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A B S T R A C T   

The oxidative coupling (OCM) and the partial catalytic oxidation (POM) of methane as well as the homogeneous 
oxidation of methane (HOM) differ only in the ratio CH4/O2 used and of course in the use of a catalyst. It can 
therefore be considered that their overall reaction mechanism should be the same with elementary reactions of 
varying importance depending on the type of oxidation reaction studied. We have therefore tried to represent the 
results obtained during the experimental study of OCM and POM over La2O3 and that of the oxidation of methane 
in gas phase from a single mechanism. At high temperature, OCM and POM are catalytic reactions but their 
reaction mechanisms are very complex because the surface reactions are coupled to reactions in gas phase by the 
intermediary of radicals, so both homogeneous and heterogeneous mechanisms occur at the same time. In this 
work, the development and the validation of a hetero-homogeneous mechanism is proposed for the three re
actions. This mechanism is based on elementary steps at the catalyst surface and elementary steps in gas phase 
for a large range of temperature (973 K–1173 K) and residence time (0.7 s–5.5 s).   

1. Introduction 

Fluctuating prices of fossil fuel and discovery of new natural gas 
deposits are increasing interest in the upgrading of methane to value- 
added products. To date, the world reserve of natural gas is estimated 
about 198.8 trillion cubic meters [1] with steadily increasing in the 
future. Furthermore, over the past decade, increased production of shale 
gas has stimulated renewed interest to converting methane into valuable 
chemicals or liquid fuels. 

The oxidative coupling of methane (OCM), first proposed by Keller 
and Bhasin [2] in 1982, is a direct method of converting methane into 
higher hydrocarbons especially ethylene. Ethylene is a critical inter
mediate in the petrochemical industry witch is currently produced by 
steam cracking of hydrocarbon, mainly ethane. It is a highly endo
thermic reaction that occurs at high-temperature. Unlike steam 
cracking, the oxidative coupling of methane is exothermic and allows 
the direct conversion of methane into ethylene at a lower energy cost 
compared to current indirect industrial processes. During the 1990s, 
many studies were devoted to the OCM reaction. These studies showed 
that the yield of the reaction was not really compatible with an indus
trial application. However, in the last few years, the interest in the OCM 
reaction has increased because catalysts with higher activity and 

selectivity have been found. Indeed, with oxides as La2O3 acceptable 
reaction performances have been reached [3]. 

Another way of methane valorisation is the catalytic partial oxida
tion (POM). The catalytic partial oxidation of methane is an alternative 
to steam reforming [4,5] for synthesis gas (CO + H2) production. One 
advantage of POM is the production of syngas [6–8] with a H2/CO ratio 
ideal for a subsequent Fischer–Tropsch synthesis. In contrast to steam 
reforming, the partial oxidation is an exothermic reaction and therefore 
requires a smaller amount of heat energy. Furthermore, POM has a good 
dynamic response time and could therefore be used as an on-board 
hydrogen generator for fuel cells. 

OCM and POM are catalytic reactions at high temperatures. Their 
reaction mechanisms are very complex because the surface reactions are 
coupled to reactions in gas phase by the intermediary of radicals [9–17], 
so both homogeneous and heterogeneous mechanisms occur at the same 
time. Indeed, the general oxidation mechanism includes two sub- 
mechanisms, one that is related to gas-phase and another that con
tains the catalytic reactions. Obviously, the homogeneous oxidation of 
methane (HOM) requires only the gas-phase mechanism. The modelling 
of the reaction by a detailed mechanism (composed of elementary steps 
describing the reaction as it occurs at the molecular level) has a lot of 
advantages. The mechanism and the kinetic analysis results allow a 
better understanding of the reaction. Indeed, based on this analysis, the 
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reaction pathways, the importance of heterogeneous and homogeneous 
reactions and the limitative steps can be identified. Since 1982, the 
literature concerning the study of hetero-homogeneous reactions has 
been abundant [18,19]. However, there are few detailed mechanisms 
and much less kinetic data of surface reactions that were published. 

