Fuel 283 (2021) 118642

Contents lists available at ScienceDirect

Fuel

journal homepage: www.elsevier.com/locate/fuel

Full Length Article

Surrogate generation and evaluation of gasolines )
Check for
. . . . 4 updates
Tobias Grubinger®, Georg Lenk”, Nikolai Schubert®, Thomas Wallek®"
2 Institute of Chemical Engineering and Environmental Technology, NAWI Graz, Graz University of Technology, Graz, Austria
> OMV Refining & Marketing GmbH, Vienna, Austria
GRAPHICAL ABSTRACT
! | ! I I
o FACE C, exp.
a4 surrogate, exp. /
10| /
—— surrogate, calc. /
O 8
E Q
& 2 -
& 100 2 —
. g &
= a8 —
& a8
8 -l
| | | | | | | | |
0 10 20 30 40 50 60 70 80 90 100
degree of vaporization per volume
ARTICLE INFO ABSTRACT
Keywords: Fuel surrogates are substitute mixtures that are developed to reproduce real fuels’ physical and chemical
Keyword: Surrogate properties. These mixtures are created with a small number of components, considering their application in

Real component
Gasoline
Property estimation

various types of simulations and for bench tests. In the present paper, new gasoline surrogates are proposed by
extending and applying an algorithm which was previously developed and successfully used to create diesel
surrogates. The five target properties chosen for surrogate optimization include the true boiling point curve
(TBP), the research octane number (RON), the liquid density, the carbon-to-hydrogen (C/H) ratio and the
oxygenate content. The algorithm is applied to three target fuels, comprising two reference fuels from the FACE
working group and one typical oxygenated gasoline that is commercially available in Europe. The proposed
surrogates consist of six chemical components which are also represented in reaction kinetics for fuel com-
bustion. An experimental comparison of the boiling point curves, densities and RONs among the surrogates and
their respective target fuels provided evidence that the proposed surrogates excellently reproduce the real fuels’

properties.
1. Fuel characterization by surrogates continue this successful trend, modern engine development processes
include combustion and emissions simulations, which have grown in-
Combustion engines have been improved over decades. In order to creasingly important in recent years. These simulation results serve as
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Nomenclature

Ay; + Ay, differential areas of the true boiling point (TBP) curve

C; number of carbon atoms of component i

CH mass-based carbon-to-hydrogen ratio in the objective
function

F(w) objective function for surrogate optimization

H; number of hydrogen atoms of component i

M; molar mass of component i

RON,ix research octane number of the mixture

RON, pure component research octane number of component i

Pomixe mixture density at 15 °C

o liquid density of component i at 15 °C

v; volume fraction of component i

VNBP,i molar volume of component i at the normal boiling point

VO volume fraction of oxygenates in the objective function

w; mass fraction of component i

We, Wy, Wo mass fractions of carbon, hydrogen and oxygen, re-
spectively

x degree of vaporization by volume

X lower degree of vaporization of component i

Xy, upper degree of vaporization of component i

Abbreviations

AAD absolute average deviation

AKI anti-knock-index

BRON  blending research octane number
CAS chemical abstracts service

CFD computational fluid dynamics
CFR cooperative fuel research

C/H carbon-to-hydrogen ratio

CSA component selection algorithm
EtOH ethanol

FBP final boiling point

GDI gasoline direct injection

HHV higher heating value

IBP initial boiling point

ID ignition delay

LCs lethal concentration measure
LHV lower heating value

MON motor octane number

NBP normal boiling point

PIONA n-paraffins, iso-paraffins, olefins, naphthenes, and aro-
matics

PRF primary reference fuel

RON research octane number

RVP Reid vapor pressure

SA simulated annealing

SD simulated distillation

TBP true boiling point curve

TEL tetra-ethyl lead

the basis for meeting the increasingly strict requirements concerning
pollutants and CO, emissions. Since modern gasolines tend to contain
oxygenates (e.g., alcohols or ethers) as additives, partly for the same
reason, their impact on a fuel’s combustion behavior is of great interest
to engine developers. However, a detailed simulation of combustion
reactions, considering all components occuring in real fuels, is not
feasible, due to the immense computational efforts required, partly
limited reaction mechanisms, and limited availability of physical
property data for many of these chemical components [1,2]. It should
nevertheless be noted that there has been substantial progress on op-
timizing simulation techniques over the last decade, in particular con-
cerning the handling of large kinetic mechanisms based on advances in
applied mathematics and algorithm design [3].

As an alternative, surrogates, that consist of only a few chemical
components, can efficiently be used for simulations and be applied on
test stands for related experimental investigations.

