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A B S T R A C T

The influence of the inoculum on the Biochemical Hydrogen Potential test (BHP) was investigated. Thermophilic
BHP from sludge-vinasses co-digestion (50:50) was studied employing three types of inocula: Acidogenic
Inoculum, Sludge Inoculum and Thermal Sludge Inoculum. The maximum hydrogen yield was obtained with a
sludge inoculum (177mL H2/g VSadded). This yield was 21 and 36% higher than for acidogenic inoculum and
thermal sludge inoculum, respectively. The results revealed that the choice of inoculum had significant impact
on the hydrogen yield and the sludge inoculum is the most beneficial for BHP tests. The percentages between
Eubacteria:Archaea increased from 59.2:40.8 to 92.0:9.0 during BHP tests using the sludge inoculum while it
remained stablish in the others cases around 50:50. Furthermore, hydrogen production was accompanied by the
generation of volatile fatty acids, mainly acetic, butyric and propionic acids. There were no differences in the
rate of hydrogen production in any of the BHP.

1. Introduction

In recent years, the energy crisis has imposed the necessity to
achieve a sustainable future built on alternative sources of energy and
materials. Molecular hydrogen represents a storable form of energy [1].
Moreover, its combustion does not generate polluting products and it
has high specific energy [2–4].

Hydrogen production can occur during the anaerobic digestion (AD)
process. This process can be divided into two stages: dark fermentation
(DF) and methanogenesis. The first stage involves the production of
volatile fatty acids (VFAs), H2 and CO2, while the second one converts
VFAs into CH4 and CO2 [5,6]. Simple operation conditions, low oper-
ating cost, low energy demand and fast reaction rate are some one-off
advantages of dark fermentation [7]. Hydrogen generation using the DF
process is possible with a wide range of waste materials such as sludge
[8], food waste [9], cheese whey [10], algal biomass [11] and vinasse
(V) [12]. Recently, numerous studies have found that co-digestion of
two or more substrates can increase the load of biodegradable organic
matter, improve the balance of nutrients, improve microbial diversity
leading to enhance hydrogen production [13,14]. Although there are
numerous studies on hydrogen production by co-digestion of sludge
with different substrates such as perennial ryegrass [2], food waste [15]
and glycerol [16], no prior studies have been published on the pro-
duction of hydrogen via sludge-vinasse co-digestion.

In Spain, around 1.2 million tons of sludge are generated every year
in the wastewater treatment plants (WWTPs). Waste activated sludge
(WAS) is the main by-product of these plants. WAS is an extremely
complex and heterogeneous solid waste, composed mainly of biomass
from cell growth and decay during activated sludge treatment process
in the WWTPs [17]. On the other hand, vinasse is an effluent generated
during the production of alcohol in the wine distillation process. This
effluent can be highly damaging in the areas in which it is discarded
due to its high organic load, low pH and high corrosivity. Instead of
harmful, vinasse may be considered as a substrate for hydrogen gen-
eration through the dark fermentation process because of the surplus
organic load.

Biochemical hydrogen potential (BHP) corresponds to the maximum
hydrogen production at dark fermentation infinite time and is a key
parameter to evaluate the suitability of substrates to obtain biohy-
drogen. Batch methods have recently been applied to evaluate the BHP
of numerous substrates, although the operating conditions (such as pH,
temperature) have yet to be standardized. Moreover, there is no con-
sensus regarding the nature of the inoculum to use in these tests or the
type of pre-treatment they should receive (Table 1). One of the most
widely used types of inoculum is the anaerobic sludge, though from
different sources such as municipal sewage [18,19], wastewater [2],
poultry slaughterhouse wastewater [20,21] and citrate-producing
wastewater have also been used.
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Most research studies use inocula subjected to thermal pre-treat-
ment in order to enrich the inoculum in terms of the hydrogen-produ-
cing bacteria. The pre-treatment is generally carried out at a tempera-
ture of 100 °C [2,18,19,22,23], although it has been carried out at 90 °C
in other cases [20,21,24] or even at a temperature above 100 °C
[25,26]. The exposure times of the inoculum to thermal shock vary
greatly, ranging from 15 to 30min in most cases [2,18,19]. However, in
the studies by Giordano et al. [26] and Mohan et al. [23], the exposure
time was longer (2–4 h). Other authors use a hydrogen-producing in-
oculum [3,12,27]. The results of these studies are inconclusive; hence
the lack of consensus regarding the type of inoculum or the thermal pre-
treatment conditions to be employed in BHP tests.

