipid homeostasis (Bartelt et al., 2011; Chon
dronikola et al., 2016). The majority of experimental studies in mice, 
notably with a few exceptions, use only one sex, mainly males, to avoid 
high individual numbers and twice the cost. Males are preferred for 
simplicity, omitting confounding parameters such as the estrus cycle. 
There are, however, obvious downsides by omitting one of the sexes that 
will eventually result in knowledge gaps for optimal therapeutic impact 

* Corresponding author. 
E-mail address: michaela.keuper@su.se (M. Keuper).  

Contents lists available at ScienceDirect 

Molecular and Cellular Endocrinology 

journal homepage: www.elsevier.com/locate/mce 

https://doi.org/10.1016/j.mce.2021.111337 
Received 22 October 2020; Received in revised form 17 May 2021; Accepted 25 May 2021   

mailto:michaela.keuper@su.se
www.sciencedirect.com/science/journal/03037207
https://www.elsevier.com/locate/mce
https://doi.org/10.1016/j.mce.2021.111337
https://doi.org/10.1016/j.mce.2021.111337
https://doi.org/10.1016/j.mce.2021.111337
http://crossmark.crossref.org/dialog/?doi=10.1016/j.mce.2021.111337&domain=pdf
http://creativecommons.org/licenses/by/4.0/


Molecular and Cellular Endocrinology 533 (2021) 111337

2

on male and female patients concerning BAT function, browning po
tential of WAT depots and the consequences on systemic metabolism. To 
form the biomedical basis for better personalized treatment options, it 
will become crucial to collect knowledge on molecular and functional 
sex/gender differences. Thus, discovering sex differences of thermo
genic adipose tissue is a timely topic. 

In contrast to WAT mass, BAT prevalence and activity correlate 
negatively with age and obesity (Saari et al., 2020; Saito et al., 2009; 
Yoneshiro et al., 2011) and may be of limited importance for the therapy 
of adult obesity and metabolic disorders. Therefore, we also discuss sex 
differences in WAT metabolism and the browning process. This 
mini-review covers the current knowledge on sex-specific parameters 
that affect BAT/WAT function and energy dissipation (heat production), 
including innervation, adrenergic receptors, thermogenic gene pro
gramming, lipolysis, vascularization, mitochondrial and UCP1 function. 
In many excellent reviews, the role of sex hormones (e.g., estrogen, 
progesterone and testosterone) are comprehensively discussed as 
important regulators of BAT and WAT metabolism (Kaikaew et al., 2021; 
Law et al., 2014; Quarta et al., 2012). Therefore, we omitted extensive 
discussion on sex hormone-related differences in this review to avoid 
redundancy. Also, we do not cover the impact of ethnicity on BAT 
function, which has been reviewed previously (Merkestein et al., 2014) 
and has not yet extensively integrated gender differences. In short, 
whether ethnic differences in metabolic disease progression can be 
linked to BAT, is not yet resolved. Previous studies suggested differences 
in BAT volume between Asian and Caucasian patient cohorts (Bakker 
et al., 2014), which result in minor, but not striking differences in BAT 
activity (Boon et al., 2019; Nahon et al., 2020). Currently, there are 
neither molecular nor genetic clues supporting ethnic differences of 
human BAT. 

2. Gender differences in systemic lipid metabolism 

Metabolically active adipose tissue will impact in particular systemic 
lipid metabolism. At the systemic level, women display higher net lipid 
oxidation under resting conditions (Tran et al., 2010). When energy 
demand increases (e.g. during physical activity), women also increase 
the contribution of fat oxidation to total energy expenditure more than 
men (Tarnopolsky, 2008; Venables, 2004). During epinephrine infusion 
to stimulate lipolysis, higher levels of circulating fatty acids are observed 
in women, indicating increased adrenergic sensitivity and recruitment 
of fat oxidation as compared to men (Schmidt et al., 2014). The notion 
that fat mass contributes more to resting metabolic rate in women 
(Nookaew et al., 2013) further supports the idea of gender-specific ad
ipose metabolism, possibly by mitochondrial function as speculated by 
others (Norheim et al., 2019). 