As surrogates are designed, the chemical compositions of such sur-
rogates are chosen in such a way as to mimic selected key properties of
the respective target fuels. Some of these key properties, like the dis-
tillation characteristics, densities, or octane ratings are specified by
relevant standards [4,5], while others which are of high importance for
engine developers, are not standardized, particularly the heating value,
the C/H ratio, or the viscosity. Modeling a wide variety of fuel prop-
erties is becoming steadily more difficult. For one thing, there is a
general lack of suitable components for the surrogate. Furthermore, the
inclusion of too many components in the surrogate may lead to math-
ematical conflicts among the selected target properties, since every
component contributes one variable to the target function of the opti-
mization algorithm. Hence, an acceptable compromise needs to be
found by choosing the most appropriate set of target properties. Once
target properties have been chosen, an algorithm is designed to opti-
mize the composition of fuel constituents by varying this composition in
such a way that an objective function, accounting for deviations be-
tween given and calculated fuel properties that depend on composition,
is minimized.

Over the past two decades, various approaches have been taken to

generate and optimize surrogates for gasolines.

Using a database of nine components, containing n-alkanes, iso-al-
kanes and aromatics as well as ethanol to cover the distillation range of
gasoline, Greenfield [6] proposed to make surrogates comprising seven
to eight components. In his work he used the distillation characteristics
as the only fitted target property, which was based on an ASTM D86 [7]
distillation curve model [8].

Mehl et al. [9] described the chemical properties of a real non-
oxygenated fuel under different operating conditions by reproducing
the ignition delay times and flame speeds with a surrogate of four
components. However, a significant reduction in the applied reaction
mechanism was necessary.

Focusing on auto-ignition modeling in engines, Pera et al. [10]
proposed a three-component surrogate, using the C/H ratio, O/C ratio,
molecular mass, RON and compound motor octane number (MON) as
target properties to optimize the surrogate composition. The compo-
nents were selected from among six components with well-known
chemical kinetics. In addition to the target properties, the gasoline
density, lower heating value (LHV) and distribution of molecular
groups could be closely reproduced by the resulting surrogate.

Samimi Abianeh et al. [11] proposed using an iterative metho-
dology to generate surrogates which was based on an analysis of a batch
distillation and required the same number of surrogate components as
the number of available points on the distillation curve. The metho-
dology was applied to generate two three-component surrogates for
gasoline. To perform combustion modeling of gasoline direct injection
(GDI) engines, the latter approach was further developed [12] to create
a seven-component surrogate, which successfully reproduced properties
of non-oxygenated research grade gasoline RD387, supplied by
Chevron-Phillips, in terms of its C/H ratio, RON, MON, LHV, density,
molecular structures and distillation characteristics. The proposed al-
gorithm distinguishes between primary targets (C/H ratio, RON, MON,
density, LHV and distillation curve) which are consistently predictable
without an investment of high computational effort, and a secondary
target (i.e., the ignition delay), which requires considerably more
computation effort due to the application of kinetic mechanisms.
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By using combustion simulations simultaneously while optimizing
an objective function, Ahmed et al. [13] formulated surrogates con-
taining six components to meet RON, C/H ratio, density, molecular
structures and distillation characteristics of selected FACE [14] gaso-
lines. In this context, the RON was calculated by correlating it with the
ignition delay time and the distillation characteristics using the simu-
lation tool REFPROP [15]. While most of the target properties were
reproduced properly, the distillation curves were reproduced with only
limited accuracy.

Targeting numerical modeling of spray evaporation in GDI engines,
Su et al. [16] developed a six-component surrogate using an inverse
batch distillation model, which was applied to estimate droplet eva-
poration rates comparable to those of fuel sprays. While the distillation
curve of the surrogate was in good agreement with that of the real fuel,
the predicted RON (which was not chosen as a target property) showed
considerable deviations, implying that the proposed surrogate would be
of limited usability when describing ignition characteristics.

Focusing on chemical kinetic modeling, Sarathy et al. [17] proposed
surrogates with seven and eight components using an objective function
containing RON, MON, the PIONA matrix (n-paraffins, iso-paraffins,
olefins, naphthenes and aromatics), C/H ratio, average molecular
weight, density and distillation characteristics. While RON and MON
were estimated by applying a linear mixing model, the distillation
curves were calculated using the simulation tool REFPROP [15]. Al-
though most of the target properties could be reproduced satisfactorily,
the distillation curves of the surrogates showed significant deviations
from those of the real fuels.

Recently, Zhang et al. [18] proposed a six-component gasoline
surrogate using an objective function comprising the Reid vapor pres-
sure (RVP), the higher heating value (HHV), density, viscosity, and the
lethal LCs, concentration. Furthermore, two additives from a compre-
hensive list were added to the surrogate to match the properties more
precisely.