The OCM and POM reactions differ only in the ratio CH4/O2 used, so 
their overall reaction mechanism should be the same. We have therefore 
tried to represent the results obtained during the experimental study of 
OCM and POM over La2O3 and that of the oxidation of methane in gas 
phase [20–23] from a single mechanism. The development and the 
validation of a hetero-homogeneous mechanism is proposed for the 
three reactions, based on elementary steps at the catalyst surface and on 
a homogeneous mechanism in gas phase for a large range of temperature 
and residence time. The experimental study was carried out in a 
perfectly stirred reactor in presence of lanthanum oxide. The 

simulations were done by using the Chemkin® software packages. 

2. Experimental section 

The experimental setup was already described in previous articles 
[21,23]. 

The reactor developed for the investigation of hetero-homogeneous 
reactions [24,25] is a continuous stirred tank reactor (CSTR) pre
sented in Fig. 1. It consists of two parts: an important well-stirred gas- 
phase volume (110 cm3) in contact with catalysts pellets laid on a 
removable cylindrical support. Four Thermocoax resistance wires that 
are in contact with the wall are used for heating the reactor. Before 
entering the reactor, the reactant mixture is preheated. The temperature 
of the first preheating part is 100 ◦C lower than the reactor temperature 
while the temperature of the second preheating part equals the one of 

Nomenclature 

ki Rate constant for elementary step i 
A Arrhenius preexponential factor 
E Activation energy (cal.mol− 1) 
T temperature (K) 
kB Bolzmann constant, 1.381 10− 23 J.K− 1 

h Planck constant, 6.6262 10− 34 J.s. 
N Avogadro number, 6.022 1023 

qi total partition function for species i (m− 3) 
qiv vibrational partition function for species i 
qir rotational partition function for species i 
qit translational partition function for species i (m− 3) 
qie electronic partition function for species i 

∕= in relation with the activated complex 
m molecule mass (kg) 
M molar mass (g. mol− 1) 
s spin quantic number 
σext external symmetry number 
σint internal symmetry number 
I moment of inertia (amu. A2 or kg. m2) 
Ired reduced moment of inertia (amu. A2) 
ω frequency of vibration (cm− 1) 
D product of the moments of inertia (amu3.Å6 or kg3. m6) 
ΔHads,i heat of adsorption for species i (cal.mol− 1) 
xn molar fraction for species n 
Si,n sensibility coefficient of reactions i for species n  

Fig. 1. Schematic representation of the catalytic jet-stirred reactor.  

Y. Simon and P.-M. Marquaire                                                                                                                                                                                                              



Fuel 297 (2021) 120683

3

the reactor. The temperature of the gas phase is measured thanks to a 
thermocouple located inside a quartz finger at the middle of the free 
volume. 

The catalyst used was Lanthanum oxide. The powder of La2O3 was 
pelleted at a pressure of 20 kN into a cylindrical shape thanks to an 
electromechanical press Instron 5569. The pellets are 12 mm wide 
(diameter) and 1 mm thick. In order to facilitate the desorption of water 
and also to decompose the carbonates present on the surface of the 
pellets, the La2O3 powder was heated for 8 h at a temperature of 900◦ C. 
The BET surface areas are 1.8 m2.g− 1 for catalyst pellets used in OCM 
and 5 m2.g− 1 for pellets used in POM. 

The outlet gases H2, CO, CH4, C2H4, C2H6 and CO2 are analysed in 
line or off line by gas phase chromatography [21,23]. Several standard 
bottles, containing a gas mixture at different concentrations, externally 
calibrate the chromatograph. All data were collected at a steady state 
regime and each test was repeated at least three times to verify the 
stability and repeatability of the measurements. 

The experimental conditions used for this study are: 
- Temperatures between 973 K and 1173 K 
- Outlet pressure fixed at 1 atm. 
- Composition of the gas inlet with CH4/O2 = 5 for OCM and CH4/O2 

= 2 for POM and HOM. 
The reactants are highly diluted in argon or helium (94% in OCM and 

84% in POM or HOM) to better control the reaction temperature and to 
avoid hot spots. 

3. Kinetic modeling 

3.1. Homogeneous mechanism 

The mechanism used for simulation includes a heterogeneous part 
and a homogeneous one. The homogeneous part is described by a set of 
over 450 elementary reactions. Due to its size, the mechanism cannot be 
fully presented here; we give only the most significant reactions in 
Table 1. 

The homogeneous mechanism takes into account all elementary re
actions between molecules and radicals including less than three carbon 
atoms. This gas-phase mechanism is well known and has been confirmed 
by a vast amount of experimental data for different hydrocarbon re
actions for the homogeneous oxidation of methane [20,23,26]. 