In this study, BHP tests with different natural inocula and pre-
treatment conditions were carried out to study their influence on BHP
results. The main purpose of this research is to discern which type of
inoculum to use for future BHP tests.

2. Materials and methods

2.1. Substrates

Waste activated sludge and vinasse were used as substrates. The
WAS was collected from Guadalete municipal wastewater treatment
plant, Jerez de la Frontera, Cadiz, Spain. The V was provided by the
González Byass winery located in Jerez de la Frontera, Cadiz, Spain,
and kept frozen (−20 °C) until use.

A mixture of both substrates in a 50:50 ratio was used as the
feedstock in all the BHP tests.

2.2. Inocula

Three types of inocula were used: Acidogenic Inoculum (AI), Sludge
Inoculum (SI) and Thermal Sludge Inoculum (TSI). The AI was collected
from a laboratory scale semi-continuous acidogenic thermophilic
anaerobic digester treating waste activated sludge-vinasse (50:50) for
hydrogen production. The reactor operated at pH 5.5, a temperature of
55 °C and a HRT of 4 days. The AI was thus already conditioned to treat
the mixture of WAS-vinasse co-substrates and is, therefore, a hydrogen
-producing inoculum. The SI and TSI were collected from a laboratory
scale semi-continuous thermophilic anaerobic digester treating waste
activated sludge operating at pH 7.0, a temperature of 55 °C and a HRT
of 20 days. The TSI was heat-treated in a hot oven at 100 °C for 15min.

Three BHP tests were carried out, Tests 1, 2 and 3, with the afore-
mentioned inocula, AI, SI and TSI, respectively.

The physic-chemical characteristics of the inocula and substrates are
summarized in Table 2.

2.3. Biochemical hydrogen potential

Hydrogen fermentation was performed in 250mL glass bottles with
a 120mL working volume and a 130mL headspace volume. For each
reactor, a mixing ratio of inoculum to feedstock of 1:1 (v/v) was used
[2,3]. The initial pH of each bottle was set at 5.5, a value at which
methanogenic Archaea are inhibited [18]. Nitrogen was fluxed for
5min to displace any air present in the bottles and hence ensure an

anaerobic environment. All the bottles were maintained at constant
temperature under thermophilic conditions (55 °C) in an orbital shaker
incubator.

All the experiments were carried out in triplicate and inoculum
control bottles were also prepared. Three bottles were used as control
for each inoculum without any substrate. The hydrogen production
from the control was subtracted from the hydrogen production obtained
in the substrate assays prior to data analysis.

2.4. Analytical methods

Both the volume and composition of the biogas were determined
daily. The produced biogas was determined indirectly, by measuring
the pressure inside the bottles via pressure transducers. The measured
pressure is converted to volume of biogas according to the ideal gas law
[28]. Gas volumes were converted to standard conditions and corrected
by subtracting the production of the blank. The composition of the
biogas was determined by gas chromatography separation (Shimadzu
GC-2010 system). H2, CO2, CH4 and O2 were analysed by means of a
thermal conductivity detector (TCD) using a Supelco Carboxen 1010
Plot column [29]. Total solids (TS), volatile solids (VS), total chemical
oxygen demand (TCOD) and soluble chemical oxygen demand (SCOD)
were analysed according to the Standard Methods [30] at the beginning
and end of each experiment. Volatile fatty acids (VFA) were determined
by gas chromatography on a Shimadzu GC-2010 system equipped with
a flame ionization detector (FID) and a capillary column filled with
Nukol [31]. The pH was measured at the beginning and end of the tests
using a Crison 20 Basic pH meter [30].

