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A B S T R A C T   

The monitoring of biodiesel production processes is currently performed by methods requiring high reagent 
consumption and long response times. Aiming to overcome these drawbacks, this article developed chemometric 
models combining principal component analysis (PCA), multivariate curve resolution alternating least squares 
(MCR-ALS) and mid infrared spectroscopy to determine simultaneously the concentrations of the main compo
nents, methyl esters and triglycerides, along transesterification reactions. This methodology also tried to model 
the intermediates (fatty acids plus monoglycerides, and diglycerides), thus providing semi-quantitative pre
dictions for these components. These reactions were carried out in different experimental conditions according to 
a factorial design with two factors, the batch of soybean oil (raw material) and the alcohol:oil molar ratio. The 
concentration values estimated by high performance liquid chromatography (HPLC), as the reference method, 
were the inputs for the correlation constraint used as a key step in the multivariate calibration MCR-ALS models. 
The spectral profiles recovered for the methyl esters and for the triglycerides have shown high correlations 
(greater than 0.985) in comparison to the reference spectra. In addition, the spectra calculated for fatty acids, 
monoglycerides and diglycerides showed absorption bands characteristic of functional groups present in these 
molecules, mainly the hydroxyl and carbonyl stretching bands. The root mean square errors of calibration and 
prediction estimated for the triglycerides and for the methyl esters were within the range from 1.9% to 6.3%.   

1. Introduction 

The growth of the world population and the rapid industrialization 
have increased fossil fuels demand about 43% in the last 41 years. Be
sides, CO2 emissions in 2030 are estimated to be 80% above 2007 levels 
[1]. In the last years, several countries have created political strategies 
to promote the use of biofuels aiming to reduce environmental impacts 
and their dependence on fossil fuels [2]. In Brazil, fuels from renewable 
sources have been used for many years. Some examples are sugarcane 
ethanol, used in automotive engines, and Eucalyptus sp. charcoal, used 
by steel-making industries. As of 2005, biodiesel was incorporated into 
the Brazilian energy matrix. Since then, the minimum percentage of 
biodiesel added to diesel oil has been compulsorily increased and is 

currently 11% [3]. Biodiesel is a mixture of straight-chain alkyl esters 
obtained by a transesterification reaction, in which triglycerides of 
vegetable oil and animal fat react with short-chain alcohols in a catalytic 
process [4]. 

The transesterification reaction is usually carried out in alkaline 
medium, under heating and stirring. Fatty acid esters are the product of 
interest and glycerol is a co-product. However, triglycerides, di
glycerides, and monoglycerides might be present if the conversion is not 
complete [4]. This situation is undesirable once only the esters have 
similar properties to diesel oil and can be blended to it to be used in 
automotive engines. The National Agency of Petroleum, Natural Gas and 
Biofuels (ANP) is the Brazilian regulatory agency that defines the fuel 
specifications and the standard methods to its quality control. According 
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to ANP, the content of esters in biodiesel must be determined by gas 
chromatography (GC) and the result must be greater than 96.5% w/w 
[5,6]. However, if triglycerides, monoglycerides, and diglycerides are 
present, these low volatile substances can damage the capillary columns 
and other parts of the chromatographic system [7–9]. Then, the quan
tification of these products requires a previous derivatization step to 
convert them into volatile substances [5,8,10–13]. The maximum 
amount of mono-, di- and triglycerides in a biodiesel sample must be 
0.7% w/w, 0.2% w/w and 0.2% w/w, respectively [5,6]. 

All the analytical techniques mentioned above are expensive and 
time-consuming. Then, several alternative methodologies have been 
developed to analyze the products of transesterification reactions. 
Among the developed methods, the most widespread have been those 
based on high-performance liquid chromatography (HPLC) and 
hydrogen nuclear magnetic resonance (1H NMR) spectroscopy 
[6,14,15]. Although these techniques provide relevant information 
about the biodiesel production process, they are still costly and make 
difficult to follow the reaction quickly. In this context, studies using 
vibrational spectroscopy in the near infrared (NIR) region have become 
popular. They aim to develop methodologies that allow monitoring 
transesterification reaction reducing analysis time as well as associated 
cost, not demanding reagents or solvents, nor generating chemical waste 
[15–17]. 