This mechanism was generated by EXGAS software [27]. In the 
present work, this mechanism is used in combination with a heteroge
neous mechanism for the simulation of the catalytic oxidation of 
methane reactions. 

3.2. Heterogeneous mechanism 

3.2.1. Description of the mechanism 
The development of the heterogeneous mechanism takes into ac

count the results from mechanistic studies reported in the literature 
[28–37]. Despite the many studies carried out on this subject, the exact 
nature of the active sites on La2O3 remains unclear. Yang et al. suggested 
that O2– ions could be the active site for methane activation [38]. On the 
other hand for Hutchings et al. [39], the formation of CH3. radicals is 
due to the O- ions while O2

2– lead to the formation of CH2: radicals. 
Lacombe et al. [40] have identified various active sites on the surface of 
lanthanum oxide: a basic site associated with an anionic vacancy which 
would be responsible for the dissociation of gaseous oxygen into atomic 
species and an unsaturated site on which methyl radical would react to 
be further oxidized into CO2. In summary, there are at least two types of 
active sites on the La2O3 surface [41]. 

Table 1 
Adjusted kinetic parameters of most important homogeneous reactions in 
oxidation of methane. k=A(T)

n
exp(-E/RT).   

Reactions A (mol, cm3, 
s) 

n Ea (cal. 
mol− 1) 

1 O2 + H = OH + O 1.5 1014  0.0 14,810 
2 O2 + H (+M) = HO2 (+M) 4.52 1013  0.0 0.0 
3 O2 + CHO = CO + HO2 2.6 1011  0.0 410 
4 O2 + CH3 = CH3O + O 1.6 1013  0.0 31,300 
5 O2 + HCHO = CHO + HO2 2.0 1013  0.0 38,800 
6 O2 + CH3 = HCHO + OH 3.0 1030  − 4.69 36,600 
7 O2 + CH4 = CH3 + HO2 4.0 1013  0.0 56,700 
8 O2 + C2H5 = C2H4 + HO2 8.4 1011  0.0 3900 
9 O2 + C2H3 = HCHO + CHO 4.5 1016  − 1.39 1000 
10 O2 + C2H3 = C2H2 + HO2 1.34 106  1.61 − 400 
11 O2 + C2H2 = 2 CHO 7.0 108  1.8 30,600 
12 O + H2 = OH + H 5.1 104  2.67 6200 
13 O + CH3 = HCHO + H 8.4 1013  0.0 0 
14 O + CH4 = CH3 + OH 7.2 108  1.56 8400 
15 O + C2H6 = C2H5 + OH 1.0 109  1.5 5800 
16 O + C2H4 = CH3 + CHO 8.1 106  1.88 200 
17 O + C2H4 = HCHO + CH2 4.0 105  1.88 200 
18 O + C2H4 = CH2CO + H2 6.6 105  1.88 200 
19 O + C2H4 = CH2CHO + H 4.7 106  1.88 200 
20 O + C2H4 = OH + C2H3 1.5 107  1.91 3700 
21 O + HCHO = CHO + OH 4.1 1011  0.57 2700 
22 OH + H2 = H + H2O 1.0 108  1.6 3300 
23 OH + CH3 (+M) = CH3OH 

