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A B S T R A C T

Co-pyrolysis is one of the most promising options for using coal and biomass because coal is low in hydrogen and
biomass can supplement the hydrogen content to make a more valuable and reactive product gas. The mixture of
coal and biomass is prepared, with the mass ratio of biomass varying between 0 and 100%. Due to limitations in
experimental methods, the data points measured in these studies are coarse and therefore, insufficient for kinetic
energy analysis and model comparison. Therefore, a mathematical model has been proposed to combine a study
of the influence of experimental parameters with different materials to understand better the effect of these
parameters on pyrolysis with the rigorous control of experimental conditions in terms of precision and re-
peatability. The advantages of mathematical modelling co-pyrolysis make it possible to design a reaction scheme
capable of describing this phenomenon and extracting kinetic parameters, making it possible to compare fuels,
which can be used for the simulation of this process in thermal power plants. The experimental analysis of
measured co-pyrolysis data was taken from literature work to validate the proposed model. The numerical model
results are in good agreement with the experimental data for co-pyrolysis. The most significant degree of sy-
nergetic effects on the product yields was observed at 600 °C and a biomass blending ratio of 70 wt%.
Furthermore, the improvement of char reactivity also identifies the synergies in co-pyrolysis.

1. Introduction

A solid fuel exposed to a sufficient quantity of heat, under an oxi-
dizing or inert gas atmosphere, can undergo several thermochemical
transformations. Total conversion takes place under an oxidizing at-
mosphere. The solid part of the fuel is reduced to the incombustible
residue (ash) after the volatiles have left, and the solid residue has
burned. Fig. 1 illustrates the corresponding stages: dehydration, pyr-
olysis, oxidation of volatile matter and degradation combustion of the
solid carbonaceous residue [1]. This residue, resulting from devolati-
lization, is consumed by a heterogeneous oxidation mechanism in the
presence of oxygen (combustion process) or the presence of CO2 and
water vapor (gasification process) or by both simultaneously.

The pyrolysis or devolatilization step is considered the initial step of
thermal conversion of solid fuels. It has a strong influence on processes
such as combustion and gasification [2,3]. This conversion step controls
fuel ignition, flame stability, particle swelling, soot formation. The

pyrolysis process is detailed in more detail below.
Pyrolysis is a very complex transformation that involves many re-

actions. It takes place under the action of heat and in the absence of
oxygen. This process includes heat and mass transfer phenomena al-
lowing the release of a set of organic and inorganic gaseous compounds,
as well as condensable compounds, from the particle surrounded by the
inert atmosphere. The release of these products is mainly caused by the
temperature increase within the particle (thermal cracking reactions).
Three main fractions are produced during pyrolysis: a solid residue
(char), non-condensable light gases (H2, CO, CO2, H2O and CH4) and a
condensable fraction (oils and tars). Tars are composed of several re-
latively heavy organic rings and inorganic molecules. They escape the
solid matrix of fuel in both gas and liquid form [4].

Fig. 2 gives a simplified diagram describing the steps of pyrolysis of
a biomass particle. The heat transfer between the particle and reaction
medium is initially carried out by convection and radiation. Then
conductive heat transfer takes place within the particle. According to
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this model, two pyrolysis mechanisms are distinguished. Primary pyr-
olysis leads to the formation of three fractions, char, non-condensable
gases and condensable vapours [5]. Secondary pyrolysis involves
homogeneous and heterogeneous reactions of the primary pyrolysis
products, such as cracking tars and heterogeneous reactions between
the carbonaceous residue and gases. In the rest of this work, the term
“pyrolysis” encompasses both phases.

Experimental pyrolysis studies can be grouped into three types
(slow, intermediate and fast). The difference lies mainly in the rate of
heating of the combustible particles. According to Souza-Santos [4],
pyrolysis is said to be “slow” when the heating rate is less than
10 K s−1. It is considered “fast” when the heating rate is greater than
103 K/s.

Several parameters have a direct or indirect influence on the yield,
composition and characteristics of the chemical species released during
devolatilization. These are intrinsic parameters related to the nature,
composition and structure of the fuel, and external parameters such as
temperature, heating rate, pyrolysis atmosphere and pressure.