Pinzi et al. [16] have applied chemometric methods to determine the 
yield of methyl esters and the content of monoglycerides, diglycerides, 
triglycerides, free and total glycerol in biodiesel samples using NIR 
spectra. The samples were clustered in a principal component analysis 
(PCA) model according to the feedstock oil used for transesterification 
(maize, sunflower or olive–pomace). Using partial least squares (PLS) 
and reference concentrations obtained by GC the reaction components 
were determined with errors close to those provided by conventional 
methodologies. Lima et al. [17] have developed a method for in-line 
monitoring of the transesterification reactions of soybean oil with 
methanol. Multivariate calibration models employing NIR spectra were 
built for determining the contents of methyl esters and other compo
nents. This method presented some drawbacks related to the limitations 
of the reference technique (GC). Other authors have also developed in- 
line monitoring of transesterification reactions. An article has devel
oped control charts based on NIR data, enabling the identification of 
spectral regions mostly affected by faults in the process [18]. In another 
article, the variations in the Raman band of methanol were identified by 
a PCA model as the main factor to monitor the reaction development 
[19]. 

Vibrational spectroscopic techniques, such as those previously 
mentioned, provide data with overlapped signals and demand the use of 
chemometric methods to extract relevant information. Specifically for 
quantitative modeling, the most widely used multivariate calibration 
method has been PLS. However, PLS (and other methods, such as arti
ficial neural networks) presents some drawbacks, requiring a minimum 
of some tens of samples to build the model, and not allowing to esti
mate/recover pure spectra of the components. By contrast, multivariate 
curve resolution alternating least squares (MCR-ALS) can be used to 
build models with a relative smaller number of samples, and allows the 
recovery of pure spectra of the system constituents [20]. 

MCR-ALS is a curve resolution method suitable for monitoring 

mixtures. It aims to decompose mathematically a set of instrumental 
responses for a mixture in pure contributions of each component present 
in the system [21–23]. For the application of MCR-ALS to a dataset, it is 
necessary to provide an initial estimate for the concentration or the 
spectral profile. From this point, the ALS algorithm acts in the optimi
zation step until a pre-established convergence criterion is reached. If no 
mathematical constraints are adopted, an infinite number of feasible 
solutions will be obtained for the MCR decomposition, leading to the so 
called rotational ambiguity [24,25]. In addition to it, intensity and 
permutation ambiguities may also be present in the MCR-ALS solutions. 
The main constraints that can be applied to reduce/circumvent ambi
guities are non-negativity, unimodality, closure, known pure spectra/ 
concentration profiles, selectivity, hard modeling, and correlation. The 
correlation constraint is one recently proposed tool as a key step for 
quantitatively processing first-order data [26,27], which was more 
recently also extended to second order data [28]. This constraint has 
expanded the applications of MCR-ALS, previously mostly restricted to 
qualitative models, to multivariate calibration. 

MCR-ALS has been used in the context of process analytical tech
nology (PAT) to monitor different chemical systems, such as complex
ation reactions, esterification, alcoholic fermentation, and 
polymerization, including processes on an industrial scale [28–30]. 
Other articles have reported the advantages of MCR-ALS associated with 
different analytical techniques, such as GC [31], Raman [32], near and 
mid infrared spectroscopies [33] for the identification and quantifica
tion of adulterants in biodiesel-diesel blends, and for the determination 
of antioxidants in biodiesel mixtures from different vegetable sources 
using UV–Vis-NIR spectroscopy [27]. More specifically, two articles 
have already been published reporting the application of MCR-ALS 
combined with NIR spectroscopy to monitor transesterification re
actions. In the study of Rouchi et al., the initial estimate of the number of 
factors and their spectral profiles was performed by evolving factor 
analysis (EFA). Despite estimating the concentration and spectral pro
files of biodiesel and raw material during the transesterification reac
tion, this article did not determine the true concentrations of the 
components, since no reference method was used for quantification. In 
addition, the developed MCR-ALS model was limited for quantitative 
applications, because only the non-negativity constraint was adopted 
[34]. Sales et al. have built a MCR-ALS model applying the correlation 
constraint only to the biodiesel component/factor, and its reference 
values were obtained by GC. Due to the limitations of the reference 
technique, the range of biodiesel concentration predicted by this MCR- 
ALS model was restricted to above 64% [35]. None of these articles 
have determined the concentrations of the intermediate components of 
the reaction. 

The main originality of the present work is the monitoring of the 
transesterification reaction by modeling simultaneously the components 
of the system. The main components, triglycerides and methyl esters, 
were directly quantified, without the need of physical separation, while 
semi-quantitative predictions were provided for the intermediates, di
glycerides and the mixture of monoglycerides and fatty acids. For this 
aim, attenuated total reflectance Fourier transform infrared spectros
copy (ATR-FTIR) associated with MCR-ALS and the correlation 
constraint were used. The reference values for the components were 
obtained by HPLC. A factorial design was used to scan the reaction 
conditions, and a PCA model was built as a preliminary tool for char
acterizing this monitoring. 