In this paper, an algorithm which was previously developed and
successfully used for the generation of diesel surrogates [2,19] is ex-
tended and applied to optimizing gasoline surrogates. It is structured as
follows: First, criteria for selection of surrogate components are de-
veloped. Second, the choice of the target properties is discussed, in-
cluding an explanation of the modeling approaches used for both target
properties and derived properties. Finally, surrogates for three different
target fuels are proposed and verified by experimental results. Con-
clusions are drawn that indicate how the algorithm can be further de-
veloped.

2. Algorithm for surrogate optimization
2.1. Selection of components

A database with potential component candidates for gasoline was
established to allow for component selection for each target fuel. This
database comprises 40 typical components that are found in gasoline,
including ethanol as a representative oxygenate (see Supplementary
Material (Table 1)). However, the number of components actually used
for optimization was further reduced, based on the following con-
siderations:

First, the final boiling point (FBP) of gasoline is limited to 210 °C in
EU standards and to 225 °C in U.S. standards, while its initial boiling
point (IBP) can be lower than 0 °C. At least this span should be covered
by the provided components to reproduce a distillation curve com-
pletely.

Second, the number of component candidates was further reduced
as they lack physical property data required for the algorithm. In par-
ticular, critical data, acentric factors, Antoine saturation pressure
parameters and research octane numbers for components with a boiling
point close to the FBP were lacking for certain components.

Third, in view of the application of surrogates for combustion
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simulations, the available components needed to be part of a suitable
multi-component mechanism for reaction kinetics. Only few mechan-
isms cover more than five components as a result of increasing com-
plexity [20], which further restricted the number of database compo-
nents. By taking a simplified approach, it is possible to ensure a
chemically acceptable representation while covering significantly more
components. Ra and Reitz [1] demonstrated this with their reduced
mechanism containing 43 components. With regard to the applied
component selection algorithm (CSA), a comprehensive mechanism is
desirable. For this reason, it was decided to only use components which
were also considered by the Ra and Reitz reaction kinetics mechanism.
However, an evaluation of the proposed surrogates regarding the
combustion simulations using this mechanism does not fall within the
scope of this paper.

Finally, taking the above arguments into account, the 18 database
components shown in Table 1 remained and were used as component
pool for surrogate optimization in this work.

2.2. Selection of target properties

With regard to surrogate formulation, the significant gasoline
properties include the distillation characteristics (boiling curve), den-
sity, octane rating, molecular structures distribution and oxygenate
content.

Distillation characteristics are undeniably key properties which
have been modeled in many comparable works [11-13,6,16,21,22].
Their major impact on fuel vaporization and spray combustion behavior
[12,16] makes it necessary to reproduce the distillation characteristic
for efficient engine development through computational fluid dynamics
(CFD) simulations. Describing the boiling behavior of fuels can be
achieved by applying different standardized analytical methods. Dis-
tillation analysis, according to ASTM D86 (equivalent to EN ISO 3405),
is a popular method and predominantly used for gasoline. The se-
paration process is carried out in a simple distillation flask, which
makes this method rapidly available. However, this leads to a limited
separation of the mixture [23]. Hence, the approach used to describe
the distillation characteristics of real fuels requires the use of analytical
methods which offer more accurate separation, in order to obtain dis-
tillation data which reflect the actual boiling points of the included
components. This can be accomplished by carrying out a true boiling
point (TBP) or simulated distillation (SD) analysis. Both methods differ
only marginally from each other [23]. While TBP curves can be related
to both distilled volume or mass, an SD curve is always related to the
evaporated mass, and a D86 curve is always related to the evaporated
volume.

The density of European gasoline is specified in EN 228, ranging
from 720 kg/m> to 775 kg/m? at 15 °C. Its effect on viscosity and spray
formulation makes it an important property that is considered in this
work.

Another crucial property of gasoline is its ignition quality, which is
determined through an experimental investigation of a fuel’s knock
propensity in cooperative fuel research (CFR) engines. A CFR engine is
operated under different standardized conditions to obtain either the
research octane number (RON) or the motor octane number (MON).
Both RON and MON are considered within the EU gasoline standard EN

Table 1
Pool of basic components used for surrogate optimization in this work.

Substance group Components

n-alkanes butane, pentane, hexane, heptane

iso-alkanes pentane, octane

alkenes 1-pentene, 1-hexene

cycloalkanes cyclohexane, methylcyclohexane, cis-decalin, trans-decalin
aromatics benzene, toluene, tetralin, m-xylene, pentylbenzene
oxygenates ethanol
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228, while RON is the most widely used octane rating worldwide [13].
Therefore, in this work, RON was chosen as a chemical target property
to account for combustion quality. Several studies [13,9,24,25] have
been conducted to determine the octane rating of a surrogate by run-
ning simulations of ignition delay (ID) times, referring to correlations
between ID and RON. Clearly, this procedure leads to a significantly
higher investment of computational effort than is required with equa-
tion-based predictions, particularly considering the high number of
optimizations caused by CSA. Although this procedure has less in-
formative value compared to other simulative methods, RON was pre-
dicted in this work by applying a simple mixing rule, as explained later.