Coal is considered one of the most significant fossil fuel energy
sources in the world. The reserves were expected to be 200 years
compared with the natural gas and crude oil; whose reserve was ex-
pected to be 65 years and 40 years, respectively. Coal pyrolysis can
produce liquids, and different chemicals; however, yields are limited
due to the low hydrogen content of coal. Hydropyrolysis is an inter-
esting method to improve liquid quality and yield, but the high hy-
drogen cost hinders its application in the industry [5]. If hydrogen is
needed for coal processing, there are several potential sources such as
polymers, coke-oven gas, petroleum residues and plastic wastes. Bio-
mass is considered a more prospective source to replace fossil fuels in
the future compared with plastic wastes. This is because biomass is
renewable, abundant, carbon dioxide neutral and clean. Both coal and
biomass are carriers of accumulated solar energy. The composition
difference from biomass to coal is mainly due to oxygen contents and
can be explained using a Van Krevelen diagram in terms of oxygen/
carbon (O/H) and hydrogen/carbon (H/C) ratios [5].

It can be seen that biomass has a higher H/C ratio (1.26–1.58) and
O/C ratio (0.4–0.8) compared to coal. The high hydrogen contents of
biomass suggest that biomass could act as a hydrogen donor in co-
pyrolysis with coal. Also, pyrolysis is inherent to be carried out in an
inert atmosphere, whereas the higher oxygen content in biomass

provides a significant increase in the reactivity of the pyrolysis en-
vironment, thereby contributing to the conversion of coal [6].

Research on co-pyrolysis is a debatable field. Its primary focus is on
improving the thermal transformation of coal. Many researchers have
studied co-pyrolysis of coal and biomass blends. Most previous studies
[6–11] support the lack of synergistic effect between coal and biomass.

More recent efforts [12–17] show the significant interactions of the
co-pyrolysis in TGA. Other researchers [18–24] have verified the sy-
nergy effect on the yields of the significant pyrolytic products, gaseous
component, tar components, and the reactivities of the chars. The re-
sults showed some beneficial synergies between the biomass and coal.

According to the literature review on co-pyrolysis of biomass and
coal, no studies regarding the numerical modeling of co-pyrolysis sys-
tems. The main objective of the present study is to discuss the syner-
getic effects of co-pyrolysis of biomass and coal, a numerical model is
presented based on the experimental studies.

So the objectives of this work were to develop a new mathematical
model. For the coal pyrolysis, the Kobayashi model [25] will be used.
The kinetic scheme considers that the fuel devolatilises in two stages
respectively at high and at low temperatures. Simple phenomenological
models, such as that proposed by Kobayashi model, consider competi-
tive and/or independent reactions to describe the products formed.
However, the exact nature of these products remains unclear. The re-
actions proposed by these models contain several kinetic parameters
which are determined by comparison with the experimental data.

One of the advantages of the present model is that the competing
reactions reduce to a single reaction when the second reaction is much
slower than the first one. Therefore kinetic parameters obtained under
relatively low temperatures assuming a single overall reaction can be
utilized for the first reaction [26].

For the case of biomass, two models are proposed: the Single
Reaction Model (SRM) to simulate fast pyrolysis and the Independent
Parallel Reaction (IPR) model to simulate lignocellulose structure by
each of its components: cellulose, hemicellulose and lignin. The pre-
sented model also looked for a reaction scheme that allows simulating
the devolatilisation of biomass over a wide range of heating rates.

Therefore a developed model for the co-pyrolysis was proposed to
combine a study of the influence of experimental parameters (conver-
sion atmosphere, temperature, residence time, etc.) with different ma-
terials (coals and biomass) for better understand the effect of these
parameters on pyrolysis with the most rigorous control of experimental
conditions in terms of precision and repeatability.

This allows for both coal and biomass pyrolysis mechanisms under
different conditions to be modelled. Pyrolysis is a critical step in de-
termining sample ignition, flame stability, fluidity, particle swelling,
and emissions of gaseous and particulate pollutants. Better devolatili-
zation of coal leads to more efficient combustion. Devolatilisation is a
complicated step in the process of thermal degradation and is high-
lighted in this study.

2. Mathematical model

The method of coupling a numerical model with particle energy
equations is used to model the pyrolysis process. The model predicts
particle pyrolysis with different particle diameters, fuel types and
blending ratios. The pyrolysis of mixed biomass and coal particles are
modelled by simply adding the characteristics of biomass and coal
pyrolysis separately, which also means that there is no interaction be-
tween coal and biomass quality or quantity.