2. Material and methods 

2.1. Sampling and characterization of soybean oil 

Three samples of commercial soybean oils were purchased in 
duplicate on the local market and identified as 010, 020 and 100. They 
were characterized according to the following parameters: density at 
20 ◦C [36], water content [37], kinematic viscosity [38], oxidative 

Table 1 
Gradient elution program used in the reference HPLC method.  

Time (min) Methanol (%) Isopropanol:Hexane 5:4 v/v (%)  

0.01 100 0  
15.0 50 50  
20.0 0 100  
23.0 0 100  
26.0 100 0  
36.0 100 0  
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stability [39], acid number [40] and saponification index [41]. All de
terminations were performed in triplicate. 

2.2. Transesterification reactions 

Five transesterification reactions were performed, varying the molar 
ratio of the reagents and the batch of soybean oil according to an 
experimental design 22 with a central level for the variable molar ratio 
and a different oil with intermediate value of oxidative stability 
(Table 1S, Supplemental materials). The two factors were the batch of 
soybean oil (raw material) and the alcohol:oil molar ratio (methanol:oil 
between 5:1 and 7:1, molar ratio). The temperature was maintained at 
20 ◦C and the catalyst was sodium methoxide 1% w/w. The purity of the 
reagents (methanol and NaOH from Sigma-Aldrich) and their amount 
used in each reaction are presented in Table 2S. The initial stirring speed 
was 1000 rpm until the complete addition of sodium methoxide to the 
oil. Then, the speed was changed to 1200 rpm and the reaction moni
toring started from this point. 

The sampling was divided into two steps. In the first step, 500 µL of 
the reaction mixture was removed every 1 min until to complete 10 min 
of reaction. From then on, sampling was performed at intervals of 5 min 
until the final period of 120 min. Thus, 33 samples were obtained for 
each transesterification reaction, totaling 165 samples. 

Acetic acid p.a. (50 μL, Sigma-Aldrich) was used to inactivate the 
catalyst, stopping the reaction. The collected products were centrifuged 
for 30 min at 7000 rpm using a specific micro tube rotor for Eppendorf 
tubes (Centrifuge 5804, rotor FA-45–30-11, Eppendorf, Hamburg, Ger
many). After centrifugation, the collected samples were separated into 
two phases. Then, the upper phase was analyzed by ATR-FTIR and 
HPLC. After 120 min of reaction, the biodiesel (target product) was 
separated, washed with warm water, and dried with anhydrous sodium 
sulfate. The purified biodiesel was also analyzed by ATR-FTIR and 
HPLC. 

2.3. Reference concentrations by HPLC 

The relative concentrations of fatty acids and monoglycerides (as a 
mixture, since their peaks are not resolved), diglycerides, triglycerides 
and methyl esters in the samples were determined using a Shimadzu 
liquid chromatograph, model LC-20AT, equipped with an automatic 
sampler SIL-20HT, a UV–Vis detector SPD-M20A and a Shimadzu CLC- 
ODS® column (M) (250 mm × 4.6 mm × 5 μm). The method used was 
adapted from the article by Holcapek et al. [42]. The analysis conditions 
were as follows. Detection wavelength, 205 nm; oven temperature, 
40 ◦C; injection volume, 6 μL; mobile phase flow, 1 mL/min; gradient 
elution using methanol and isopropanol:hexane 5:4 v/v, as shown in 
Table 1; and run time: 36 min. The sample preparation for chromato
graphic analysis consisted of its dilution in the 1:20 ratio, in isopropanol: 
hexane 5:4 v/v, followed by filtering using a hydrophobic PTFE filter 
with a diameter of 13 mm and pore diameter of 0.22 μm. 

2.4. FTIR spectra acquisition 

Molecular absorption spectra in the mid infrared region were 
recorded for the 165 samples in a Perkin Elmer Frontier spectrometer 
equipped with an ATR accessory with a diamond crystal. The analysis 
was performed with 20 μL of sample in the range of 650 to 4000 cm− 1, 
with 16 scans and a resolution of 4 cm− 1. 

2.5. Chemometric modeling 

All the data processing was performed in MATLAB environment (The 
MathWorks, Natick, MA, USA). Spectra obtained for the five reactions 
(Table 1S) were firstly organized in a matrix (165x3351), which was 
preprocessed by multiplicative scatter correction (MSC), aiming to 
eliminate non-linear baseline deviations caused by light scattering [43], 
and then mean centered. A PCA model was built using PLS_Toolbox 
(Eigenvector Research, Manson, WA, USA). PCA is a non-supervised 
classification method widely used in multivariate exploratory analysis 
[44]. PCA has been combined with vibrational spectroscopy for the 
monitoring of processes, such as transesterification reactions [16,19] 
and biodiesel degradation by thermo-oxidation [45]. 