(+M) 
6.0 1013  0.0 0 

24 OH + CH4 = CH3 + H2O 1.6 107  1.83 2700 
25 OH + CO = CO2 + H 6.3 106  1.5 − 500 
26 OH + HCHO = CHO + H2O 3.4 109  1.18 − 400 
27 OH + C2H4 = C2H3 + H2O 2.0 1013  0.0 5900 
28 OH + C2H4 = CH3 + HCHO 2.0 1012  0.0 900 
29 OH + C2H6 = C2H5 + H2O 7.2 106  2.0 900 
30 2 HO2 = H2O2 + O2 4.2 1014  0.0 11,980 
31 HO2 + H = 2 OH 1.7 1014  0.0 900 
32 HO2 + CH3 = CH3O + OH 1.8 1013  0.0 0 
33 HO2 + CH4 = CH3 + H2O2 9.0 1012  0.0 24,600 
34 HO2 + CO = CO2 + OH 1.5 1015  0.0 23,600 
35 HO2 + CHO = OH + H + CO2 3.0 1013  0.0 0 
36 HO2 + HCHO = CHO + H2O2 3.0 1012  0.0 13,000 
37 HO2 + C2H6 = C2H5 + H2O2 1.3 1013  0.0 20,400 
38 2 CH3 (+M) = C2H6 (+M) 3.6 1013  0.0 0.0 
39 2 CH3 = C2H5 + H 3.0 1013  0.0 13,500 
40 2CH3 = C2H4 + H2 2.1 1014  0.0 19,300 
41 CH3 + H (+M) = CH4 (+M) 1.7 1014  0.0 0.0 
42 CH3 + HCHO = CHO + CH4 7.7 10-8  6.1 1970 
43 CH4 + H = CH3 + H2 1.3 104  3.0 8000 
44 C2H2 + H (+M) = C2H3 (+M) 8.4 1012  0.0 2610 
45 C2H3 (+M) = C2H2 + H 2.0 1014  0.0 39,800 
46 C2H4 (+M) = C2H2 + H2 (+M) 1.0 1017  0.0 71,600 
47 C2H4 + H = C2H3 + H2 5.1 107  1.93 12,900 
48 C2H4 + CH3 = CH4 + C2H3 6.3 1011  0.0 1600 
49 C2H4 + CH3 = C3H7 2.1 1010  0.0 7350 
50 C2H5 (+M) = C2H4 + H (+M) 8.2 1013  0.0 40,000 
51 C2H6 (+M) = C2H4 + H2 (+M) 2.3 1017  0.0 67,400 
52 C2H6 + H = C2H5 + H2 1.4 109  1.5 7400 
53 C2H6 + CH3 = C2H5 + CH4 1.5 10-7  6.0 5800 
54 C2H6 (+M) = 2CH3 + (M) 1.8 1021  − 1.24 90,900 
55 CHO (+M) = H + CO (+M) 1.6 1014  0.0 15,700 
56 CHO + CH3 = CH4 + CO 1.2 1014  0.0 0.0 
58 HCHO + H = CHO + H2 1.3 108  1.62 3100 
59 CH2CO (+M) = CH2 + CO +

(M) 
6.57 1015  0.0 57,600 

60 CH2CO + H = CH3 + CO 1.8 1013  0.0 3400 
61 CH3O2 = HCHO + OH 1.5 1013  0.0 47,000 
62 CH3O2 + CH4 = CH3O2H + CH3 1.8 1011  0.0 18,500 
63 CH3O2 + CH3 = 2 CH3O 5.0 1012  0.0 − 1400  
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In our mechanism, the two types of active sites considered are: a 
reduced site (s) and an oxygenated site O(s). Experimental studies of 
oxygen chemisorption [42] have shown that this reaction occurs with 
dissociation of a diatomic O2 molecule to form two active atomic oxygen 
centres according to the following reaction: 

O2(s)+ s→2O(s)

2O(s)→O2(s) + s 

In these elementary reactions s represents a surface site and O(s) the 
atom O adsorbed on the surface of the La2O3 crystal. 

The heterogeneous mechanism was written systematically by 
considering the possible reactions between these two sites and the major 
reaction products and free radicals. These reactions were written ac
cording to the Eley-Rideal formalism involving the reactions between a 
gas phase molecule and an active site. For example, methane can react 
according to: 

CH4 +O(s)→CH3.+OH(s)

CH4 + s→CH3.+H(s)

The hydroxylated sites and hydrogenated sites can react according to 
the Langmuir-Hinshelwood formalism leading to the formation of 
hydrogen and water via surface steps: 

H(s)+H(s)→H2 + 2s  

OH(s)+H(s)→H2O+ 2s  

2OH(s)→O(s)+H2O+ s 

Finally, the heterogeneous mechanism is composed of 33 direct 
elementary steps involving 9 surface species (Table 2). 

To carry out the simulations, it is necessary to calculate the kinetics 

parameters of this heterogeneous mechanism. There are few models 
involving a detailed mechanism composed of elementary steps and with 
estimation of the kinetics parameters. We can quote for example 
Deutschmann [43], Sinev [44] and Gent University [45]. In our study, 
pre-exponential factor of elementary steps are calculated by methods 
derivate from Benson’s techniques [46] whereas activation energies are 
chosen in first approximation by analogy with reactions in gas phase. 
Simulations were performed using the Chemkin® and Surface Chem
kin® software packages in a CSTR reactor [47,48]. The simulations were 
performed by simultaneously compiling the homogeneous and the het
erogeneous sub-mechanisms so that the possible coupling could be taken 
into account. It should be noted that these methods give only an 
approximation of the initial numerical value of parameters, usually 
unknown, which must be adjusted during the optimization from 
experimental results. 

