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Background: Deep learning (DL) has shown promising results in improving atrial fibrillation (AF) detection algo-
rithms. However, these models are often criticized because of their “black box” nature.

Aim: To develop a morphology based DL model to discriminate AF from sinus rhythm (SR), and to visualize which
parts of the ECG are used by the model to derive to the right classification.

Methods: We pre-processed raw data of 1469 ECGs in AF or SR, of patients with a history AF. Input data was gen-
erated by normalizing all single cycles (SC) of one ECG lead to SC-ECG samples by 1) centralizing the R wave or
2) scaling from R-to- R wave. Different DL models were trained by splitting the data in a training, validation and
test set. By using a DL based heat mapping technique we visualized those areas of the ECG used by the classifier to
come to the correct classification.

Results: The DL model with the best performance was a feedforward neural network trained by SC-ECG samples
on a R-to-R wave basis of lead II, resulting in an accuracy of 0.96 and F1-score of 0.94. The onset of the QRS com-
plex proved to be the most relevant area for the model to discriminate AF from SR.

Conclusion: The morphology based DL model developed in this study was able to discriminate AF from SR with a
very high accuracy. DL model visualization may help clinicians gain insights into which (unrecognized) ECG fea-
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tures are most sensitive to discriminate AF from SR.
© 2020 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license (http://

creativecommons.org/licenses/by/4.0/).

1. Introduction

Atrial fibrillation (AF) is the most common cardiac arrhythmia
worldwide and associated with a five-fold increased risk of ischemic
stroke and a doubled mortality rate [1]. Standard of care for AF detection
is human confirmation of AF documented on an electrocardiogram
(ECG), device (i.e. pacemaker, implantable defibrillators or implantable
loop recorder) acquired atrial electrogram (EGM) or Holter recording.
ECGs of patients in AF are characterized by the absence of P-waves
and irregular R-R intervals. Most automated non-deep learning algo-
rithms integrated in ECG machines and cardiac devices rely on these
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two characteristics. However, misdiagnosis of AF by these classic algo-
rithms remains common as noise and baseline wander may affect detec-
tion of the P-wave, and R-R interval based algorithms require prolonged
recordings to identify AF [2,3].

Deep learning (DL) has shown to improve current AF detection and
classification algorithms remarkably [4-6]. DL is a subfield of artificial
intelligence (Al) and often consists of neural networks with multiple
deep layers that are capable of learning representations of data with
multiple levels of abstraction [7]. The capability of DL models to recog-
nize and discriminate specific patterns by learning features from raw
input data, makes DL a promising and interesting training tool for ECG
interpretation and rhythm detection and discrimination models [6]. Es-
pecially, as DL carries the possibility to use ECG samples with a short du-
ration and thereby only focuses on morphology instead of R-R interval
with a similar high accuracy [8,9]. Thereby, human interpretation can
potentially be improved through understanding which segments of
the ECG are most relevant for the discrimination of AF from SR. Despite
the reported high diagnostic performances of previous DL-based AF de-
tection models, these models are often criticized because it is unclear

0167-5273/© 2020 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).


http://crossmark.crossref.org/dialog/?doi=10.1016/j.ijcard.2020.04.046&domain=pdf
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1016/j.ijcard.2020.04.046
mailto:j.r.degroot@amsterdamumc.nl
https://doi.org/10.1016/j.ijcard.2020.04.046
http://creativecommons.org/licenses/by/4.0/
http://www.sciencedirect.com/science/journal/
www.elsevier.com/locate/ijcard

S.W.E. Baalman et al. / International Journal of Cardiology 316 (2020) 130-136 131

how these models derive their classification decision: the “black box”
criticism [10].

The aim of our study is therefore to develop and test a morphology
based DL model to discriminate AF from SR based on single cycle ECG
(SC-ECG) samples of ECGs performed in our tertiary referral center,
and to visualize which part of the SC-ECG samples is used by the
model to come to a classification decision.

2. Methods
2.1. Data source and adjudication

We developed a DL model to discriminate AF from SR from pre-
processed raw signals of 12-lead ECGs sampled at 500 Hz for a duration
of 10 s of patients diagnosed with paroxysmal or persistent AF. The
dataset consisted of 1499 ECGs of patients participating in the Atrial Fi-
brillation Ablation and Autonomic Modulation via Thoracoscopic Sur-
gery (AFACT) trial that investigated epicardial ganglion plexus
ablation during thoracoscopic PVI for advanced AF [11]. Of all patients
electrocardiographic documentation of AF was available. ECGs were ob-
tained in all patients before surgery and every three months during one
year follow up. All 12-lead ECGs were adjudicated by two experienced
investigators as SR, AF or other arrhythmias. In case of disagreement a
third adjudicator was asked to determine the rhythm. Only ECGs adju-
dicated as AF or SR, regardless of noise or ectopic beats, were included
in the dataset. ECGs of any other supraventricular tachycardia (SVT)
(e.g. atrial flutter or atrial tachycardia) were excluded for the develop-
ment of the model.