Kinetic modelling of pyrolysis allows for the design of a reaction
scheme capable of describing this phenomenon and extracting kinetic
parameters. This makes it possible to compare fuels and can be used, for
example, in thermal power stations. The identification of actual reac-
tion schemes is extremely complex due to the existence of the many
reactions and products involved. The complexity of the reactions and
products is the reason why most of the kinetic models proposed in the

Fig. 1. Thermal conversion of solid fuel [1].
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Fig. 2. Pyrolysis of a biomass particle.
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literature are based on simplified schemes. As mentioned earlier, these
simplified models are useful for simulation software for optimizing the
operation of industrial boilers using solid fuels [27,28].

3. Coal pyrolysis

The main models for determination of devolatilization kinetics and
distribution of pyrolysis products are given below.

• The present model represents coal as a number of functional groups
that are decomposed by parallel and independent reactions. This
model has become the basis of several more detailed and sophisti-
cated models [29].

• The FG-DVC structural model integrates the functional group model
(FG) for gas evolution and a second statistical model for tar for-
mation. The tar formation model introduces depolymerization,
cross-linking (DVC), and internal and external transport reactions
[30].

The FG-DVC model combines two sub-models to predict the beha-
vior of primary pyrolysis:

– the FG model describes the evolution of gases and the changes in the
composition of functional groups in tanks and tars

– the DVC model describes the yields, molecular mass and specific
properties of condensable vapors and char.

In order to improve the model and make it applicable in the case of
secondary pyrolysis reactions, Serio et al. [31] have integrated two
additional sub-models of secondary reactions:

- the hydrocarbon cracking model which describes the cracking of
paraffins and olefins to form light gaseous species.

- the equilibrium model which describes the behavior of gaseous
species containing oxygen, hydrogen and carbon at high tempera-
ture.

The FG sub-model is the most widely used to predict the devolati-
lization of coal. Its main features are:

- All coals can be characterized by a set of functional groups and
differ in the concentration of these different groups. Nineteen
functional groups were chosen by Solomon [32] and Serio et al. [31]
to represent the structures of coals.

- The number of functional groups corresponding to each gas species
is determined by thermogravimetry coupled to an Infrared Fourier
Transform Spectrometer.

Coal reactions are represented by a set of functional groups that are
supposed to not interact with each other. The FG model has been va-
lidated under different operating conditions and makes it possible to
correctly predict the distribution of primary coal pyrolysis products
[32].

• The dimensions of the fuel changed and the diameter of the sphe-
rical particle varied. Thus, the effects of swelling, shrinkage or
breakage are taken into account.

This kinetic scheme proposes the hypothesis that the pyrolysis of
coal can be represented by two competitive reactions, simplifying the
complex phenomenon of pyrolysis, which includes several reactions
[33].

In this model, coal is represented by CHx. The two competitive re-
actions of pyrolysis are:

→ + −CH α CH α C(1 )x x residual1 1 1 1 (R1)

→ + −CH α CH α C(1 )x x residual2 2 2 2 (R2)

CHx1 shows the light volatiles produced by reaction R(1), CHx2
shows the heavy volatiles produced by reaction R(2). Cresidual 1and
Cresidual 2 represent the carbon residues resulting from the two reactions.
α1 and α2 are stoichiometric coefficients used to check the material
balance (α1 and α2 are less than 1). The reaction (R1) predominates at
low temperature (T < 1100 °C). The reaction (R2) predominates at
high temperature (T > 1100 °C). The latter produces heavier volatiles:
the coefficient α2 is greater than α1. It is generally 1.1 to 1.8 times
greater than α1 [34].

Model equations for

• Devolatilization

The devolatilization speeds, for both reactions, are:

=−V kgs α m t k t( ) ( ) ( )coal1
1

1 1 (1)

=−V kgs α m t k t( ) ( ) ( )coal2
1

2 2 (2)

With carbon (t) the coal mass has not yet reacted at time t.
The devolatilisation of the mass fraction at time t is written:

∫= +W
m

α k α k m t dt1 ( ) ( )
o

t

coal
0

1 1 2 2
(3)

where mo is the initial mass of the sample (kg).The mass of carbon
m t( )coal present at a time t is:

∫
=

− +
m t m e( )coal o

α k t α k t dt( ( ) ( ))
t

0
1 1 2 2

(4)

The devolatilisation of the fraction at the instant t is thus written:

∫ ∫
= +

− +
W α k α k e( )

t α k t α k t dt

0
1 1 2 2

( ( ) ( ))
t

0
1 1 2 2

(5)

Knowing that >α α2 1, it is necessary that the speed of the reaction of
Eqn. R(2) increases more strongly with the temperature than that of the
reaction of Eqn. R(1). This requires imposing the condition >E E2 1. The
thermal history of the particle during its fall is then taken into account.