2.5. Microbial analyses

Fluorescence in situ hybridization (FISH) was used to count the
microorganisms contained in the reactors. The main steps of FISH of
whole cells using 16S rRNA-targeted oligonucleotide probes are cell
fixation followed by permeabilization and hybridization with the de-
sired probe(s). Samples from batch reactors were collected in sterile
universal bottles at the beginning and end of the BHP test. A 1:1 (v/v)
ratio of absolute ethanol was added to the bottles. The samples were
stored at −20 °C until they were fixed. Further details of this procedure
are given in Montero et al. [32].

The technique used for fixing and permeabilizing cells was based on
the method described by Amann et al. [33,34]. The 16S rRNA-targeted
oligonucleotide probes used in this study are shown in Table 3: bac-
terial-universal probe EUB338 [33,34], and Archaea-universal probe
ARC915 [35]. The cellular concentration and percentages of Eubacteria
and Archaea were obtained by FISH. The total population was estimated
as the sum of the populations of Eubacteria and Archaea for the reason
that most anaerobic microorganisms in anaerobic reactors belong to
these two groups [36]. Samples were examined visually and the cells
were counted under an Axio Imager Upright epifluorescence micro-
scope (Zeiss) equipped with a 100W mercury lamp and a 100× oil
objective lens. The filter employed depended on the identity of the la-
belled probe: a B-2A filter (DM 510, Excitation 450–490 and Barrer
520) was used for 6-FAM; while a G-2A filter (DM 580, Excitation
510–560 and Barrer 590) was used for Cy3. In addition, microbial ac-
tivity was evaluated from biochemical activity according to the
methods reported by Montero et al. [32] and Zahedi et al. [37]. The
activity was calculated as the ratio of H2 generated and the number of
microorganisms inside the reactor obtained by FISH staining.

3. Results and discussion

3.1. Physico-chemical analysis

The physical-chemical characteristics of three tests at the beginning
and end of the tests are summarized in Table 4. The pH remained

Table 2
Physico-chemical characteristics of the inocula and substrates.

Parameters Units AI SI TSI WAS+V

pH 5.32 5.49 5.52 5.39
TS g/L 28.68 40.71 38.01 41.07
VS g/L 21.50 31.85 29.39 33.51
TCOD g/L 51.81 49.51 42.27 63.75
SCOD g/L 37.52 22.58 22.62 28.06
Total VFA g/L 4.93 2.67 3.41 2.14
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relatively stable during experimentation, varying from 5 to 5.5. There
were no abrupt variations in pH, demonstrating that the systems were
capable of self-regulating in order to favour microbial activity [36].

VS and TS removal rates ranged between 1.7 and 17.3%. The lowest
rate was achieved with the acidogenic inoculum (Test 1).

As for SCOD removal, this was lower than 23% in all tests. Yang and
Wang [2] also found that the SCOD concentration decreased, with
significant reductions in removal rates of 7.1–31.3%. These authors
state that their results indicated that the hydrolysis amount of parti-
cular organics by hydrolytic bacteria was lower than the utilization
amount of soluble organics by hydrogen producers. In terms of TCOD,
the removal rate was greater, with percentages ranging between 50 and
60%. These results are in line with those obtained by Torquato et al.
[22], in which the maximum removal rate of 41% was obtained in the
digestion of vinasse to produce hydrogen. However, Silva et al. [18,19]
reported that COD removal was lower than 20% when testing the co-
digestion of food waste, sewage sludge and crude glycerol.

As regards intermediate compounds, a large amount of VFAs was
produced during the tests. At the end of the BHP tests, the dominant
species were acetic, butyric and propionic acids, the concentrations for
each inoculum being shown in Fig. 1. Generally, hydrogen production
via dark fermentation produces acetic and butyric acids as by-products
[38]. Butyric acid was predominant in Test 2 (using SI), which presents
a higher hydrogen yield. Luo et al. [39]and Chen et al. [40] also found
that the highest hydrogen production was obtained when butyric acid
predominated. Butyric acid-type fermentation is considered one of the
most effective pathways for hydrogen production [18]. On the other
hand, TSI showed the highest production of propionic acid, which is
detrimental for hydrogen production [20]. Tyagi et al. [3] found that
hydrogen yield decreases with increasing propionic acid concentration.