The MCR-ALS GUI 2.0 [46] was used for building MCR-ALS models. 
This toolbox for Matlab is freely available for download at www.mcrals. 
info. MCR calibration models were built for each of the five reactions, 
splitting 2/3 of the samples for the calibration set and 1/3 for the vali
dation set. The spectral data were arranged in a matrix with the first 
lines corresponding to the calibration samples and the last lines to the 
validation samples. The arrangement of the reference concentration 
matrix, obtained by HPLC, was performed similarly, with each row 
referring to a sample and each column corresponding to reaction com
ponents. For the samples in the validation set, the reference concen
tration values were replaced by NaN (not a number), which indicates the 
absence of a defined numerical value. After the model estimating the 

Table 2 
Characterization of the soybean oils from three different batches (N = 3).  

Parameters Soybean oil batches 
020 010 100 

Saponification index(mg KOH / 
g sample) 

188 ± 3 188 ± 1 188 ± 1 

Average molar weight(g/mol) 895 ± 14 894 ± 3 897 ± 6 
Water content(mg/kg) 666 ± 20 695 ± 29 689 ± 34 
Density at 20 ◦C(kg/m3) 0.9189 ±

0.0002 
0.9199 ±
0.0001 

0.9199 ±
0.0002 

Kinematic viscosity(mm2/s) 32.00 ± 0.01 32.18 ± 0.01 31.82 ± 0.01 
Oxidative stability(h) 8.8 ± 0,1 6.6 ± 0.1 6.9 ± 0.2 
Acid number(mg KOH/g 

sample) 
0.13 ± 0.01 0.36 ± 0.01 0.28 ± 0.01  

Fig. 1. Concentration profiles for components of the reaction 010–7 obtained 
by HPLC-DAD. Fatty acids and monoglycerides (full up triangles), methyl esters 
(asterisks), diglycerides (empty squares) and triglycerides (empty circles). 

Table 3 
Relative concentrations determined by HPLC-DAD for purified biodiesel samples 
obtained in the final of the transesterification reactions.  

Reaction 
components* 

Range of 
retention time 
(minutes) 

Reaction codes   

010–5 010–7 020–5 020–7 100 
Relative concentrations (%) 

FA + MG 3.0 – 4.5 7.10 7.51 5.07 2.54 9.05 
ME 4.6 – 7.0 80.43 82.10 80.99 90.00 79.94 
DG 7.1 – 15.9 4.71 6.00 6.89 4.96 4.55 
TG 16.0 – 24.0 7.76 4.40 7.05 2.49 6.46 

*FA + MG: fatty acids and monoglycerides; ME: methyl esters; DG: diglycerides; 
TG: triglycerides. 
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concentration values of each of the components of the validation sam
ples, they were compared with the reference values (HPLC) through the 
figures of merit described in section 3.4.1. 

Additionally, another MCR model was built using a column-wise 
augmented matrix, in which the spectral data from reactions 020–7, 
010–7, 020–5 and 010–5 (the first number of this code means for the 
number of the batch of the raw material, and the second number means 
for the ratio of oil to methanol) comprised the calibration set, and the 
spectra from reaction 100 formed the validation set. In all these models, 
datasets were preprocessed by MSC. Four components were used for all 
the MCR models, according to the previous knowledge of the system, 
accounting for between 99.90% and 99.95% of the total data variance. 
The initial spectral profiles were estimated by the selection of the purest 
spectra using a method similar to SIMPLISMA (SIMPLe-to-use Interac
tive Self-modeling Mixture Analysis) [47]. This initialization was used 
for all the components and is based on a search for pure variables for 
each component. These purest spectral profiles (alternatively, concen
tration profiles could be used) are used as the starting point in iterative 
resolution methods, and are either the most dissimilar in the dataset or 
those spanning the data space most efficiently according to the criterion 
of the selection method [21]. Other important aspect is that the amount 
of filtering noise for the initial estimates has been recommended to be 
above the noise level of the data. When the selected noise level is higher 
than the experimental one, selected profiles are not noisy and have the 
expected spectral features [46]. In this study, we adopted 10% of 
filtering noise. Non-negativity (spectral and concentrations profiles) and 
correlation (in the concentrations profile) constraints were applied. 
Concentrations determined by HPLC were used as reference values in 
the calibration set. The convergence criterion adopted was a difference 
between the relative change of the standard deviation of the residuals 
between two consecutive iterations lower than 0.1%. For evaluating the 
performance of the estimated models, the percentages of explained 
variance and the lack of fit (LOF) were calculated. 