To reflect the distribution of molecular structures in a generic way,
the C/H ratio was considered as another essential target property,
which is underpinned by the findings of various studies
[13,12,9,21,10,22,26]. It is recommended to take the C/H ratio into
account due to its close relation with other properties like the heating
value and density [10]. Mehl et al. [9] pointed out its effect on flame
propagation and temperature, and Ahmed et al. [13] mentioned the C/
H ratio as one decisive factor that could be used to reproduce com-
bustion characteristics of real gasoline. It should nevertheless be noted
that, on a molecular level, there can be substantial differences in the
reaction kinetics between substances of the same C/H ratio, as has been
shown in ignition delay time experiments for n-octane and 2,5-di-
methylhexane, for example [27].

Finally, since the maximum oxygenate content of gasoline is spe-
cified in the EU [4] and U.S. [5] standards, it is reasonable to add the
content of oxygenates as an additional target property. Oxygenates
have become promising blend components due to their positive influ-
ence on combustion behavior (i.e., they reduce knocking and emissions
[28-35]). When produced from biomass, oxygenates can also help re-
duce overall greenhouse gas emissions, allowing combustion engines to
display lower CO, emission profiles.

Reliable viscosity data for gasolines are rarely available because, at
a typical viscosity measurement temperature of 20 °C, its lighter com-
ponents will already have begun to vaporize. Furthermore, as men-
tioned earlier, viscosity is not specified in the EU and U.S. standards,
which also contributes to the fact that viscosity has rarely been chosen
as a target property in similar studies. In contrast, the lower heating
value (LHV) has been chosen more often as a target property. The LHV
is normally predicted by the elemental composition of the surrogate,
which is, in case of hydrocarbons, strongly affected by the C/H ratio.
This could result in mathemathical conflicts when both the C/H ratio
and LHV are simultaneously chosen as target properties. Consequently,
in this paper, neither the viscosity nor the LHV were considered for
optimization.

In conclusion, the five target properties chosen for surrogate opti-
mization in this work include the true boiling point curve (TBP), liquid
density, research octane number (RON), carbon-to-hydrogen (C/H)
ratio and oxygenate content. A limiting aspect of this choice is that
these properties merely represent bulk characteristics rather than de-
tailed molecular information. Consequently, restrictions on the dis-
tinctness of molecular characteristics are to be expected, in particular
concerning differences in the reaction kinetics of the substances in-
volved.

2.3. Modeling the chosen target properties

TBP Curve The TBP distillation curve was modeled by applying the
stepwise approximation method presented by Reiter et al. [2]. This
curve fitting approach is illustrated in Fig. 3 of their work. It is ap-
plicable using a mass-based or volume-based degree of vaporization,
which is generally expressed as x. However, TBP or SD distillation data
are usually available for middle distillates like diesel and kerosene but
only rarely for gasoline. Although SD data can be gained for gasoline
according to ASTM D3710, gasoline distillation data are primarily
measured according to ASTM D86. A conversion of available D86 data
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to TBP curves was performed in advance using a method published by
Daubert [36] because, as mentioned earlier, a D86 distillation curve is
not suitable for the above mentioned fitting approach. Because a D86
curve is strictly volume-based, the TBP data obtained with this method
are volume-based as well. Consequently, the difference between the
upper degree of vaporization, x, ;, and lower degree of vaporization, x;;
of a component i is equal to its volume fraction, v;. Taking into con-
sideration the fact that the algorithm is based on mass fractions, w;, a
mathematical correlation is needed that takes the temperature de-
pendency of v; into account. This was implemented by the following
equation, providing the molar volume at the normal boiling point,
vngp,i> and the molar mass, M;, for each component i:

1
Wi")NBP,i'ﬁi

V= r

1

W-.v e —
; i"VNBP,i M; (1)
In order to provide an algebraic function for the algorithm, the TBP
data were approximated by a least-squares fit based on a sixth-degree
polynomial function, TBP(x), where x represents the degree of vapor-
ization by volume. Liquid density The mixture density at 15 °C was
calculated by applying the following ideal mixing model, which was

also used by Reiter et al. [2]:

n -1
w;
Prix = -
(Z; b ) 2

where w; represents the mass fraction of component i and p; its liquid
density at 15 °C. With eq (2), Reiter et al. obtained an excellent
agreement between their experimental data and data for diesel fuel.
The linear mixing rule was also successfully applied to predict the
density of gasoline in several other works [13,18,37]. C/H ratio The
mixture C/H ratio was calculated based on its atomic mass according to
the following equation, where w; represents the mass fraction and C;
and H; the numbers of carbon and hydrogen atoms of component i,
respectively:

n
E wi-Ci
CH=2L

w;-H;
1 3)