The rate constants k1 and k2 are a function of time via temperature
(Arrhenius laws). All reactions obey Arrhenius's law as follows;

= −k A ei i
E

RT
i

(6)

With k the speed constant (s−1), A is the pre-exponential factor
(s−1), E is the energy of activation (kJ mol−1), R is the perfect gas
constant (R = 8.314 J mol−1 K−1), and T is the temperature of the
particle (K).

The heating of the particle during its movement in the reaction zone
is calculated from the heat balance:

= − + −dT
dt ρC L

εσ T T h T T3 ( ( ) ( ))
p

wall gas
4 4

(7)

where ρ is the density of the particle (kg m−3), Cp is the heat capacity
of the particle (Jmol−1 kg−1), L is the radius of the particle (m), ε is the
emissivity of the particle solid, σ Boltzmann constant (W K−4 m−2) and
h is the external coefficient of heat transfer (ms−2).

4. Biomass pyrolysis

Lignocellulose biomass pyrolysis has been described by kinetic
models of different complexities. Depending on the type of reaction
scheme chosen, three classifications can be noted [11]:

• Global one-step models and one-step global reaction.

• Single-step models and multiple reactions (one-stage, multi-reaction
models).
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• Semi-global models with two or more stages (semi-global models).

5. SRM model

The single reaction model (SRM) has been proposed to extract the
kinetic constants for fast pyrolysis of wood [35]. The devolatilization of
the particles is taken into account according to a single global reaction.
This model tracks the evolution of total gas and tar yields during pyr-
olysis, in contrast to other simple models [36] where the formation of
these two products is taken into account by two parallel reactions.

The final decomposition of biomass in the reactor, unlike coal, does
not depend on the temperature (in the field studied). A single reaction
can be enough to describe its pyrolysis:

→ + −CH O α CH O α C(1 )x y x y char1 1 1 1 (8)

This model is a simplification of the kinetic scheme proposed by
Kobayashi [25]. The same assumptions, equations and parameters of
the model are used, as well as the same procedure for calculating and
optimizing the kinetic parameters. The density of wood is not calcu-
lated but taken from literature, which is 655 kg m−3, according to
Reschmeier and Karl, 2016 [37].

The fraction devolatilized at time t is written:

∫ ∫= −W α k e( )b

t
k t dt

0
1

( ( ))
t

0 1

(9)

6. IPR model applied to biomass decomposition

With the IPR (Independent Parallel Reaction) model, the lig-
nocellulosic structure of biomass is modeled by each of its components:
cellulose, hemicellulose and lignin. These three components degrade
independently. The decomposition reactions are thus independent and
parallel [38–40]. The main parameters and equations of this model are
as follows:

• The initial mass of the sample is presented as follows:

= + + +m m m m minitial o char hum ash (10)

where mo is the maximum mass of volatiles released, mchar is the mass of
the carbon residue produced by the complete devolatilization of the
volatile matter from the sample, mash is the mass of ash contained in the
sample and mhum is the mass humidity.

• For the IPR model, only the variation of mo minus the part of the
sample that devolatilizes is considered.

At time t, the mass of the sample remaining to be decomposed is the
sum of the masses of the three remaining components: hemicellulose
(H), cellulose (C) and lignin (L). It is calculated by:

∑ ∑= = −
= =

m t m t m m t( ) ( ) ( (0) ( )
i H C L i i H C L i vol i

e
, , , , , (11)

where:

m (0)i is the initial mass of each component i (i = H, C, L).
=m α m(0)i i 0.

αi is the fraction of volatiles produced by each component i
∑ =α( 1)i .

m t( )i is the mass of component i at time (t).
m t( )vol i

e
, is the mass of volatiles generated by the devolatilization of

component i at time (t).

Several hypotheses have been proposed to simplify the model:

• The devolatilization reaction is of order 1 for each component.