2.6. MCR-ALS with correlation constraint 

MCR-ALS is a chemometric method that aims at recovering the 
relative concentration values, contained in the C matrix, and the pure 
spectra, in the ST matrix, of the components present in a mixture through 

the decomposition of its instrumental response matrix (D), as described 
in Eq. (1). The matrix E contains non-modeled/residual information 
[21], and the symbol T indicates a transposed matrix. 

D = C.ST +E (1) 

The first steps in MCR-ALS are the choice of the number of compo
nents present in the system and the initial estimates for the spectra or 
concentration profiles. Then, appropriate constraints must be applied, 
aiming to reduce the ambiguities associated with the resolution of D 
matrix. Correlation is the constraint highlighted in this study. By using 
this constraint, reference values (here obtained by HPLC) for samples of 
the calibration set are given as input. Thus, at each optimization itera
tion using the ALS algorithm, the reference values for the analyte in the 
calibration set (contained in the vector ccal

ref) are correlated with the 
relative concentration values of the analyte calculated by the MCR 
model (contained in the vector ccal

ALS) through a linear regression step 
(Eq. (2)) [27]. In this sequence, the parameters of the linear regression, 
slope, b, and offset, b0, estimated by Eq. (2) are used to calculate the 
absolute concentrations vector for the analyte in the samples of the 
validation set (ĉval), also from the relative concentration values provided 
by the MCR model (cval

ALS) (Eq. (3)). Thus, the reference values for the 
calibration samples (ccal

ref) and the calculated values for the validation 
samples (ĉval) are used to construct the input vector in the next ALS 
iteration. This iterative process continues until the convergence crite
rion is reached [26]. 

ccal
ALS = b.ccal

ref + b0 (2)  

ĉval =
(
cval

ALS − b0
)/

b (3)  

3. Results and discussion 

3.1. Soybean oil characterization 

Soybean oil samples from three different batches were characterized 
by physico-chemical parameters, and the average values jointly with the 
respective standard derivations are shown in Table 2. The saponification 
index values from soybean oil samples were used to calculate their 
average molar mass, using an analytical method of the Adolfo Lutz 

Fig. 2. ATR-FTIR spectra of 33 samples analyzed for transesterification reaction 010–7. Raw spectra in black, and spectra preprocessed by MSC in red. (For 
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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Institute [41]. The average molar mass of the oils is a relevant parameter 
to calculate the stoichiometric amounts of sodium hydroxide and 
methanol used in the transesterification reaction. The results for these 
parameters were close to those observed in the literature, 188.6 mg KOH 
/ g and 896.88 g/mol for saponification index value and average molar 
mass, respectively [48]. The results among all soybean oil samples were 
similar for the parameters kinematic viscosity and density. These pa
rameters are related to the chemical composition of oils. Since soybean 
oil has carbon chains derived from palmitic (C16: 0), oleic (C18: 1) and 
linoleic (18: 2) acids, it has a density close to 0.91 g/cm3 [49]. 

The soybean oil from batch number 020 presented the highest value 
for oxidative stability. This result suggests that this oil will spend more 
time than the others to start its oxidation process. Besides, this sample 
had lower values for the acid number and water content, what charac
terizes this oil as having the best quality for biodiesel production among 
those analyzed. The presence of water leads to the hydrolysis of the 
triglycerides, producing free fatty acids and consequently increasing the 
acid number of the vegetable oil. These conditions contribute to the 
undesirable formation of soap during the transesterification reaction. 
Finally, it was observed that, in general, soybean oil from batch 100 
presented intermediate parameters between batches 010 and 020. For 
this reason, this batch was chosen for the central coordinate level of the 
adopted experimental factorial design. 

3.2. Transesterification reactions 

Transesterification reactions were performed as described in section 
2.2. The choice of the factorial design presented in Table 1S aimed at 
adding variability to the monitored system and providing robust che
mometric models. The use of different batches of soybean oil, the most 
used oil for biodiesel production, incorporated variations related to its 
physico-chemical parameters, due to climatic conditions, storage and 
transportation. The variation in the alcohol:oil molar ratio included 
some fluctuations associated with the biodiesel production process on an 
industrial scale, such as losses of alcohol by evaporation or small errors 
in the measurement of the volume of the reagents. Thus, soybean oils 
with different quality parameters were used as raw materials, and the 
molar ratio of methanol:oil was varied around 6:1 (from 5:1 to 7:1), 
which is the most industrially used ratio [50]. 