™-

i

As the molecular structures of the considered components are
known, eq (3) can be applied directly. Research octane number (RON)
Interactions between components and their intermediates, which occur
during the oxidation process, make it difficult to predict the octane
numbers of mixtures precisely [10]. Ghosh et al. [38] developed a non-
linear model for the computation of mixture octane numbers, which can
be used to consider interactions between molecular groups and predict
the MONs and RONs of mixtures with a standard error of about 1.
However, the model’s crucial parameters were not published in detail,
which limits its application.

The most generic way to describe mixture octane numbers is by
forming a linear combination of pure component octane numbers,
RON;, weighted either by volume fractions, mass fractions, or molar
fractions. Despite their simplicity, recent studies have obtained sa-
tisfactory results by using volume-based linear mixing models to predict
the cetane number of diesel [2,19] and kerosene [37] surrogates, which
is why a linear approach using volume fractions, v;, was also used in this
work to predict RONs of a mixture:

n
RONpix = ), v-RON;.
i=1 4
Apart from potential inaccuracies caused by the linear mixing rule,
inaccuracies in pure component octane numbers, RON;, are a particu-
larly common source of errors. A comprehensive collection of RON;,
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published in 1958, is provided by ASTM STP225, including 384 pure
components [39]. Although more recent sources for RON; are available,
these can differ significantly for some components, as illustrated in
Table 2. Furthermore, RON measurements of aromatics tend to be less
accurate, which is caused by their combustion peculiarities as well as
their generally high octane numbers [39].

A pure component RON greater than 100 can commonly be ob-
tained by previously blending a primary reference fuel (PRF) with a
RON of 60 at a ratio of 80:20 by volume with the pure component,
whereas an octane rating is obtained by extrapolation of experimental
data. The octane number resulting from this procedure is called the
blending research octane number (BRON). Furthermore, a BRON re-
presents a hypothetical value and is, therefore, not suitable for the
prediction of RONs for mixtures [39]. As an alternative, octane num-
bers higher than 100 can be specified through the amount (milliliter) of
tetra-ethyl lead (TEL) added to one U.S. gallon of pure iso-octane,
whereby TEL acts as an octane booster. The desired RON can then be
obtained from the added amount of TEL with the help of correlations
[23]. Both procedures must be viewed as makeshift methods.

Due to unavailability of reliable octane ratings for components with
boiling temperatures close to the FBP of usual gasolines, in this work,
RON; were estimated for n-pentylbenzene, c-decalin, t-decalin, n-hex-
ylbenzene and tetralin. The method used for estimation was that pro-
posed by Albahri [40]. Its absolute average deviation (AAD)' is stated
as four for the prediction of research octane numbers (RONs). To pro-
vide a better overview, the pure component research octane numbers
which were actually used are compiled in Table 2 of the Supplementary
Material [39-44].

2.4. Modeling the derived properties

In addition to the fuel properties used in the target function, the
following models were used to estimate derived fuel properties which
were not considered in the target function for optimization. D86 Curve
Since the TBP data used for fitting were generated by converting the
measured D86 data, a comparison between the measured D86 curves of
the real fuels and calculated D86 curves of the surrogates was necessary
to ensure an appropriate validation of distillation characteristics. The
model used for D86 calculation is based on a batch distillation model,
originally developed by Greenfield et al. [8] and further refined by
Reiter et al. [2] by considering heat conduction as well as radiation,
while neglecting the solubility of air in the fuel. Lower heating value
(LHV) The LHV in MJ/kg was calculated according to the approxima-
tion proposed by Boie [45], whereby only the mass fractions of carbon,
we, hydrogen, wy, and on a small scale also oxygen, wo, were con-
sidered as relevant, as the gasoline surrogates only consist of hydro-
carbons and oxygenates:

LHV = 34835-wc + 93870-wy + ...—10800-wo. (5)

It is thus apparent from eq (5) that the LHV is strongly affected by
the C/H ratio, as mentioned earlier.