3.2.2. Pre-exponential factor 
The pre-exponential factor is calculated by using partition functions 

of gas molecule and activated complex. For the following reaction: 
A + B(s)→AB∕=→Products 
where A is a gas molecule, B(s) a surface species and AB∕= the acti

vated complex, the pre-exponential factor is calculated by the following 
equation: 

A =
kBTNq∕=

hqAqB(s)
(1) 

In Eq. (1), kB is the Boltzmann constant (1.38 10− 23 J.K− 1), N the 
Avogadro constant (6.022 1023 mol− 1), T the temperature, h the Planck 
constant (6.6262 10− 34 J.s.) and qA, qB(s), q∕= are the partition functions 
of A, B(s) and the activated complex. The difference between the degrees 
of freedom of B(s) and AB∕= is mainly due to the vibrations of the 
molecule A in the configuration of the activated complex. Indeed, B(s) 
and AB∕= are adsorbed species and have no rotational or translational 
degrees of freedom. So, to simplify the calculation, we suppose than the 
difference between partition function of B(s) and AB∕= is only due to the 
vibrational component of the activated complex q∕=

v. Then the following 
expression is obtained: 

A =
kBTNq∕=

v

hqA
(2) 

The partition function of a molecule or a radical is the product of a 
translational partition function qt, an external rotational partition 
function qr, a vibrational partition function qv and an electronic parti
tion function qe. These partition functions can be calculated by the Eq. 
(3). 

qt =
(2πmkBT)3/2

h3

q3D
r =

π1/2

σext

(
8π2kBT

h2

)3/2

R1/2 or q2D
r =

8π2IkBT
σexth2

qv =
∏

i
qv,i and qv,i =

1

1 − exp
(
− 1.44ωi

T

)

qe = 2s + 1

(3) 

In these equations, σext is the external symmetry number, m (kg) the 
mass of the atom, s the spin and ω i (cm− 1) the frequency of the tabulated 
vibration. 

The selection of the formula for calculating the rotational partition 
function depends on the molecule considered. A linear molecule only 
possesses two rotational degrees of freedom. The two moments of inertia 
about the two axes of rotation are equal to I (kg.m2). In this case, the 
rotational partition function is qr

2D. However, there are 3 rotational 
degrees of freedom in a non-linear molecule and the calculation of the 

Table 2 
Kinetic parameters of surface reactions in oxidation of methane.   

Réactions A (mol, cm2, s) E(cal.mol− 1) 

1 O2 + s → O2(s) 1.8 107 1500 
2 O2(s) → O2 + s 2,3 1012 45,000 
3 O2(s) + s → 2O(s) 1.2 1023 25,000 
4 2O(s) → O2(s) + s 3.3 1023 33,000 
5 CH4 + O(s) → CH3⋅ + OH(s) 7.5 108 8840 
6 C2H6 + O(s) → C2H5⋅ + OH(s) 9.5 109 3000 
7 CO + O(s) → CO2 + s 4.7 109 0 
8 CO2 + s → CO2(s) 6.2 108 0 
9 CO2(s) → CO2 + s 2.3 1013 43,580 
10 C2H4 + O(s) → C2H3⋅ + OH(s) 5.5 108 3000 
11 C2H5⋅ + O(s) → C2H4 + OH(s) 5.5 107 0 
12 C3H7 + O(s) → C3H6 + OH(s) 6.1 107 0 
13 2OH(s) → O(s) + H2O + s 1.3 1023 2400 
14 CH3⋅ + O(s) → CH2⋅ + OH(s) 1.9 109 2800 
15 CH2⋅ + O(s) → CH⋅ + OH(s) 3.6 1011 11,900 
16 CH⋅ + O(s) → C + OH(s) 8.9 108 4700 
17 C + O(s) → CO + s 1.1 1011 0 
18 CH3⋅ + O(s) → CH3O(s) 9.9 108 600 
19 CH3O(s) + O(s) → HCHO + OH(s) + s 1.2 1023 0 
20 HCHO + O(s) → CHO. + OH(s) 3.4 107 3000 
21 CHO⋅ + O(s) → CO + OH(s) 6.9 107 410 
22 C2H5⋅ + O(s) → C2H5O(s) 1.0 109 600 
23 C2H5O(s) + O(s) → CH3CHO + OH(s) + s 6.6 1021 0 
24 CH4 + s → CH3⋅ + H(s) 8.5 107 9850 
25 C2H6 + s → C2H5⋅ + H(s) 9.8 107 5000 
26 C2H4 + s → C2H3⋅ + H(s) 1.9 107 5000 
27 H⋅ + s → H(s) 9.6 1012 0 
28 OH(s) + H(s) → H2O + 2 s 1.0 1024 0 
29 H(s) + H(s) → H2 + 2 s 1.3 1023 0 
30 H2 + 2 s → 2H(s) 6.1 1016 0 
31 H2 + O(s) → OH(s) + H⋅ 1.0 1010 0 
32 C + O(s) → CO(s) 1.1 1011 0 
33 CO(s) + O(s) → CO2(s) + s 1.1 1023 0 