= −
dm

dt
t k T t m m t( ) ( ( ))( (0) ( ))vol i

e

i i vol i
e,

, (12)

T(t) is the temperature of the sample at time (t). It evolves linearly
as a function of time: = +T t at T( ) 0 is the heating rate of the particle in
thermobalance.

• The kinetic parameters k T t( ( ))i obey the Arrhenius law, such that:

=
⎛
⎝

− ⎞
⎠k T t A e( ( ))i i

Eα
RT t( )

i
(13)

• The overall reaction that presents the total mass loss is as follows:

∑= −
=

dm
dt

t k T t m m t( ) ( ( ))( (0) ( ))
i H C L i i vol i

e
, , , (14)

The mass balances for the gas mixture (including the tar vapors, the
non-condensable gases and inert gas) are:

⏟ ⏟ ⏟
∂

∂
+ ∇ = + − −

ερ
t

u ρ k k ρ k ερ θk ερ
( )

. ( ) ( )mixtures

accumulation term

mixture mixture
convective term

t g w c t c

source term

1 2

(15)

The transport equations for the tar vapors and non-condensable
gases inside the particle pores are:

⏟ ⏟

⏟ ⏟

∂
∂

+ ∇

= ∇ ∇ + − + − +

ερ
t

u ρ

D ρ k ρ k k ερ θ k k ερ

( )
. ( )

. ( ) ( ) ( )

t

accumulation term

mixture t
convective term

eff t t
diffusive term

t w c g t c g t
source term

, 1 1 2 2

(16)

⏟ ⏟

⏟ ⏟

∂
∂

+ ∇

= ∇ ∇ + − + + +

ερ

t
u ρ

D ρ k ρ k k ερ θ k k ερ

( )
. ( )

. ( ) ( ) ( )

g

accumulation term

mixture g

convective term

ef t g

diffusive term

g w c g t c g t
source term

., 1 1 2 2

(17)

Here, Deff t., is the effective diffusivity (m2s −1) of tar and non-con-
densable gases in the particle pores, k and kt g are the reaction rates
(s−1) of tar product and non-condensable gas, respectively. k dkc c1 2 are
the reaction rates (s−1) of primary and secondary char, θ mass fraction
of char in the solid phase.

7. Computational model set up

The fast pyrolysis reactor (150 g h−1) at Aston University is shown
in Fig. 3. Nitrogen flows through a porous plate with a temperature of
773 K and velocity of U0 = 1.2 m/s at the bottom of the reactor. The
particle with 0 m/s velocity is injected into the reactor and heat is
convected to the surface. The particle degrades to char, gas and tar due
to conduction along the particle radius [41]. The specific heat capacity
and thermal conductivity of the particle are computed proportionally
due to the presence of solids (char and wood). Nitrogen with a velocity
of 1.2 m/s is smaller than the terminal velocity of the particle, which in
these conditions is approximately ≈1.6 m/s. Thus, the initial simula-
tion's parameters were that the gravitational force would be greater
than the drag force spent on the particle from the surrounding fluid
[41].

Based on Bridgwater [42], the most suitable biomass particle sizes
for fast pyrolysis are between 100 and 6000 μm, with a pyrolysis
temperature, between 700 and 800 K for maximum liquid yield. In this
study, the chosen biomass particle diameter was 500 μm. The particle is
injected into the reactor at a temperature of 303 K and directly exposed
to convective heat transfer from nitrogen, which is modelled based on
the correlation of Ranz-Marshall [43,44].

The particle density decreases as a result of devolatilization reac-
tions, which results in char entrainment out of the reactor. The particle
density drop during the pyrolysis process is a significant parameter as
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the drag force tries to overcome gravity. The coal sample used was
Chinese brown coal called Zhundong brown coal, and Beechwood was
used as the biomass. The proximate and ultimate analysis for coal and
Beechwood are shown in Table 1.

The geometry of the fluidized bed reactor is 40 mm wide and
260 mm high. The geometrical domain of the freeboard is divided into a
grid (mesh) that has a number of small cells [45]. The grid design is
essential in a numerical simulation because it has a significant impact
on the rate of convergence, solution accuracy and CPU time required
[46]. The appropriate grid size is required to achieve a reasonable
compromise between the competing needs for calculation accuracy and
manageable computational times [45].