2.5. Determining the surrogate composition

The algorithm used for surrogate formulation is based on one
published in a previous work by Reiter et al., who developed their
approach for crude oil, fossil diesel, biodiesel and mixtures thereof
[46,2,19]. The same TBP-curve fitting approach was used by Wu et al.
[37] for the development of kerosene surrogates. The algorithm was
implemented as a proprietary Fortran 2003 program, using the Simu-
lated Annealing Method [47] in a Fortran implementation by Goffe
et al. [48,49] to solve the optimization task.

1AAD = % Z?:l Ix; — X;| where x; stands for the experimental value and x; for
the related calculated value when considering a number of n pairs of values.
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Table 2
A selection of pure component research octane numbers (RONs) from various
sources, to illustrate considerable scattering of literature values. The RONs
actually used for optimization are compiled in Table 2 of the Supplementary
Material.

Component RON;

n-octane —18 [39] —19 [40] 0 [41] —15 [38]
toluene 105.8 [23] 124 [39] 112 [41] 118 [38]
ethylbenzene 100.8 [23] 124 [39] 107 [41]

propylbenzene 101.5 [23] 127 [39] 129 [41]

m-xylene 104 [23] 145 [39] 124 [41]

ethanol 125 [23] 109 [42] 108 [38]

In the present paper, the following objective function for surrogate
optimization was used:
n 2
(A + Az

N | i=tL
Fw) ==

2
+ Peale ~ Pexp
Pref

2
RONcale — RONexp
RONjef

2
+ CHeale — CHexp
CHyef

2
+ VOecale — Voexp
VOref

(6)

This function includes the differential areas A;; + A,; with regard
to the true boiling point (TBP) curve, the liquid density at 15 °C, the
research octane number (RON), the mass-based carbon-to-hydrogen
(C/H) ratio and, when necessary, the volume fraction of oxygenates
(VO). The denominators of this function act as weighting factors. The
surrogate composition in terms of mass fractions, w;, of the selected
components is obtained by numerical minimization of eq (6) by ap-
plying the simulated annealing (SA) method [47,48].

Component selection is conducted by using an F-to-remove com-
ponent selection algorithm (CSA). Starting with the components listed
in Table 1, every single component is removed successively while op-
timizations are performed for the remaining components. Subsequently,
the absent component which leads to the highest value of the objective
function, is eliminated permanently during the remaining reduction
process. This process is repeated until the desired number of surrogate
components has been reached. It is obvious that considering a higher
number of potential components, ncomp, Will quickly result in a large
number of optimizations, n,p, as illustrated in Fig. 1. To ensure that a
global minimum was found, every optimization was conducted several
times, after varying initial starting values.

Concerning the desired number of surrogate components, recent
studies [12,13,16,18] mostly use more than five components in order to
achieve good agreements; particularly with an increasing number of
target properties and a wider distillation range, this appears to be ne-
cessary. On the other hand, it is desirable to achieve a satisfactory fit of
the target properties, while using as few components as possible.
Eventually, using fewer components leads to a lower investment of
mathematical effort in combustion simulations, depending on the me-
chanism used. Finally, the sample generation process needed to ex-
perimentally validate the developed surrogate becomes cheaper and
less prone to errors, because pure hydrocarbons can be very expensive
and often contain traces of other substances. Greenfield [6] indicates
that fewer than ten components are sufficient to represent a complete
distillation curve. Furthermore, Ra and Reitz [1] mention that previous
studies described physical and chemical properties of gasoline with up
to ten components.

For the reasons mentioned, all resulting fits that were computed
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Fig. 1. Number of conducted optimizations, ny, in relation to the number of components provided to the CSA, n,p.

with the F-to-remove procedure and comprised up to ten components
were compared. In particular, six surrogates with five to ten compo-
nents were then evaluated in detail for each target fuel. These evalua-
tion results showed shortcomings of the surrogates in the region of the
final boiling point, which can be explained by the fact that relatively
few components in the component database have boiling points that are
high enough to reproduce the FBP of gasoline. This deficiency could be
overcome by the manual replacement of the component with the
highest boiling point remaining by one of the previously removed
components, which had an even higher boiling point, indicating that a
combination of the component reduction algorithm with an inclusion
procedure may give better results than the one-way reduction proce-
dure used up until now. This could serve as a starting point for further
improvement of the component selection algorithm.

3. Target fuels and resulting surrogates

Two non-oxygenated reference gasolines developed by the FACE
working group [14] and one oxygenated gasoline from OMV Refining &
Marketing GmbH with an ethanol content of 4.9 vol-% were chosen as
target fuels. The latter represents a typical Eurosuper (E5) fuel, which is
commercially available in Europe. The main characteristics of these
fuels are summarized in Table 3. In addition, the distillation data ac-
cording to ASTM D86 were available for these three target fuels, dis-
played later in Figs. 5-7.