2.2. Pre-processing

Fig. 1 shows an overview of pre-processing of the raw ECG signals to
SC-ECG samples, to train, validate and test different DL models. Raw ECG
signals of eight different channels (I, II, V1-V6) were pre-processed
with several open source algorithms. First, the data was smoothed
with the Savitzky-Golay filter, which uses convolutions and local poly-
nomial fitting to smooth the 500 Hz ECG signals [12]. To correct for
baseline wander we used the Fourier Cosine Series to strengthen the
baseline to zero [13]. To simplify the learning process we only used
data from one ECG lead (lead II) for the development of our first DL
models to discriminate AF from SR.

2.2.1. Single cycle ECG samples

SC-ECG samples suitable for DL processing were created automati-
cally by standardizing all single cardiac cycles of one ECG lead in an
identical way in both space and time. Accordingly, all SC-ECG samples
were normalized to an identical number of data points in two different
ways (Fig. 1): Experiment 1 - by centralizing the R wave, allowing an
equal number of data points before and after the QRS complex, and
the same resolution across different ECGs; Experiment 2 - by normaliz-
ing each cardiac cycle from R-to-R wave, allowing inclusion of the entire
cardiac cycle in the analysis, but with different resolution across ECGs.
The Hamilton segmenter algorithm was used to locate the R waves on
the ECG signals [14]. This led to a total amount of Z(X) = 1469X sam-
ples, wherein X is the number of cardiac cycles during 10 s of one lead
(Fig. 1A, supplementary). Using all single cardiac cycles from lead II,
this resulted in 15,744 and 15,735 SC-ECG samples for R-centered
(experiment 1) or R-to-R representation (experiment 2) of the data re-
spectively. The number of data points were reduced from 5000
(500 Hz x 10 s) to 80 data points per SC-ECG sample, using linear inter-
polation to adjust for a cardiac cycle with a shorter R-R interval without
losing essential features.

2.3. Development of the different DL models

Multiple DL models with different layers and architectures were
developed and trained by distributing the data equally such that
50% of the SC-ECG samples were SR and 50% AF. Subsequently, the
data was split in a training (60%), validation (25%) and test (15%)
set. The first DL model used the SC-ECG samples with a centered R-
wave representation (experiment 1) of lead II as data input. The sec-
ond model used SC-ECG samples with an R-to-R-wave representa-
tion (experiment 2) of lead II as input. We repeated training of the
model with the best performance with data of the other seven
leads (I, V1-V6) separately. Model performance was reported as ac-
curacy and cross-entropy loss. The best performing model, hereafter
the gold standard, was defined as the model with the highest accu-
racy, area under the ROC curve (ROC-AUC) and area under the preci-
sion recall curve (PR-AUC). Results of all best performing models of
each lead were reported as accuracy, ROC-AUC, PR-AUC and F1-
score [15]. Analysis was computed with Python, version 3.6.5 (Py-
thon Software Foundation).

24. Visualization

To visualize the segments of the ECG that were most relevant for AF
detection in our best performing model, we developed a method to
demonstrate which specific ECG features are used by the DL model to
discriminate AF from SR. By adjusting the attention mechanism to a re-
current neural networks (RNN) to an attention mechanism to a
feedforward neural network [ 16]. This feedforward model uses one hid-
den layer to maintain spatial distribution, by using a combination of
weights of relevant data points to come to a correct classification. Visu-
alization was represented by heat mapping the values of the attention
vector on the input (e.g. flat input, or mean morphology of all SC-ECG
samples in SR or AF).

2.5. Reproducibility & open science

Detailed information about the architecture and algorithms, includ-
ing all python codes of our pre-processing, best performing model and
visualization techniques will be made publicly available through GitHub
[17]. All ECGs and patient data used for the development of our models
will not become publicly available according to the General Data Protec-
tion Regulation (GDPR) within the European Union [18].