The conversion of triglycerides into intermediates and methyl esters 
occurs very quickly in the first ten minutes of the reaction. To monitor 
this initial variation in the system composition, two strategies were 
adopted: choosing a low reaction temperature (20 ◦C) and a higher 
sampling frequency at the beginning of the reaction. The lower tem
perature decreased the kinetics of the reaction and favored its moni
toring. Thus, it was possible to incorporate into the chemometric models 
the variation in the composition occurring in the first moments of the 

Fig. 3. PC1 (61.18%) (A) scores and (B) loadings obtained from the PCA model for the monitoring of the five reactions. Reactions 010–5 (full up triangles), 010–7 
(empty circles), 020–5 (full stars), 020–7 (empty squares) and 100 (asterisks). 
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reaction. All samples collected from the reactions were analyzed using 
both the techniques, HPLC-DAD and ATR-FTIR. Fig. 1 shows the con
centration profiles for the samples from reaction 010–7. The results for 
the five reactions were quite similar (Table 3S). 

The concentration values for all the components were arranged in 
data matrices and used as inputs for the correlation constraint in MCR- 
ALS models. In these matrices, each row corresponds to a sample and 
each column to one of the four monitored components. 

The biodiesel obtained at the end of each reaction was separated, 
washed with warm water, dried with anhydrous sodium sulfate, and 
analyzed. Table 3 shows the concentrations of fatty acids and mono
glycerides (FA + MG), methyl esters (ME), diglycerides (DG), and tri
glycerides (TG) for the purified biodiesel samples obtained in the five 
reactions. The HPLC reference method is not able to separate FA and MG 
since they eluted in the same interval (3.0–4.5 min) (Fig. 1S, Supple
mental materials). Therefore, they will be chemometrically modeled as 
only one component, not affecting the goals of this study. The highest 
yield of methyl esters was achieved for the biodiesel produced in the 
reaction 020–7. The soybean oil used in this reaction has the best quality 
among all the oils, as already previously discussed (section 3.1). Another 
factor that may have improved the conversion in this reaction was the 

molar ratio methanol:oil of 7:1. The greater excess of methanol can shift 
the reaction equilibrium to the production of methyl esters. 

3.3. Exploratory PCA model 

Fig. 2 shows ATR-FTIR spectra of 33 samples analyzed for one of the 
reactions (010–7). A PCA model was built with ATR-FTIR spectra ob
tained for 165 samples, including all the five reactions. A model built 
with five PC accounted for 97.19% of the total data variance. PC1 
accounted for 61.18% of variance and was interpreted as a component 
describing the progress of the transesterification reaction. Fig. 3A shows 
the scores of PC1 as a function of the samples arranged in the sequence 
of the five reactions. As can be observed in this plot, the scores for each 
reaction presented similar profiles, suggesting that the products of the 
transesterification were the main source of variability in the system. For 
each reaction, scores values decreased with the progress of the reaction 
varying from positive to negative values. It should be stressed that this 
variation is arbitrary and only makes sense for spectral interpretation by 
the comparison of these scores with the respective PC loadings, whose 
positive or negative values will be related to wavenumbers’ intensities 
decreasing or increasing during the progress of the reaction, 

Fig. 4. PC2 (24.92%) (A) scores and (B) loadings obtained from the PCA model for the monitoring of the five reactions. Reactions 010–5 (full up triangles), 010–7 
(empty circles), 020–5 (full stars), 020–7 (empty squares) and 100 (asterisks). 
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respectively. 
The observation of the PC1 loadings plot allows realizing that the 

spectral variation associated with the progress of the transesterification 
is fully contained in the region between 650 and 1850 cm− 1 (Fig. 3B). 
The most negative loadings peaks are observed at 1741 cm- 1, 1436 
cm− 1, and 1197 cm− 1. The absorption bands between 1425 and 1447 
cm− 1 and 1188–1200 cm− 1 presented small differences when the spectra 
of soybean oil and its respective biodiesel are compared [51]. Never
theless, the intensities of these spectral bands increased with the reac
tion progress as can be interpreted from PC1. The strong absorption 
band observed between 1750 and 1730 cm− 1 showed more intensely 
this trend, and was assigned to the stretching vibration of ester carbonyl 
bonds of methyl esters [52]. The most positive loadings are present at 
1030 cm− 1, 1098 cm− 1, and 1143 cm− 1. This is in accordance with the 
literature, in which the disappearance of spectral bands centered at 
1026 cm− 1 and 1095 cm− 1 during the transesterification has been re
ported, with the consequent appearance of new bands at 1435 cm− 1 and 
1195 cm− 1, indicating the conversion of soybean oil into biodiesel [52]. 