The mesh must be chosen to be able to effectively capture the hy-
drodynamics inside the freeboard of the fluidized bed reactor [33].
Several simulation trials were carried out to examine the mesh sensi-
tivity and ensure that the solution accuracy is independent of grid size.
The optimal grid size (uniform Cartesian grid of 420 quadrilateral cells)
has been chosen for the freeboard geometrical domain. It was found
that the optimized cell size (10 mm × 10 mm) equals about 3 times
larger than the particle diameter. Consistent with the literature, the
mesh size of such scale is suitable for solid–gas CFD simulations and

sufficient to resolve the gas-particle flow [47].
Based on Thiele modulus, the reaction of the solid particle size

should be described by either the shrinking core or the reactive core
method [48]. Thiele modulus Th gives the relationship of kinetic to the
diffusion time scale. For the response number n = 1, the definition is as
follows [49]:

=Th l k
D rp

p (18)

In which k is the reaction rate constant, lp the characteristic length
of the particle, Dp the diffusion coefficient of the particle and r is the
hydraulic radius of the pores. If <Th 1, a shrinking core regime is
found. Heterogeneous reactions happen on the surface, and the gaseous
reactants do not diffuse into the solid particle. For >Th 1 the reacting
core regime is defined. In this regime, gaseous reactants diffuse into the
particle, and volumetric reactions are observed in the solid [47].

During the devolatilisation process, the particle shrinkage is sig-
nificantly affected by the following swelling coefficient equation:

= + −
− −

−
d t
d

C
MC m m

VM MC m
( )

1 ( 1)
(1 )

(1 )
p

p
sw

p p

p,0

0 ,0

0 0 ,0 (19)

Here MC0 is the initial moisture content of the biomass and VM0 is
the initial volatile matter content of the studied solid particles, obtained
from the proximate analysis. The term − −

−
MC m m

VM MC m
(1 )

(1 )
p p

p

0 ,0

0 0 ,0
is the ratio be-

tween the total volatile mass and the devolatilisation mass of the par-
ticle.

During the devolatilization process, the size of the particle is de-
termined by the swelling coefficient. If the value of the swelling coef-
ficient is more than 1, the size will increase, and when the value of the
swelling coefficient is less than 1, the size will be reduced. For example,
if the value of the swelling coefficient is changed to 2.0, the effect is
twice as much. In addition, the expansion number is obtained by a
formal analysis and can be calculated by the following equation:

=C
d

dsw
p

po (20)

where dp is the average diameter of the particles, and dpo is the average
diameter of the parent fuel.

According to the morphological results, the value of the swelling
factor of the studied biomass is 0.7. As a result, it is more and more
challenging to measure actual results. As far as this work is concerned,
the range of 0.5 ≤ 1 is considered uncertain. The carbon oxidation rate
is predicted by the following equation [36]:

⎜ ⎟= ⎛
⎝

− ⎞
⎠

∞
dm
dt

A k P
dm
dt S D

1p
p O

p

p

n

,2
(21)

where mp is the mass of the particle, Ap is the external surface area of
the particle - which is calculated according to the particle size dp, ∞PO ,2

is the oxygen partial pressure, n is the apparent reaction order, k is the
apparent kinetic rate, and D is the external diffusion rate coefficient
calculated as follows [50]:

= ⎛
⎝

− ⎞
⎠

k A exp E
RTa

a

(22)

= ×
+− ∞D

T T
d

2.57 10
[( )/2]p

p

7
0.75

(23)

In addition to drying, pyrolysis and char oxidation reactions, the
homogeneous gas reaction can also be detected in the fuel bed.
According to the hypothesis of the model system and the bed model, the
homogeneous gas reaction is described in the modelling method. The
homogeneous gas reaction should include the oxidation of the gas
produced from pyrolysis and the reaction between the gas product from
the thermal solution and product from pyrolysis.

Fig. 3. Fluidized bed reactor.

Table 1
Elemental composition of the beechwood and coal feedstock.

Beechwood Coal

Proximate analysis (wt. % wet basis)
Volatiles 77.81 30.86
Fixed carbon 21.24 64.79
Ash 0.95 4.34

Ultimate analysis (wt. % wet basis)
N 0.1 1.19
C 49.66 75.39
H 6.29 3.48
O 43.95 15.19
S – 0.42
Empirical formula CH1.52O0.664N0.002 CH0.554O0.151N0.014S0.002
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8. Validation

As mentioned above, there is little contribution for verification be-
cause of the need for different input variables that are usually not
completely given. On the other hand, if one or more parameters (such
as biochemical composition) are taken from another source, the value
of verification is limited.