3. Gender differences in human BAT prevalence 

Intriguingly, an early report using PET/CT scans had already visu
alized gender differences in the prevalence of human BAT, showing that 
10.5% of the female scans (n = 443) were BAT-positive, versus only 
2.9% of the male scans (n = 462) (Cohade et al., 2003). A later study 
estimated the likelihood of possessing substantial amounts of BAT as 
three times higher in women versus men (Cypess et al., 2009). Not only 
does the prevalence of BAT appear to be higher in women in many 
studies (Cohade et al., 2003; Cronin et al., 2012; Hany et al., 2002; 
Persichetti et al., 2013), but there is also an indication of its increased 
metabolic activity and mass in female subjects (Pfannenberg et al., 
2010). Notably, the majority of reports claim higher BAT prevalence in 
women (Table 1), while only a few studies found no significant gender 
effects using multivariate analyses (Ouellet et al., 2011). PET/CT scan
ning data, however, have to be taken with some caution as only BAT 
activity is detected, which is affected by several factors such as ambient 
and outdoor temperature, season, diet, medications, time of day, and in 
women, by estrus cycle variations. As a number of scans have been 

analyzed retroactively for the presence of BAT, many of these key details 
have not been recorded and are thus unknown. Presumably, these scans 
were taken from patients at room temperature without maximizing BAT 
activity with cold exposure. Thus, the prevalence of BAT with only 
0.3–13.7% positive PET/CT scans (Table 1) may represent an underes
timation, and the high variation (e.g. in calculated tissue mass ranging 
between 0.5 and 170 g (Cypess et al., 2009)) may not only be due to 
inter-individual differences. Current efforts aim to standardize the 
PET/CT analysis (e.g. (Pardo et al., 2017)) for better accuracy of human 
BAT quantities and activity to allow comparisons under different 
physiological and pathophysiological conditions. 

3.1. The anatomical distribution of human BAT 

No major gender difference in the anatomical distribution of BAT has 
been reported so far, contrasting WAT, which usually is located more in 
the subcutaneous region around hip and thighs in women, while men 
usually develop more visceral WAT in the abdominal part. The BAT 
depots of both genders are mainly located in six regions: cervical, 
supraclavicular, axillary, paraspinal, mediastinal, and abdominal 
(Fig. 1). The supraclavicular region is the most common location for the 
detection of active BAT via PET/CT scan, with a prevalence of about 
60–94% in BAT-positive individuals (Lee et al., 2010; Leitner et al., 
2017; Ouellet et al., 2011; Persichetti et al., 2013). The sum of supra
clavicular, cervical and axillary deposits accounts for 60% of total BAT 
volume and 69% of total BAT activity (Leitner et al., 2017). Some data 
suggest that women possess more capacity to increase BAT mass and 
activity. This is based on the right-skewed distribution of BAT mass and 
activity in women vs. men, showing a median total mass of 12.3 g in 
women adding cervical, supraclavicular, and superior mediastinal BAT 
(range: 1.1 g–170.0 g), and 11.6 g in men (range: 0.5 g–42.0 g) (Cypess 
et al., 2009). As stated in the previous section, the high variation in BAT 
mass may not only be due to inter-individual differences, but a result of 
non-standardized methods and unknown factors. Contrary to these 
studies, a very recent study claims no gender difference of relative BAT 
amount and glucose uptake (Fletcher et al., 2020). The authors report on 
similar BAT distribution with the exception of the superficial dorsocer
vical depot, a remnant of the interscapular BAT of human newborns and 
small mammals, which was significantly (P = 0.02) more prevalent in 
women (found in 6 of 12) as compared to men (found in 1 of 12) 
(Fletcher et al., 2020). 

4. Sex differences in BAT 

Rodent BAT is very well-characterized and sex differences are 

Table 1 
Reported gender differences in the prevalence of neck/supraclavicular brown 
adipose tissue in several human studies.  

Study number of 
scans 

positive scans (%) Ratio 
women/men 

total men women 

Cohade et al. 
(2003) 

1017 13.7–4.1 2.9 10.5 3.6 

Yeung et al. 
(2003) 

863 2.3 0.3 2.0 6.7 

Truong et al. 
(2004) 

845 1.8 0.5 1.3 2.6 

Kim et al. (2008) 1495 2.8 1.2 4.7 3.9 
Cypess et al. 