PC2 accounted for 24.92% of the data variance. Samples corre
sponding to the initial reaction time (t = 0) presented more negative 
scores on PC2, although most of the other scores are distributed along 
the origin of this axis (Fig. 4A). This distinct behavior may be associated 
with the nature of the reagents. Soybean oil and methanol are partially 
miscible, requiring a certain stirring time for diffusion between the 
phases in order to effectively start the reaction. Fig. 4B shows that the 
most negative loadings are present as bands centered at 1748 cm− 1 and 
1143 cm− 1. In transesterification reactions, the presence of a spectral 
band at 1748 cm− 1 has been associated with the presence of oil (raw 
material). As the oil converts to biodiesel, the most intense band shifts 
from 1748 cm− 1 to 1741 cm− 1 [52]. PC3, PC4, and PC5 accounted for 
small variances (5.88%, 3.74%, and 1.47%, respectively), and are 
related to samples showing non-significant particular behaviors. 

3.4. Multivariate calibration MCR-ALS models 

3.4.1. Models for individual reactions 
After performing MSC preprocessing of spectral datasets, specific 

MCR-ALS multivariate calibration models were built for each reaction. 
Each model was built with four components from a total of 33 samples 
that were split in 22 for the calibration set and 11 for the validation set. 
Validation samples were selected in equally spaced intervals through the 
whole time reaction range. 

Non-negativity and correlation constraints were applied to all four 

components. The convergence criterion was achieved, except for reac
tion 010–5. For this reaction, the divergence was assumed after 20 
consecutive iterations without decreasing the percentage of LOF. Thus, 
spectral data of reaction 010–5 were used only in the construction of the 
augmented matrix model. In general, all models showed a high per
centage of explained variance and a low percentage of LOF (Table 4). 
These results corroborate that the experimental data were well resolved 
by the MCR-ALS method. 

Recovered concentration profiles for all components were very 
similar to the HPLC profiles shown in Fig. 1. Values of figures of merit for 
model accuracy, RMSEC (root mean square error of calibration) and 
RMSEP (root mean square error of prediction), for the quantification of 
ME and TG were considered satisfactory, indicating that the models can 
be applied to monitor the production of biodiesel. The reference values 
and the calculated concentration profiles for the calibration set were 
compared using the correlation coefficient (R). Correlation coefficients 
for ME and TG were always higher than 0.96. The concentrations of FA 
+ MG, and DG presented small variations during the reactions 
(Table 3S). Consequently, MCR-ALS calibration models presented less 
accurate predictions for these two components, resulting in RMSEC and 
RMSEP higher than those for ME and TG. 

Spectral profiles recovered by MCR-ALS for each component were 
very similar among all the reactions/models. Fig. 5 shows estimated and 
reference spectra for TG (Fig. 5A) and ME (Fig. 5B) for reaction 010–7. 
Spectra of soybean oil and purified biodiesel were used as reference 
spectra for these two components. Correlation coefficients between the 
reference spectra and those estimated by MCR-ALS were higher than 
0.985, corroborating model accuracy. MCR-ALS estimated spectra for 
FA + MG, and DG are shown in Fig. 5C. Reference spectra for these 
intermediates were not available since these components are produced 
and consumed during the transesterification reaction. 

It can be observed in all spectra of Fig. 5 the presence of a strong 
absorption band characteristic of the carbonyl group (νC = O) of esters 
around 1750–1730 cm− 1. Stretching vibrations of CH3, CH2, and CH are 
present at 2980–2950 cm− 1, 2950-2850 cm− 1 and 3050–3000 cm− 1, 
while bending vibrations of these same groups are present at 
1475–1350 cm− 1, 1350–1150 cm− 1 and 722 cm− 1, respectively [52]. 
Moreover, a large band around 3500 cm− 1, present only in the spectra of 
Fig. 5C, can be assigned to the stretching of O–H bonds present in FA, 
MG, and DG. This band is not observed in ATR-FTIR spectra of TG and 
ME, since these molecules do not have hydroxyl groups in their 
structure. 

Table 4 
Parameters estimated for MCR-ALS models.  

Parameters Reaction code Augmented matrix 

020–5 020–7 010–7 100  

% Explained variance 99.8984 99.9281  99.9473 99.7842 
% LOF 3.1882 2.6811  2.2959 4.6451 
Standard deviation of residuals 0.001065 0.000916 99.9125 0.000790 0.001577 
FA + MG RMSEC (%) 1.7 0.8 2.9577 2.1 – 

R 0.8054 0.8686 0.001000 0.8445 – 
RMSEP (%) 2.15 1.03 0.68 2.08 – 

ME RMSEC (%) 5.4 4.7 4.1 3.0 5.5 
R 0.9605 0.9826 0.9835 0.9886 0.9620 
RMSEP (%) 6.3 4.4 4.9 4.1 4.1 

DG RMSEC (%) 11.2 6.1 2.1 1.6 – 
R 0.4221 0.6203 0.9336 0.9622 – 
RMSEP (%) 11.4 4.9 2.2 1.3 – 

TG RMSEC (%) 4.6 1.9 3.4 1.9 3.6 
R 0.9633 0.9966 0.9862 0.9939 0.9780 
RMSEP (%) 5.2 3.7 3.6 1.9 2.8 

Rrc ME 0.9910 0.9947 0.9857 0.9854 0.9905 
Rrc TG 0.9859 0.9893 0.9973 0.9877 0.9862 