Compared with Zhang et al., [21] two raw materials, leguminous
straw and Dayan lignite were selected for the study in which co-pyr-
olysis reactions are carried out in a free-falling reactor. Figs. 4 and 5
show that the numerical results are in good agreement with the ex-
perimental data for the reaction temperature 500 °C for all blend ratios
(biomass/coal).

Compared with Huang et al. [51], the measured tar, char and gas
from the co-pyrolysis of coal and biomass, moreover, the gas produced
during the pyrolysis of blended fuel is in good agreement with the
presented model. Huang et al. conducted co-pyrolysis in a pressurised
fluidized bed reactor. The blend ratio of biomass in the mixture was
varied between 0 and 100 wt%, and the temperature range was
550–650 °C with the pressure under 1.0 MPa (Figs. 6 and 7).

9. Results and discussion

Based on the Refs. [41,51–57], the pyrolysis of biomass or coal is
comparable based on the product yields. As fast pyrolysis temperature
increases the yield of gas increases and the yield of char decreases. The
varying degree of product yields from biomass is more significant than

that from coal. For coal, the yield of gas increases at higher tempera-
tures approximately 600 °C, and maximum liquid yields are achieved at
600 °C, while the yield of tar increases marginally with the increase in
temperature.

For the biomass more volatiles (pyrolysis gas + water) are created
from the pyrolysis of biomass than that of coal under similar conditions.
This is most likely because of the difference in their subatomic struc-
ture. The stability of the coal structure, which generally consists of thick
polycyclic aromatic ring hydrocarbons connected by C–C bonds, is re-
sistant to heat. Biomass consists of a macromolecular structure (cellu-
lose, hemicellulose and lignin) connected generally by weak ether
bonds, that can be broken easily at temperatures above 400 °C. Under
high heating rate conditions, reactor temperatures strongly affect de-
polymerization reactions (volatile formation) of biomass [17,18].

Due to weaker bonds in biomass, higher volatile yields and a more
hydrogen-rich gas are produced compared to coal. Under similar pyr-
olysis conditions, the H2 yield (wt.%, daf) created from biomass is
around 5–16 times higher than H2 yields produced from coal [7]. This
shows that biomass could potentially supply H2 for coal pyrolysis [5],
bringing about specific synergies during the co-pyrolysis of biomass and
coal.

The effects of blending ratio on the yields of liquid, char and gas-
eous components generated from co-pyrolysis over the temperature
range of 500–700 °C are represented in Figs. 8–10. Figs. 8–10 show the
yields of liquid, char and gaseous produced from the co-pyrolysis of
biomass and coal for range temperature of 500–700 °C. It has been
shown that the blending of biomass with coal affects the yield of

Fig. 4. Comparison between experimental and numerical yields produced during co-pyrolysis of biomass blends at 500 °C.
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pyrolysis products (liquid and gas).
A higher ratio of blending results in increased yields of gas and li-

quid, while char and tar yields decrease. Especially at 600 °C and the
blending ratio of biomass to coal of 74 wt%, reducing char yields by
14% and increasing liquid yields by 10%. Fig. 8 additionally shows
some comparable outcomes at 500 °C, the higher blending proportion
(for example 74 wt% and 75 wt%) prompts lower yields of char (decline
by about 5%) and higher yields of liquid (increase by about 5% and 7%,
respectively). As discussed, the identified synergies happen at higher
blending ratios which more hydrogen, resulting in the hydrogenation of
coal pyrolysis, resulting in positive synergetic effects during the co-
pyrolysis of biomass and coal.

Also, the reactor temperature affects the synergies between biomass
and coal during co-pyrolysis. In Figs. 8–10, there are evident synergetic
impacts in the co-pyrolysis at 500 °C and 600 °C compared to 700 °C.
Liquid yield for biomass pyrolysis diminishes with increasing tem-
perature, while the maximum liquid yield for coal pyrolysis occurs at
600 °C. So it can be concluded that at 600 °C recognizable synergies
occur in the co-pyrolysis of biomass and coal, due to sufficient radical
pyrolysis elements produced from coal and hydrogen-contributors
produced from biomass at this temperature. Researchers also found that
in TGA experiments, with the increase of biomass [58–62]. The evi-
dence of the above results is shown in Figs. 8–10, showing the variation
of liquid, gas and char yields produced from different biomass ratios.