3. Results

The mean age of this patient population was 59.0 + 8.2 years and
175 (73%) were male [11]. After adjudication, a total of 1469 (98%)
out of the 1499 ECGs, consisting of 1058 (72%) ECGs with SR and
411 (28%) with AF, were included. Baseline ECG characteristics are
shown in Table 1A (supplementary). Excluded ECGs (2%) only
consisted of ECGs with SVT other than AF. Optimal scaling of all sin-
gle cardiac cycles led to 80 data points for each SC-ECG sample. In ad-
dition, all SC-ECG samples were normalized in amplitude (divided by
the maximum value), resulting in a range of each sample between
—1 and 1. Fig. 2 shows the mean of the data points of all scaled SC-
ECG samples classified as SR or AF, normalized following the two dif-
ferent representations of the data: R-centered (experiment 1) vs. R-
to-R wave (experiment 2).

3.1. Best performing model

The architecture of the best performing model was a feedforward
neural network consisting of seven hidden layers with rectified linear
unit (ReLU) activation (first three dense layers) and linear activation
(last four dense layers) (Fig. 2A, supplementary). The sigmoid function
was used as activation function of the output node. Fig. 2B
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Fig. 1. Overview of pre-processing the raw 12-lead ECG signals to correct input data. A) The data was smoothed with the Savitzky-Golay algorithm. To correct for baseline wander we used
the Fourier Cosine Series. B) SC-ECG samples were created by normalizing all single cardiac cycles of one ECG lead, of a 12-lead ECG sampled at 10 s in AF or SR, to an identical number of
data points. C) SC-ECG samples were created in two different ways: by centralizing the R wave (left), and on a R-to-R wave driven way (right).

(supplementary) shows the accuracy and cross-entropy loss of the best 3.1.1. Experiment 1
performing model trained on R-centered (experiment 1) or R-to-R wave Training the model with R-centered SC-ECG samples was done in
SC-ECG samples (experiment 2). 128 epochs (Fig. 2B, supplementary), of which the starting weight of
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Fig. 2. Morphology of SC-ECG samples in AF or SR. Mean morphology of all SC-ECG samples in AF (dotted red line) and SR (solid green line) of both representations of the data. Experiment
1: R-wave centered SC-ECG samples (left). Experiment 2: R-to-R wave SC-ECG samples (right).

the net were determined by the last epoch, with the first epoch starting
with Xavier uniformly distributed random weights. The model was op-
timized by using the Adam optimization algorithm to minimize the
cross-entropy [19]. Dropout was used for regularization and to prevent
overfitting (Fig. 2A, supplementary). This resulted in an ROC-AUC of
0.96, PR-AUC of 0.96 and accuracy of 0.94 (Table 1).

3.1.2. Experiment 2

Training the model with the 15,735 R-to-R wave SC-ECG samples
was performed in 128 epochs (Fig. 2B, supplementary), resulting in an
accuracy of 0.96, ROC-AUC of 0.97 and PR-AUC of 0.96 (Table 1).
Table 1 shows the performance of the model after training with the R-
to-R-wave SC-ECG samples of the other leads separately. The predic-
tions of the signals from lead Il and V3 (accuracy 0.96, ROC-AUC 0.97,
PR-AUC 0.96) resulted in the best performances.

3.2. Deep learning model visualization

Fig. 3 shows heat mapping of the features of the ECG used by the DL
model, trained on R-to-R wave SC-ECG samples (experiment 2) of lead I,
for the classification predictions. The R-to-R wave representation
(experiment 2) was chosen, because this representation had a

Table 1

Accuracy, PR-AUC, ROC-AUC and F1-score of different models trained with R-centered SC-
ECG samples of lead Il or R-to-R wave SC-ECG samples of different leads. Lead Il and V3 re-
sulted in the model with the best overall performance to discriminate SR from AF.

Input data Lead Accuracy ROC-AUC PR-AUC F1-score

R-centered Il 0.94 0.96 0.96 0.81

SC-ECG samples

R-to-R-wave I 0.93 0.95 0.93 0.90

SC-ECG samples I 0.96 0.97 0.96 0.94
V1 0.95 0.98 0.96 0.93
V2 0.94 0.96 0.95 0.91
V3 0.96 0.97 0.96 0.94
V4 0.95 0.97 0.95 0.93
V5 0.95 0.97 0.96 0.92
V6 0.94 0.96 0.93 0.91

SC-ECG, single cycle-ECG; ROC-AUC, area under the receiver operating curve; PR-AUC,
area under the precision recall curve.

numerically better performance and was expected to be affected by
heart rate to a lesser extent and consequent deformation of the P and
T wave. As shown in Fig. 3 the segments of the ECG that are most rele-
vant for AF detection in the DL model with the best performance include
the presence of the P-wave, the onset of the QRS complex and early and
late components of the T-wave. The onset of the QRS complex was the
most relevant time-window for the model to discriminate AF from SR.
The results of our visualization technique were similar in the other 7
leads (experiment 2) that were not assessed by the network during
training previously.