The choice of these target fuels reflects some of the variety in the
gasoline properties, as FACE C does not meet the density requirements
of the European standard EN 228, and both FACE C and FACE H fuels
are rated below the required RON of 91, specified in EN 228 for regular-
grade gasoline. In the U.S., antiknock performance of gasoline is spe-
cified by the anti-knock-index (AKI), which is determined as mean
value of RON and MON. Though it is not mandatory, the AKI of
U.S. gasoline ranges from 85 to 94.

Using the component selection process described above and the
component pool of Table 1, six surrogates with five to ten components
were calculated for each target fuel. While the residuals for RON,
density and C/H ratio turned out to be negligibly small for all surro-
gates, their average TBP-curve deviation ranged between 7.9 °C and
13.2 °C. Although TBP residuals basically decrease with an increasing
number of components due to the stepwise approximation, it could not
automatically be anticipated that the D86 residuals would behave

similarly. Consequently, the developed surrogates were examined more
closely by comparing their calculated D86 distillation curves to ex-
perimental D86 data for the real fuels. As illustrated in Fig. 2, contrary
to expectations, the D86 validation revealed a better performance for
surrogates containing only six components.

Fig. 2 shows that all three target fuels were described best with six
components. This result is remarkable because one would actually ex-
pect that, as more components are included, the TBP residuals would
decrease due to the stepwise adjustment applied. However, this beha-
vior can be attributed to the limited number of available component
candidates in combination with the relatively flat shapes of the gasoline
boiling curves in general, compared to those of middle distillates [19].
This conclusion was drawn from comparative surrogate optimizations
carried out using an extended component database. This optimization
used components regardless of whether they belonged to a reaction
mechanism to cover a broader boiling range.

Since the differences among the residuals in terms of RON, density
and C/H ratio were practically negligible, the D86 deviation was used
as the deciding factor to choose the best surrogate for each fuel. Table 4
provides the calculated compositions of the ultimately proposed sur-
rogates.

To perform a final validation of the algorithm and calculated D86
data, the three surrogates listed in Table 4 were investigated experi-
mentally. The purities of the chemicals, which were purchased by
Sigma-Aldrich, Carl Roth and Linde Gas GmbH, are listed in the
Supplementary Material, Table 3. To prevent the evaporation of volatile

Table 3

Properties of target fuels along with EU (EN 228) and U.S. (ASTM D4814)
standard specifications. FACE C and FACE H are research fuels, The OMV fuel,
oxygenated with ethanol (EtOH), represents a typical Eurosuper (ES5) fuel,
which is commercially available in Europe.

Property FACEC FACEH OMV + EtOH EN 228 ASTM D4814
IBP (D86) [°C] 33.9 33.6 36.4 unspecified unspecified
FBP (D86) ['C] 165.6 208.9 176.5 210 225
Density at 691 759 750 720-775 unspecified
15 °C [kg/
m?]
RON 84.3 86.9 96.5 91/95/98 (AKI 85-94)
C/H ratio 5.47 6.98 6.25 unspecified unspecified
LHV [MJ/kg] 44.79 43.32 41.4 unspecified unspecified
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Fig. 2. Absolute average deviations (AAD) between target fuels and calculated
surrogate distillation curves according to ASTM D86, depending on the number
of surrogate components.

Table 4
Resulting compositions of the proposed surrogates in mass%. These components
were chosen by the CSA based on the provided component pool of Table 1.

Component FACE C FACE H OMV + EtOH
n-butane 3.86
iso-pentane 12.99 27.08
1-pentene 11.20
n-hexane 18.68 19.97
ethanol 5.26
cyclohexane 18.01
iso-octane 51.50 16.05 10.72
toluene 9.99
m-xylene 9.35 31.19 30.08
t-decalin 3.63 8.83
n-pentylbenzene 11.60
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Fig. 3. Density at 15 °C of surrogates, both experimental and calculated.

components, and in particular, n-butane, the components were cooled
to —5 °C before sample preparation. Measurements comprised the
distillation behavior according to EN ISO 3405 (the European equiva-
lent to ASTM D86), the RON according to EN ISO 5164 and the liquid
density at 15 °C according to EN ISO 12185 and were conducted by the
Institut fiir Mineraldlprodukte und Umweltanalytik ZT-GesmbH (In-
stitute for Petroleum Products and Environmental Analysis),
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Fig. 4. Research octane numbers of surrogates, both experimental and calcu-
lated.

Schwechat.

As portrayed in Fig. 3, the deviations in density are insignificant,
while Fig. 4 shows a notable deviation for FACE H in terms of RON. This
could be partly due to the fact that the pure component RON of toluene
was set to 112 (according to Demirbas et al. [41]), which seems to be
too low compared to the values given in other sources (see Table 2).