3.2. Biogas production

Fig. 2 shows the cumulative hydrogen production for sludge-vinasse
co-digestion with different inocula. In all the BHP tests, hydrogen
production commenced in the first hours, as the lag phase was short.
Furthermore, the biogas generated in all three tests was composed of
hydrogen and carbon dioxide, no methanogenic activity being observed

(i.e. the biogas was methane free). All this is due to the fact that the pH
values fell within the 5–6 range, which is optimal to enhance H2 gen-
eration and avoid methanogenesis [19].

The sludge inoculum led to the highest maximum accumulated H2

volume (391mL H2) compared to the acidogenic inoculum (298mL H2)
and the thermally pre-treated inoculum (TSI) (243mL H2). In terms of
H2 yield (as per millilitres of hydrogen per gram of volatile solids of the
substrate initially added to each reactor), the highest value was also
achieved at the test using the SI (177mL H2/g VSadded), corresponding
to an increase of 21 and 36% in relation to that obtained in the Test 1
(146mL H2/g VSadded) and the Test 3 (130mL H2/g VSadded) (Fig. 3).
According to these results, hydrogen production is inhibited rather than
enhanced when the inoculum is submitted to a thermal pre-treatment
with the purpose of inactivating H2-consuming Archaea and avoiding
methane generation, as proposed by several authors [2,18–24,26].
These results are concordant and discrepant at the same time with those
collected in the literature. Thus, Luo et al. [39] also observed this

Table 3
Oligonucleotide probes used in this study.

Probe sequences (from 5′ to 3′) Target Formamide (%) Time (h) T (°C) Reference

EUB338 GCTGCCTCCCGTAGGAGT Eubacteria 20 1.5 46 [33,34]
ARC915 GTGCTCCCCCGCCAATTCCT Archaea 35 1.5 46 [35]

Table 4
Physico-chemical and microbial characterization of the three tests.

Parameters Units Test 1 Test 2 Test 3

Initial Final Initial Final Initial Final

Physico-chemical characteristics
pH 5.35 5.07 5.32 5.27 5.46 5.39
TS g/L 34.99 34.35 41.24 35.80 40.54 34.26
Removal TS % 1.83 13.20 15.49
VS g/L 27.67 27.19 32.25 27.83 31.33 25.90
Removal VS % 1.73 13.71 17.33
TCOD g/L 68.00 33.78 65.63 28.35 86.38 30.64
Removal TCOD % 50.32 56.80 64.53
SCOD g/L 35.38 27.17 26.44 22.46 25.75 22.83
Removal SCOD % 23.21 15.05 11.34
Total VFA g/L 3.40 5.31 2.53 5.27 2.80 5.90

Microbial characterization
Total population 108 cells/mL 13.51 13.29 14.95 85.90 15.29 13.27
Eubacteria % 41.3 42.6 59.2 92.1 46.3 44.6
Archaea % 58.7 57.5 40.8 8.0 53.7 55.4
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Fig. 1. Volatile fatty acids generated during the tests.
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Fig. 2. Cumulative hydrogen production during the operating of batch reactors
with different inocula.
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tendency, the best condition was without any inoculum treatment.
However, Albanez et al. [41] observed a slight improvement was no-
ticed when performing the inoculum heat shock pretreatment in the co-
digestion of vinasse and molasses. In a recent study, Lovato et al. [20]
subjected the inoculum used in the co-digestion of cheese whey and
glycerin to a heat shock pre-treatment (90 °C for 10min), obtaining
significantly higher values for hydrogen productivities and yields than
using untreated inoculum. In other studies using the same inoculum
though treating glycerin-based wastewater, the thermally pre-treated
inoculum was not found to be significantly different from the untreated
sludge in terms of molar productivity and molar hydrogen yield [24]. It
is important to emphasize that the last three studies were done in
AnSBBR at mesophilic conditions.