FA + MG: fatty acids and monoglycerides; ME: methyl esters; DG: diglycerides; TG: triglycerides; 
Rrc: correlation coefficient (R) between the reference and the estimated spectral profiles. 
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3.4.2. Augmented matrix model 
Spectral data of the five reactions were aligned in the direction of the 

columns forming an augmented matrix (162x3351). An initial attempt 
to build a model applying the correlation constraint to all the four 
components did not reached the convergence criterion. Thus, a new 
model was built applying the correlation constraint only to ME and TG. 
Spectra of four reactions (010–5, 010–7, 020–5 and 020–7) were used in 
the calibration set of this MCR-ALS model, which was built with four 
components and accounted for 99.78% of the data variance and pre
sented a LOF of 4.65% (Table 4). Samples of the reaction 100 were used 
as the validation set. Fig. 6 shows a plot of the HPLC reference values 
(Creference) versus concentration values predicted by the model (CALS). 
The ability of this model to monitor the conversion of triglycerides in 
methyl esters was verified by estimating proper figures of merit. High 

correlation coefficients between reference and estimated values (0.962 
for ME and 0.978 for TG) indicated good linearity, while RMSEC (5.5% 
for ME and 3.6% for TG) and RMSEP (4.1% for ME and 2.8% for TG) 
values indicated good accuracy. Individual relative errors for each 
sample were lower than 10%. Finally, reference and MCR-ALS calcu
lated spectra also showed high correlation. 

The developed model constructed with the augmented matrix 
included the contribution of the intermediates of the transesterification 
reaction as components of the system, although they were not quantified 
in this case. Once this method is validated, its main advantage is the 
possibility of determining the concentrations of the raw material and the 
product of the biodiesel synthesis using only ATR-FTIR spectra. It can be 
applied to any other batch of transesterification reaction carried out in 
this range of experimental conditions. 

Fig. 5. Reference (solid lines) and estimated/recovered by MCR-ALS (dashed lines) ATR-FTIR spectra for the components of reaction 010–7. (A) Triglycerides. (B) 
Methyl esters. (C) ATR-FTIR spectra estimated/recovered by MCR-ALS for fatty acids and monoglycerides (solid lines) and for diglycerides (dashed lines). 
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4. Conclusions 

MCR-ALS models have been mostly restricted to qualitative appli
cations in the past, but the recently introduced correlation constraint has 
increased the scope of quantitative curve resolution methods. In this 
work, MCR-ALS method with the correlation constraint was applied to 
the ATR-FTIR quantitative monitoring and modelling of trans
esterification reactions for biodiesel production. Five reactions were 
carried out based on an experimental design aiming to build robust 
quantitative models. The raw material (triglycerides) and the product 
(methyl esters) of the reactions were qualitatively and quantitatively 
modeled in a wide analytical range utilizing a HPLC method for 
obtaining reference values. The intermediate components (diglycerides, 
and the mixture of fatty acids and monoglycerides) were also modeled 
based on HPLC reference values, providing semi-quantitative results. 
Individual MCR-ALS models were built for each reaction. Nevertheless, 
the most useful MCR-ALS model was obtained using an augmented 
matrix built with samples from four reactions. This model was suc
cessfully applied to monitor independent samples from another reaction, 
providing accurate and linear predictions. MCR-ALS modeling also 
allowed to recover spectral profiles that matched the reference spectra 
for individual components of the reaction, corroborating the selectivity 
of the method. A PCA model was also built as a preliminary tool for the 
spectral interpretation of the system. 

The developed method was more rapid, simple, of lower cost and 
environmentally friendly in relation to the traditional GC or HPLC al
ternatives to monitor biodiesel production. In comparison to other 
works in the literature using NIR spectroscopy and multivariate cali
bration with PLS [16,17], our model presented better or similar linearity 
and worse accuracy (RMSEP), though those NIR methods have moni
tored narrower ranges for ME and TG. In addition, MCR-ALS has the 
already mentioned advantage of allowing to recover the pure spectra of 
all the components, providing a better qualitative monitoring of the 
reaction system. Finally, the proposed analytical strategy can lead to 
several advantages in the industrial context, such as the possibility of 
faster intervention of the analyst to readjust the parameters of the 
process. 
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