(2009) 
1972 5.4 3.1 7.5 2.4 

Au-Yong et al. 
(2009) 

3614 4.6 2.8 7.2 2.6 

Cronin et al. 
(2012) 

6867 4.3 2.7 5.9 2.2 

Persichetti et al. 
(2013) 

8004 3.5 1.8 4.9 2.7 

Wei et al. (2015) 1550 3.5 0.9 2.6 2.9  
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documented for several parameters, such as the thermogenic response, 
adrenergic signaling, morphology, and expression levels of thermogenic 
genes including UCP1. In humans, gender differences for many of these 
parameters have been reported and are discussed in the following 
sections. 

4.1. Vascularization 

To supply nutrients and oxygen, and to distribute heat to the 
remainder of the body, vascularization and the regulation of blood flow 
are two central components for BAT thermogenesis during cold exposure 
(Xue et al., 2009). Thus, both of these parameters are important mea
sures when studying BAT activity quantitatively in the context of sex/
gender differences. Sex differences in vascularization were mostly 
studied in WAT. For example, the perigonadal fat of female mice showed 
higher angiogenesis upon diet-induced obesity (Rudnicki et al., 2018). 
Vascular endothelial growth factor-A (VEGFA), the master regulator of 
angiogenesis, is dynamically regulated in murine adipocytes by, e.g. 
estradiol (Fatima et al., 2017). Gender differences may also exist in 
humans, given reports on endothelial cells of women showing higher 
capacity to form capillary-like tubes in vitro (Lorenz et al., 2015) and to 
proliferate and migrate (Addis et al., 2014). Furthermore, sex hormones 

mediate gender differences in the responsiveness of vascular tone to 
adrenergic activation (Riedel et al., 2019). Collectively, these data 
strongly suggest sex/gender differences in vascularization and the 
regulation of blood flow in BAT upon cold and obesity in mice and 
humans. While these differences would likely affect the impact of BAT 
on systemic energy metabolism, direct studies addressing sex-specificity 
and its physiological consequences are still missing. 

4.2. Adrenergic activation 

Adrenergic signaling, the major signaling pathway to activate BAT 
thermogenesis, has been reported as sex-specific in rodents, as brown 
adipocytes of female rats are more sensitive to β-adrenergic stimulation 
(Rodrıǵuez-Cuenca et al., 2002). In humans, however, adrenergic 
innervation of BAT has not yet been explicitly investigated for sex dif
ferences, but these are supported by elevated adrenergic responses of 
systemic lipolysis in women (Schmidt et al., 2014). The gender differ
ence in systemic lipolysis likely derives from adipose tissue, as it persists 
ex vivo in isolated subcutaneous adipocytes, even in the absence of sex 
hormones (Lofgren et al., 2002). The reason for sex-specific sensitivity of 
adrenergic stimulation is not entirely understood. While some suggest 
the lower ratio of α2/β3-receptor signaling in female adipocytes of rats 

Fig. 1. BAT parameters impacted by sex differ
ences. 
The figure summarizes data on sex differences in 
adipose tissue, with a focus on human BAT, from 
the systemic level (body) to the organelle. Param
eters reported in rodent models with gender/sex 
differences (purple font) or without evidence for 
gender/sex differences (green font). Red arrows 
indicate whether the parameter is higher or lower 
in females compared to males. Check marks indi
cate that human data are available for BAT or only 
for WAT (in brackets).   
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and men as the underlying mechanism (Rodrıǵuez-Cuenca et al., 2002; 
Schmidt et al., 2014), others doubt the importance of canonical β3-sig
nalling in human BAT per se. Instead, other authors highlight the 
importance of β1-receptors, which are expressed without gender dif
ferences (Riis-Vestergaard et al., 2019), or β2-receptors without stating 
gender specificity (Blondin et al., 2020). Notably, guinea pigs activate 
BAT independent of β3-receptors (Himms-Hagen et al., 1995), suggest
ing variation in β− signaling even among rodents. 

Taken together, further studies are needed to delineate sex-specific 
adrenergic receptor expression and signaling. 

4.3. Flexibility 

The process of BAT activation and deactivation in response to 
physiological stress appears to be more flexible in female rodents. In 
response to caloric restriction, female rats deactivate facultative ther
mogenesis to a higher degree than males, thereby better protecting the 
mass of metabolic organs (Valle et al, 2005, 2007). During pregnancy 
and lactation, BAT in female rodents is deactivated and atrophied 
(Abelenda and Puerta, 1987; Frontera et al., 2005; Trayhurn and Wus
teman, 1987). The downregulation of BAT thermogenesis is best 
explained as the consequence of heat dissipation limits to prevent 
overheating, given that milk production is a highly energetic and ther
mogenic process (Król and Speakman, 2019). In contrast, the degree of 
deactivation may be higher in male mice during pathological conditions 
such as obesity: males of the leptin-deficient ob/ob mouse model show 
pronounced lipid accumulation (‘whitening’) in BAT during aging, 
paralleled by decreased expression of tyrosine hydroxylase and a higher 
degree of peripheral neuropathy, strongly suggesting decreased inner
vation (Blaszkiewicz et al., 2019). 