[s symbolizes surface site and (s) adsorbed species]. 
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partition function qr
3D use the product of the moments of inertia: D (kg3. 

m6). For easier use, these formulas can be rewritten: 

qt = 1.88 1026(MT)3/2

q3D
r = 1.48 10− 2D1/2T3/2

σext
or q2D

r = 4.12 10− 2 IT
σext

(4) 

In the first expression the unit of qt is m− 3 and M is the molar mass (g. 
mol− 1). In the second expression, the unit of D is amu3.Å6 and that of I is 
amu.Å2. 

3.2.3. Activation energy 
The activation energy is the most difficult parameter to calculate, 

especially for surface reactions, because it depends on the nature of the 
adsorption site. Since these values are generally intended to be opti
mized by simulation of the experimental results, two simple methods of 
estimation depending on the type of reaction involved are proposed. For 
the adsorption/desorption reactions, the activation energy is calculated 
from the experimental value of adsorption enthalpy obtained from the 
literature. The activation energy of the other elementary surface re
actions can be assumed in first estimate to be the same as the equivalent 
gas-phase reaction. 

For example, the CO2 adsorption – desorption can be represented by 
the following reactions: 

(3) CO2 + s → CO2(s) 
(-3) CO2(s) → CO2 + s 
The activation energy of the CO2 adsorption is low; so the activation 

energy of the step (3) is supposed to be equal to 0. The adsorption 
enthalpy of CO2 on the surface can be found in the literature; the 
adsorption enthalpy of CO2 on La2O3/CaO catalyst [49] is about: 

-ΔHads, CO2 = 44 ± 7 kcal.mol− 1 = E-3. 
For the other types of surface reactions, the activation energy can be 

chosen, by analogy with gas phase reactions. The Eley-Rideal reaction of 
an ethane molecule with the surface of the catalyst: C2H6 + s → C2H5. +
H(s) may be represented by the following homogeneous reaction: C2H6 
+ alkyl. → C2H5. + alkane 

We can use, for example, the reaction: C2H6 + CH3. → C2H5. + CH4 
The activation energy of this gas phase reaction [50] is: 5800 cal. 

mol− 1. At a first approximation, this value for the activation energy of 
the surface reaction can be used. The activation energy depends on the 
catalyst surface and these activation energy values can only be consid
ered as a starting point for the simulation. Finally, a hetero- 
homogeneous mechanism composed of many elementary steps and 
their kinetic constants (A and E) was obtained. 

3.3. Sensitivity analysis 

For all the reactions studied, a flow consumption analysis or a 
sensitivity analysis can be realized to better understand the reaction and 
to find optimal conditions. To determine the most sensitive reactions 
involved in the mechanism, a sensitivity analysis was performed for 
each of the three reactions. The analysis was performed for major 
products. Figs. 2 and 3 show sensitivity analysis for surface reactions for 
OCM and POM. The first order sensitivity coefficient for species n and 
reaction i was defined according to: 

Si,n =
ki

dki

dxn

xn
(5) 

where ki is the kinetic constant of reaction i and xn is the molar 
fraction of species n. The higher the Si,n coefficient is, the more sensitive 
against species n the reaction i is. Moreover, a positive sensitivity co
efficient Si,n means that an increase of the kinetic constant ki leads to an 
increase of the concentration of species n. Some reactions have sensi
tivity coefficients lower than |0.01| and can be considered negligible. 
Table 3 shows the final surface mechanism in which only the most 
important elementary reactions are present. This simplified mechanism 

consists of 17 elementary reactions and gives the same result as the 
complete mechanism with an error of less than 1%. 