3.3. Hydrogen production rate

In order to ease identification of differences between the inocula,
the hydrogen production rate of the first ten days is shown in Fig. 4. As
for the SI and STI inocula behaved similarly with a significant lead of SI
inoculum. This could be expected because both inocula have the same
source. As for AI inoculum, a broader and lower peak than in the other
inocula was detected. The maximum hydrogen production rate ob-
served in the tests 1 and 2, with the AI and STI inocula, reached the
peak after three days, and amounted to 11mL H2/(gVSadded d) and
20mL H2/(gVSadded d), respectively. On the other hand, the maximum

hydrogen production rate observed in the Test 2 with the sludge in-
oculum reached the peak at about the second day of experimentation,
amounting to 28mL H2/(gVSadded d). As could be expected, the highest
maximum hydrogen production rate was noticed in the experiment
with higher hydrogen yield. Lavagnolo et al. [42] claim that generally,
faster production rates are associated with higher production yields
even though their results disagree with this assertion. Although there
are studies that analyse the hydrogen production rate [18,19], no data
was found in the literature concerning the effect of inoculum on hy-
drogen production rate.

3.4. Statistical analysis

Fig. 5 shows the average of hydrogen yield produce to each in-
oculum with their standard deviation. In order to evaluate differences
between results of the three inocula, hydrogen yield and hydrogen
production rate results were analysed statistically by single-factor
analysis of variance (ANOVA). Table 5 shows the results of this analysis.
A confidence level of 95% was selected for all comparisons.

In the matter of hydrogen yield, for the comparison between in-
ocula, the p value is smaller than 0.05 in all cases, therefore there is
significant difference between the yields of hydrogen produced in SI
inoculum and those of the other two.

Conversely, for the hydrogen production rate there is no significant
difference (p > 0.05) between all of the three tested inocula.

3.5. Microbial population dynamics

The concentrations of microorganisms in the samples before and
after the different tests were studied. The amounts and relative per-
centages of the main microbial groups are shown in Table 4. In Test 2,
in which the highest hydrogen yield (177mL H2/g VSadded) was ob-
tained, the population size increased during the time of experimenta-
tion. Instead, in Test 1 and Test 3, the population size remained stable
at the end of the BHP tests in all cases; significantly, the amount of
substrate for acidogenic phase was sufficient. Eubacteria was the major
phylogenetic domain in all cases. It is possible that AI (Test 1), which
was already producing hydrogen, during the experiment the microbial
population is steady and there is no increase. On the other hand, SI
(Test 2), which was previously producing methane, by inhibiting me-
thanogenic Archaea, the bacteria that undergo a better adaptation to
the new conditions are Eubacteria and microbial growth is favoured. In
the case of TSI (Test 3), the thermal pretreatment may have removed
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Fig. 3. Hydrogen yield for batch tests using different inocula.
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Fig. 4. Hydrogen production rate for batch tests using different inocula.
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part of the microorganisms present in the SI (Test 2)
No significant variation was found in Eubacteria: Archaea ratios at

the beginning and end of the experiments in Test 1 or Test 3: 41–46%
and 59–54%, respectively. In Test 2, however, the percentages of
Eubacteria increased from 59% to 92%. Thus, BHP test with sludge in-
oculum could increase the abundance of the specific bacteria in the
reactor, which were beneficial for the hydrogen production.

Although methane is not generated, the analyses showed the largest
number of Archaea present. In terms of productivity, it may be stated
that Archaea were inactive [28].

4. Conclusions

H2 generation from sludge vinasse co-digestion, using different in-
ocula, was studied. The batch tests were successfully in all cases.
Significant differences have been found in the production of hydrogen
among the three inoculums. The highest hydrogen yield, 177mL H2/g
VSadded, was obtained with a sludge inoculum. This means that, in terms
of hydrogen yield, a sludge inoculum is to be preferred in the BHP tests.
Even though, Eubacteria was the major phylogenetic domain in all
cases, sludge inoculum showed a greater growth of Eubacteria during
the test, increasing the percentage of this population from 59.2 to 92.1.
The rate of hydrogen production was comparable between the different
inocula, that is, the duration of the test is independent of the type of
inoculum used. Furthermore, hydrogen production was chiefly ac-
companied by the production of acetic and butyric acids.
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