Thus, at least in rodent models, the higher plasticity and flexibility of 
female BAT activity may be retained longer during obesity and aging. 

4.4. Mitochondrial and molecular biology 

BAT of female rats shows higher mitochondrial density and cristae 
height (Justo et al., 2005; Rodrıǵuez-Cuenca et al., 2002). To the best of 
our knowledge, similar gender differences in the morphology of BAT 
mitochondria are unknown in humans. 

The master regulator of non-shivering thermogenesis and energy 
wasting is UCP1. Several animal studies report higher UCP1 abundance 
in females as compared to males. For example, female rats express more 
UCP1 protein than males at room temperature, while UCP1 decreases to 
similar low levels at 28 ◦C, which was interpreted as sex-specific tem
perature thresholds of BAT activation (Quevedo et al., 1998), possibly 
caused by differences in body size or thermoneutral zones. Similarly, 
female mice of the C57Bl/6J strain display increased UCP1 protein 
levels at room temperature (Grefhorst et al., 2015), but other mouse 
strains, which have not been systematically analyzed in this review, may 
differ. Although not explicitly shown, similar regulation may be found in 
humans, where sexual dimorphism of thermic, metabolic and cardio
vascular responses to cold exposure (Graham, 1988), as well as cold 
sensation (Yasui et al., 2007) have been reported. In general, women 
seem to display more cold sensation and may have to activate thermo
genesis at higher temperatures than men (Kaikaew et al., 2018). If 
higher BAT activation at room temperature (Table 1) explains higher 
prevalence of BAT-positive PET scans in women, differential gender 
effects of cold sensation require consideration in PET/CT scans of human 
BAT. 

On high-fat diets, female rats show higher expression of selected 
thermogenic genes in BAT (Valle et al., 2005). This is further supported 
by comparative proteomic analysis of BAT from female vs. male rats, 
which revealed several sex differences upon diet-induced obesity, 
including different protein levels of UCP1 and other proteins that have 
been implicated in thermogenesis, such as creatine kinase (CK), glycerol 
kinase (GyK), and fatty acid synthase (FAS) (Choi et al., 2011). Together, 

these rodent data support an overall higher thermogenic capacity of BAT 
in females. Similar human data have yet to be reported, but higher UCP1 
mRNA levels were found in subcutaneous (Nookaew et al., 2013) and 
perirenal WAT of females (van den Beukel et al., 2015). Notably, how
ever, higher UCP1 mRNA levels in ex vivo differentiated perirenal adi
pocytes from women did not translate into higher protein levels and did 
not result in higher uncoupled respiration, suggesting no profound 
functional effect of increased UCP1 mRNA (van den Beukel et al., 2015). 
Adding to sex-specific mRNA and protein expression pattern in BAT, the 
lipid composition of murine BAT is sex-specific, with more pronounced 
differences in BAT than in gonadal or subcutaneous WAT, as judged by 
lipidomic approaches (Hoene et al., 2014). Collectively, the available 
data so far support sexual dimorphisms at the functional level, with 
female brown adipocytes displaying improved mitochondrial function 
and metabolism. 

5. Sex differences in WAT browning and metabolism 

BAT mass and activity declines with age and weight gain, reducing 
the potential for treatment of obesity and metabolic disorders such as 
cardiovascular diseases (Saito et al., 2009; Yoneshiro et al., 2011). 
Furthermore, the capacity of BAT for thermoregulation and/or energy 
wasting diminishes during obesity in both the basal and the 
cold-stimulated state (Saari et al., 2020). Thus, the stimulation of WAT 
metabolism or browning of WAT represents an alternative, possibly even 
more promising avenue. The term ‘browning’ of WAT is currently not 
well-defined, but involves metabolic remodeling that promotes higher 
metabolic activity and energy turnover, including the appearance of 
multilocular adipocytes, the increased expression of thermogenic and 
mitochondria-related genes, particularly UCP1 expression. There are 
several descriptions of sex differences for browning parameters and for 
WAT metabolism, in general which we discuss in the following two 
paragraphs and that may offer potential for sex-specific targets in 
obesity therapy. 