Figs. 11–13 show that at higher blending ratios, the yields of char

are lower than the yields of liquid and tar. Moreover, the gaseous yields
of CH4 is high relatively than CO, CO2 and H2 over the entire blending
proportion run, as appeared in the results. As the numerical results
showed, the highest H2 yield was seen at 600 °C compared to H2 yields
produced at 500 °C and 700 °C. Suggesting that the fast pyrolysis
temperature of 600 °C is more suitable for generating hydrogen for
pyrolysis radicals produced from coal and subsequently increasing li-
quid yields. More significantly, the yields of volatiles produced from the
co-pyrolysis of biomass and coal are higher than the usually determined
quantities of the separate fuel, especially increasing by over 8% at
600 °C.

Synergetic impacts on char yields in the co-pyrolysis of biomass and
coal were observed. Char yields are lower than the theoretical yields
determined on pyrolysis of each fuel at higher blending ratios. It was
discovered that some synergetic consequences for char reactivity
happen during the co-pyrolysis of biomass and coal. Char from co-
pyrolysis would be believed to be composed to be majority made up of
coal char under similar conditions, regardless of the lower yields of char
from the co-pyrolysis than what might be epected. The reactivity of the
char from co-pyrolysis at the lower blended ratio (around 30 wt%) is
similar to char produced from coal pyrolysis [52]. The reactivities of
the char from co-pyrolysis at higher blended ratios (around 70 wt%) are
averaging about 2.3 times higher than char produced from coal pyr-
olysis, and much higher than char produced from biomass pyrolysis
[56].
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As mentioned, the synergy effect is generally achieved at higher
biomass to coal ratios; this may be due to the need for a sufficient
amount of biomass to provide an abundant supply of hydrogen. This
results in some obvious effects in co-pyrolysis of biomass and coal,
identifying that the amount of hydrogen supplied from biomass has a
crucial role in coal pyrolysis [5]. The reactivity of the char is improved
during the synergetic co-pyrolysis of biomass and coal in the fluidized
bed; however, the char reactivity is reduced with increased reactor
temperatures.

Pyrolysis characteristics of three different blend ratios (biomass/
coal = 70: 30, 50: 50 and 30: 70) were studied. All biomass particles
have similar initial volume and initial masses. From Figs. 14 and 15, it
can be seen that with an increased percentage of biomass the tem-
perature of the blended feed increases after ~60 s. The pyrolysis rate
also increases with an increased biomass fraction.

10. Conclusion

Pyrolysis is a very complex phenomenon that usually precedes the
step of heterogeneous combustion. It is always confused with the de-
volatilization (release of volatile matter under the effect of heat). Based
on the literature review for the co-pyrolysis of biomass and coal, a

mathematical model is to model co-pyrolysis systems to explore the
synergetic effects of co-pyrolysis of biomass and coal.

The present model allowed for the simulation and analysis of pyr-
olysis of solid particles. The results obtained in the case of the co-pyr-
olysis show a good agreement with the experimental results. Also, the
results found by the present model are more satisfactory for biomass
and coal blended at different ratios.

Co-pyrolysis of beech wood and Zhundong brown coal are carried
out in a fluidized bed reactor working under a numerical model, and the
effects of blending ratio and fast pyrolysis temperature on the synergy
between biomass and coal were studied. The results show that the char
yields decrease, and the liquid and gas yield increase, even the blended
species do not produce similar product yields compared to each feed-
stock separately, indicating that there is a synergetic effect between
biomass and coal under certain conditions.

The most significant degree of synergetic effects on the product
yields was observed at 600 °C and a biomass blending ratio of 70 wt%.
It can be concluded that both the higher blending ratio and the rela-
tively lower temperature are more in favour of synergies between
biomass and coal during co-pyrolysis in a fluidised bed reactor.
Furthermore, the improvement of char reactivity also identifies the
synergies in co-pyrolysis.
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The synergistic effect between coal and biomass in the co-pyrolysis
prove that it can produce higher char conversion and higher liquid
product yield compared to the individual biomass and coal. Also, the
co-pyrolysis model of the blend can be directly derived from the ex-
isting pyrolysis model of coal and biomass, which will be beneficial to
the co-combustion model of the coal-biomass blend.
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