4. Discussion

We demonstrate that a good performing DL classification model can
be developed using only the morphology of single cardiac cycles of one
ECG lead. Second, our developed DL visualization tool demonstrated
which specific ECG segments used by the DL algorithm best discrimi-
nated AF from SR.

4.1. Model performance

Our approach of using SC-ECG morphology instead of full time series
is unique to classic rule based algorithms in that it discriminates AF from
SR on a beat-to-beat morphology basis, rather than on a combination of
morphology and time. Different representations of the raw ECG signals
(R-centered vs. R-to-R wave) did not show any significant difference in
performance. However, using data from different leads of the ECGs did
affect the performance of the model (Table 1). The accuracy of more
than 93% in all our models exceeds the reported accuracy of 71% in
the commercially available algorithms integrated in current ECG ma-
chines [2]. Exclusion of ECGs in SVT other than AF (e.g. atrial flutter or
atrial tachycardia) may have contributed to this improvement. How-
ever, we cannot exclude that our method of pre-processing the data
on an R-centered basis, where the R wave is centered and the rest of
complex is scaled to the predefined 80 data points, had an effect on
the results due to the R-R irregularity in AF, as the absolute resolution
of this approach was similar across ECGs but different when scaled to
heart rate. Theoretically, this should have less of an effect on the R-to-
R complex representation as simply all the data points between two R
waves were taken and scaled to an 80 data points dimension, with im-
plications on different resolutions across different single cardiac cycles.
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Fig. 3. Visualization of the attention vector of the different areas of the ECG for the DL model to discriminate AF from SR. (A) Demonstrates which data points the model is using to come to
the correct classification after feeding the model a flat input. (B+C) Demonstrate the corresponding areas on a R-to-R wave SC-ECG sample in SR (B) or AF (C). The onset of the QRS

complex proved to be the most relevant area for the model to discriminate AF from SR.

Nevertheless, our results confirm that DL models may have the potential
to improve the diagnostic performance of AF detection algorithms inte-
grated in ECG machines, pacemakers, implantable defibrillators and
wearable cardiac monitors.

4.2. Comparison with previous AF detection models

Many improved AF detection algorithms have been developed to
detect AF in an efficient manner over the last years. Most of the cur-
rent device-integrated algorithms are based on atrial activity (e.g.
absence of P-waves), ventricular activity (Lorenz plot analysis, and
RR-interval variance) or a combination of these [20]. More recently,
AF detection algorithms have been developed that are mainly artifi-
cial intelligence (AI) based, using DL or machine learning (ap-
proaches. However, most published Al models cannot yet provide
practical perspectives for real-life implementation in cardiac de-
vices, as a gold standard of the best architecture or approach is lack-
ing. The PhysioNet/Computing in Cardiology (CinC) challenge in
2017 encouraged engineers to develop an algorithm to differentiate
AF from noise or SR using short 12,186 single lead ECGs of 9-16 s re-
corded by AliveCor [21]. The 75 teams that participate in the chal-
lenge had the full play to use different methods to develop the best
performing AF discrimination algorithm defined as the highest F1
score. Four teams won the challenge with an equal F1-score of 0.83,
their methods varied from random forests to DL based algorithms
[8,21]. Our best performing DL model although developed on a

different and smaller dataset, reached a considerably higher F1
score of 0.94 (Table 1) than the reported winning models in the
CinC challenge. The model presented in this paper did not outper-
form all currently reported AF detection or rhythm discrimination al-
gorithms. Athif et al. report a similar performance of their
morphology based AF detection model, with an accuracy of 0.96
[22]. However, Athif et al. used predefined statistical and morphol-
ogy features as input for their model, in contrast to our methods
wherein we did not dictate the computer what the most important
features are to discriminate AF from SR. The capability of DL to
choose features without human interference is what we think one
of the most fascinating aspect of this approach. Indeed we show
that -somewhat unexpectedly- the onset of the QRS complex is the
most sensitive segment for AF discrimination. AF detection models
that have been reported to perform slightly better than our model,
are all using a DL based approach consisting of neural networks
[4,23,24], and are associated with accuracies up to 99.7% [23]. Most
of these studies used a form of pre-processing of the raw data to
feed in to the DL model without losing important features of the sig-
nal. DL based rhythm discrimination studies using much larger
datasets than in this study show the feasibility of using ECG data
without the need of pre-processing and thus enabling a further auto-
mated end-to-end DL approach [6]. The promising results of DL tech-
nology based algorithms to detect AF allow to use this technology in
other ways to detect or predict AF. Recently, Attia et al. showed that
subtle patterns on ECG in SR could uncover the presence of a history
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of AF in patients [25]. Besides that these encouraging results may im-
prove clinical care and precision medicine for AF, finding ways to
gaze into the black box of these models remains an area of ongoing
investigation.