5.1. Browning of WAT 

Rodent studies suggest higher capacity for browning in females. The 
gonadal WAT (gWAT) of female mice shows enhanced browning upon 
methionine-choline deficient diets (Lee et al., 2016) or β3-adrenergic 
activation (Kim et al., 2016). Despite lower β3-adrenergic receptor 
mRNA levels in gWAT of female mice, tyrosine hydroxylase levels are 
higher, suggesting more innervation of gWAT under normal chow 
feeding and housing temperatures of 23 ◦C (Kim et al., 2016). With age, 
the decreased innervation of subcutaneous WAT shows signs of sexual 
dimorphism in the leptin-deficient ob/ob mouse. Female ob/ob mice 
develop less neuropathy and possess higher levels of the nerve growth 
factor BNDF (brain-derived neurotrophic factor) (Blaszkiewicz et al., 
2019). Recently, a comprehensive analysis comparing global gene 
expression across >100 inbred mice strains strongly corroborated higher 
UCP1 expression in WAT of female mice (Norheim et al., 2019). This 
study also associated the increased UCP1 expression in gonadal WAT of 
female mice with metabolically healthier phenotypes, whereas in males, 
UCP1 expression positively correlated with higher fat mass accumula
tion and insulin resistance. Gonadectomy was instrumental to demon
strate that gonadal hormones are not the main causal factors for 
sex-specific gene expression profiles in adipose tissue, contrasting 
findings in the liver, which showed reversible effects of gonadal hor
mones on sex-specific gene expression (Norheim et al., 2019). The au
thors of this study suggested that mitochondrial function in adipose 
tissue is a key factor that underlies sex differences in metabolic pheno
types (Norheim et al., 2019). 

In women, the evidence for higher browning potential of WAT depots 
is seen in preadipocytes from perirenal fat depots (van den Beukel et al., 
2015). Coherently, the notion of higher browning capacity in WAT of 
women is supported by higher UCP1 mRNA in subcutaneous WAT 
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(Nookaew et al., 2013). 

5.2. WAT metabolism 

The gender-dependent differences in glucose and lipid homeostasis 
of human adipose tissue (Varlamov et al., 2015) are reflected at the 
cellular level, as adipocytes isolated from subcutaneous and visceral 
regions show gender-specific differences in basal and 
norepinephrine-stimulated lipolysis (Lofgren et al., 2002; Lönnqvist 
et al., 1997). The idea of gender differences in mitochondrial oxidative 
metabolism of white adipocytes is supported by some molecular evi
dence, seen as higher expression of oxidative phosphorylation-related 
genes in females, which appears to be independent of fat distribution 
and sex hormones (Nookaew et al., 2013). At the functional level, 
mitochondria-related sex differences were already shown for other or
gans, such as the brain, heart and blood cells (Ventura-Clapier et al., 
2017). Recently, we reported on gender-specific differences in the 
mitochondrial activity of subcutaneous preadipocytes from obese do
nors, demonstrating higher and more efficient mitochondrial activity in 
women as compared with BMI- and age-matched men (Keuper et al., 
2019). The manifestation of gender differences in adipocyte energy 
metabolism is in particular significant during obesity. Basal and stimu
lated lipolytic rates are higher in obese women vs. obese men, while no 
significant gender differences are found in non-obese subjects (Lofgren 
et al., 2002). Furthermore, weight-reduction may modulate the lipolytic 
capacity of adipocytes in a gender-specific manner (Kolehmainen et al., 
2002). Triglyceride synthesis rates in subcutaneous WAT of obese 
women are found to be higher than in obese men (Edens et al., 1993). 

Despite lipid metabolism, several studies also suggest regulation of 
glucose homeostasis in adipose tissue of rodents and humans in a sex/ 
gender-dependent manner (Kolehmainen et al., 2002; Lundgren et al., 
2008; Macotela et al., 2009). Adipocytes from female mice are more 
insulin-sensitive (Macotela et al., 2009). In obese women vs. obese men, 
insulin-stimulated maximal glucose uptake into adipocytes is higher 
(Foley et al., 1984). Coherent with these findings, we demonstrated 
gender-specific differences in human preadipocyte bioenergetics in the 
response to insulin and glucose (Keuper et al., 2019), demonstrating that 
changes of mitochondrial function by insulin can be uncovered in vitro. 
Whether these differences also exist in brown and beige adipocytes, has 
yet to be elucidated. 