Figs. 5-7 show the experimental D86 data for surrogates and cor-
responding fuels together with the calculated D86 data of the surro-
gates. In the area close to FBP, it can be observed that the calculated
D86 data for surrogates are lower than the experimental values. This is
also true regarding the IPB of FACE H. However, it is altogether re-
markable that the distillation ranges of these gasolines can be re-
produced with little deviation, ranging from 4.9 °C for FACE C to 3.4 °C
for OMV + EtOH, by only six components and that, at the same time,
other properties are also well-matched. This is also striking considering
the use of a conversion method with an average error of 4.6 °C for TBP
data generation from D86 data and the fact that higher uncertainties in
the range of initial and final boiling points have been reported when a
D86 analysis method is applied [23].

Although Greenfield [6] mentions that non-ideal effects can be ne-
glected if the ethanol content is below 5 vol-%, the distillation curve of
OMV + EtOH shows a significant point of inflection at about 45%
degree of vaporization, which can be potentially attributed to the non-
ideal behavior of ethanol, the content of which is 4.9 vol-% and cor-
responds exactly with that of the target fuel. In order to test this hy-
pothesis, further tests with mixtures of FACE C and FACE H with an
increasing fraction of ethanol were conducted, showing increasing de-
viations in terms of AAD; for example, an ethanol content of 10 vol-%
resulted in AAD of up to 10 °C for D86 data.

In Fig. 8, the predicted lower heating values (LHV) of the surrogates
are compared with experimental data for the target fuels. Although the
LHV was not chosen as a fitting criterion in the objective function, the
calculated values agree closely with the experimental data. The de-
viations are insignificant and range from 1.4% for OMV + EtOH to
2.5% for FACE H.

4. Conclusion

In this paper, an algorithm originally proposed by Reiter et al. [2]
for diesel surrogates was applied to generate gasoline surrogates. For
this purpose, the algorithm was extended by a conversion from D86 to
TBP distillation curves, and the RON and the C/H ratio were added as
fitting criteria, while the TBP curve and the density at 15 °C were
properties that were adopted from the proposed algorithm. On the basis
of 18 components, reflecting a set suitable for a multi-component
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Fig. 5. Experimental (exp.) and calculated (calc.) distillation characteristics according to ASTM D86 for fuel FACE C and its proposed surrogate from Table 4.
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Fig. 6. Experimental (exp.) and calculated (calc.) distillation characteristics according to ASTM D86 for fuel FACE H and its proposed surrogate from Table 4.

mechanism for reaction kinetics, an F-to-remove algorithm was used to
identify the most suitable component set for each target fuel.

It was demonstrated that the applied algorithm can be used to
characterize gasoline in a proper manner with surrogates comprising six
components, even if the conversion of ASTM D86 data is used for TBP
data generation whenever the results of a TBP analysis are not avail-
able. The developed surrogates can be utilized for engine development
while performing CFD calculations and can be further evaluated in
combustion simulations using the reduced mechanism proposed by Ra
and Reitz [1].

In the course of optimization, it is entirely possible that hydro-
carbon species will be identified that have not yet been studied in single
component experiments (e.g., ignition, chemical kinetics, flame speeds,
etc.). Hence, as a side-benefit, this work could help identify current
needs in the combustion community in order to set new priorities for
hydrocarbon research.

Although an experimental evaluation has provided results that

broadly confirm the predicted surrogate properties, our findings in-
dicate that the prediction of RON can be inaccurate because of the
linear mixing model, on the one hand, and unreliable pure component
data, on the other hand. These inaccuracies are particularly pronounced
when considering components with higher RON (e.g., aromatics). Thus,
it can be assumed that the development of more accurate models to
predict the RON of mixtures, together with reliable pure component
data, will lead to further improvements.

Shortcomings of the surrogates regarding the final boiling point,
which could be overcome by the manual replacement of the component
with the highest boiling point remaining by one of the previously re-
moved components, showed that applying the component reduction
algorithm and carrying out an inclusion procedure could help further
develop the component selection algorithm itself.

Finally, a long-term goal for further development could be the in-
clusion of more application-oriented optimization criteria (e.g., ignition
properties), by combining the surrogate algorithm with a reaction
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Fig. 7. Experimental (exp.) and calculated (calc.) distillation characteristics according to ASTM D86 for fuel OMV + EtOH and its proposed surrogate from Table 4.
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Fig. 8. Experimental (exp.) LHV of target fuels, and calculated (calc.) LHV of
the surrogates.

kinetics caluclation based on comprehensive multi-component reaction
mechanisms. This step could overcome the currently limited con-
sideration of molecular properties for optimization and further improve
the surrogates’ applicability for combustion and emissions simulations.
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