4.3. Deep learning model visualization

DL has the potential to integrate unrecognized features hidden in the
raw data. This opens DL models to the critique that they consist of black
boxes and that it is not revealed which elements of the data affect their
predictions. To our best knowledge we are the first to open the black
box of our AF detection algorithm in a way that shows clinicians in a
simple manner which morphologic features of the ECG are the most im-
portant for the model to derive to the correct classification of AF or SR.
We sought to elucidate how our DL model weighs each data point of
the ECG complex by heat mapping the input signal of a single cardiac
cycle. Our results demonstrate that the current R-to-R wave representa-
tion model focuses on the presence of the P-wave, the onset of the QRS
complex and on early and late components of the T-wave. The fact that
the earliest activation of the QRS complex is the most relevant area for
the model could be explained in several ways. First, the early activation
of the QRS complex includes the atrial repolarization, which is indis-
cernible on the ECG in AF, but may be affirmative picked up by the
model in SR. Second, the existence of atrial fibrillatory waves in ECGs
in AF, which may be more pronounced at the start of the QRS complex
[26]. The model was not trained on wider QRS complexes as there was
no difference in QRS duration between both groups (Table 1A,
supplementary).

4.4. Clinical implications

Unrecognized or untreated AF is responsible for more than a third of
all ischemic strokes [27]. The first step in the reduction of AF related
strokes is timely detection of AF to initiate oral anticoagulation therapy
in patients at risk for stroke. Current standard of care for the detection of
AF is capturing an episode of AF on an ECG, Holter monitoring or detec-
tion by cardiac implantable electronic devices. However, the accuracy of
most AF algorithms of these devices is low, and need human validation
to confirm the diagnosis of AF. Integrating Al-based AF detection algo-
rithms in ECG machines and devices may lead to an enormous improve-
ment in accuracy of AF detection which may lead to improved AF
detection, timely initiated therapy and thereby a reduction in health
care expenditure.

Using SC-ECG samples, or ECG segments of a small duration is feasi-
ble and may be of great potential, in particular for wearable devices/sen-
sors wherein long term duration recording storage is limited.

In our tertiary referral center, with a database with raw data of more
than 1.5 million ECGs, our work may act as a pilot study for future Al
based models for the improvement in the prediction, pathophysiology
and management for AF that may lead to personalized therapy selection
for AF. For example, an algorithm to predict AF in patients at high risk-
but without a history of AF on ECGs in SR could be developed. Similarly,
SC-samples as features in machine learning prediction models may be
used for outcome prediction of several interventions for AF. In addition,
our approach to use ECGs for Al models may serve as a tool to develop
other Al based models for the electrocardiographic detection and pre-
diction of disease. However, it must be said, as there an enormous
ways to intergrade raw ECG data into DL model, that the use of SC-
samples only may not be the holy grail of data input. Alternately, an
end-to-end approach without the need of pre-processing may have
the preference of choice.

4.5. Limitations

Our study has several limitations. First, we used an ECG dataset of
just 240 patients diagnosed with AF where the rate of SR and AF ECGs

were artificially balanced, instead of using a large unselected cohort
with a low incidence of AF. Thereby, we excluded ECGs in atrial flutter;
however also in these patients anticoagulation therapy is required. Ad-
ditionally, we only used limited information from single cardiac cycles
of one single lead in the current models separately. A future algorithm
should include data from all available leads and incorporate R-R interval
variation to further improve performance. We only used the Fourier Co-
sine Series in the baseline pre-processing steps of the development of
the model. Using the Fourier Cosine Series as input for a neural network
could further improve the training speed, reduce complexity of the
model and improve accuracy. Last, we only applied our visualization
method on a simplified architecture of the DL architecture with the
best performance (accuracy: 0.88; ROC-AUC 0.93). The decreased per-
formance of this approach may have affected the heat mapping results,
and may not fully represent our best performing model. Future im-
provements in visualization techniques are needed to determine the at-
tention vector of the more complex models, and will further guide us in
visualizing and understanding current and future DL models.

5. Conclusion

We demonstrate that a morphology based DL model using SC-ECG
samples discriminate AF from SR with a very high accuracy. The most
relevant ECG segment for the discrimination between AF and SR is the
onset of the QRS complex. DL model visualization tools may help clini-
cians gain insight into unrecognized ECG features for AF or more com-
plex electrocardiography.

Supplementary data to this article can be found online at https://doi.
org/10.1016/j.ijcard.2020.04.046.
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