6. Concluding remarks 

There is an increasing body of evidence from experimental rodent 
models and patients, that sex differences in BAT and WAT metabolism 
ultimately contribute to gender differences in systemic and substrate 
metabolism (Kolehmainen et al., 2002; Lönnqvist et al., 1997; Lundgren 
et al., 2008; Macotela et al., 2009; Tarnopolsky, 2008; Tran et al., 2010; 
Venables, 2004). 

The role of the immune system in controlling energy metabolism is 
not discussed in-depth in this review, despite its marked potential to 
impact BAT biology in a sex-specific manner. Several publications sup
port the importance of the immune-metabolism-axis for BAT/WAT en
ergy turnover and WAT browning in mice and humans (Camell et al., 
2017; Fischer et al., 2017; Keuper et al., 2017; Nguyen et al., 2011; 
Omran and Christian, 2020; Pirzgalska et al., 2017; Wu et al., 2011). The 
sex-specific nature of inflammatory processes throughout life has been 
well-established (Casimir et al., 2018), in particular for the 
obesity-associated chronic low-grade inflammation of adipose tissue in 
mice (Medrikova et al., 2012; Singer et al., 2015). WAT inflammation is 
lower in female mice when analyzing, for instance, the infiltration and 
accumulation of macrophages in so called crown-like structures around 
dying adipocytes in both gonadal and subcutaneous WAT after 35 weeks 
on a high-fat diet (Medrikova et al., 2012). In humans, many studies 
support a gender-specific relationship between inflammation and 
metabolic diseases (Bo et al., 2005; Cancello et al., 2006; ter Horst et al., 

2020; Thorand et al., 2007), further emphasizing translational potential 
to study mechanistic links between the immune system and BAT/WAT 
metabolism in a sex-dependent manner. 

The role of sex hormones in control of systemic thermoregulation is 
discussed comprehensively elsewhere, as they are the main drivers of 
sex-specific BAT/brown adipocyte parameters (Fig. 1) (Rodrí
guez-Cuenca et al., 2007). Sex hormones are able to modify respon
siveness to adrenergic signaling (Monjo et al., 2003), partially through 
the central nervous system (Labbé et al., 2015), and control the 
browning capacity of WAT (Kim et al., 2016). 

Our understanding of the sex-specific parameters in BAT, which are 
driven independent of sex hormones, derives mostly from mouse 
models, which indicate a significant contribution of the sex chromo
somes. In mouse models with increased X chromosome number, such as 
the Klinefelter syndrome model (XXY), positive effects on adiposity 
progression and fat mass were found (Chen et al, 2012, 2013), possibly 
complementing the effects of gonadal hormones. To the best of our 
knowledge, no study has focused on the effects of sex-chromosomal 
differences in BAT mass or activity yet. Interestingly, large-scale sin
gle-nucleotide polymorphism (SNP)–based GWAS and whole exome 
sequencing have started to unravel the contribution of genomic and 
epigenomic sex-differences in human adipose tissue. A recent review 
highlights that 50% of central obesity loci have significant, but poorly 
understood, sexual dimorphism, with most loci imposing stronger ef
fects in women (Lumish et al., 2020). 

With the existing studies, it transpires that sex differences in various 
adipose tissue parameters persist or even increase during obesity (e.g. 
lipolytic capacity, vascularization, and expression of thermogenic 
genes). Thus, sex as confounding parameter of BAT/WAT function 
should be considered for effective obesity therapies. The impact of 
environmental stressors such as obesity may impact BAT/WAT physi
ology depending on sex. A recent study even suggest that sex-specific 
impacts of BAT are epigenetically transmitted to offspring (Sun et al., 
2018). Mice exposed to cold before conception develop offspring with 
higher UCP1 expression in BAT and subcutaneous WAT, resulting in 
increased systemic energy expenditure. Interestingly, the phenotype is 
paternally, but not maternally transmitted (Sun et al., 2018). 

Most studies have considered only one sex, but the number of pre
clinical studies considering the impact of sex differences is steadily 
increasing. There is, however, still unprecedented potential to explore a 
promising field of sex differences that may assist future therapeutic in
terventions in both women and men. 
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