4. Results and discussion 

For the three reactions of OCM, POM and HOM, the experimental 
curves of reactant consumption and product formation as a function of 
residence time were simulated. The kinetic parameters of the homoge
neous reactions provide from literature [51–59] or are calculated by the 
Kingas [60] software (Table 1). The kinetic parameters of heterogeneous 
reactions are estimated using the methodology described here (Table 2) 
and modified to fit the model to the experimental results (Table 3). This 
unified hetero-homogeneous mechanism is used for the simulation of 
the three reactions. 

4.1. Homogeneous oxidation of methane 

Homogeneous oxidation of methane doesn’t have a real industrial 
interest because of the stability of the methane molecule. However, the 
mechanism of this reaction is essential to represent the reactions of OCM 
and POM. Therefore, we have studied this reaction experimentally over 
a large temperature range (1083 K to 1148 K) in order to determine its 
reaction mechanism. Figs. 4–9 show the molar fraction of CH4, C2H4, 
C2H6, CO, CO2 and H2 versus residence time. The ratio CH4/O2 was fixed 

Fig. 2. Sensitivity analysis of surface reactions for POM at 1123 K.  
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to 2. The simulation very well reproduces the conversion of CH4 and the 
production of the most important products. 

4.2. Partial oxidation of methane 

Among the proposed methods for the production of hydrogen, the 
partial oxidation of methane has many advantages: the reaction is 
exothermic and it may be carried out in autothermal conditions. This 
reaction produces syngas: CH4 + ½ O2 = CO + 2 H2 

The reaction was studied at various temperatures between 973 K and 
1123 K over La2O3 catalyst. Like for HOM, the ratio CH4/O2 was 2. The 
concentration of sites over the surface L was unknown. So we used an 
average value of L = 910-11 mol.cm− 2 as the starting point. L was thus 
considered as an adjustable parameter and the value used after 

adjustment was finally: 
L = 2.810− 11 mol.cm− 2. Figs. 10–15 show the variation of the molar 

fraction of CH4, C2H4, C2H6, CO, CO2 and H2 according to the residence 
time at two temperatures. A good agreement between the experimental 
and theoretical results can be observed. 

Fig. 3. Sensitivity analysis of surface reactions for OCM at 1173 K.  

Table 3 
Simplified surface mechanism of methane oxidation [s symbolizes surface site 
and (s) adsorbed species].   

Réactions Afitted (mol, cm2, s) Efitted (cal.mol− 1) 

1 O2 + s → O2(s) 6.0 107 5000 
2 O2(s) → O2 + s 2,3 1012 38,000 
3 O2(s) + s → 2O(s) 2.3 1023 25,000 
4 2O(s) → O2(s) + s 3.3 1023 33,000 
5 CH4 + O(s) → CH3⋅ + OH(s) 3.0 108 8840 
6 C2H6 + O(s) → C2H5⋅ + OH(s) 8.7 109 3000 
7 CO + O(s) → CO2 + s 8.3 108 0 
10 C2H4 + O(s) → C2H3⋅ + OH(s) 1.1 1010 3000 
13 2OH(s) → O(s) + H2O + s 3.0 1023 2400 
24 CH4 + s → CH3⋅ + H(s) 8.5 107 9850 
25 C2H6 + s → C2H5⋅ + H(s) 9.8 107 5000 
26 C2H4 + s → C2H3⋅ + H(s) 1.9 107 5000 
27 H⋅ + s → H(s) 9.6 1012 0 
28 OH(s) + H(s) → H2O + 2 s 1.0 1024 0 
29 H(s) + H(s) → H2 + 2 s 4.0 1023 0 
30 H2 + 2 s → 2H(s) 6.1 1016 0 
31 H2 + O(s) → OH(s) + H⋅ 2.0 108 0  

Fig. 4. Conversion of CH4 versus residence time. Comparison between exper
iment (symbol) and simulation (line). 

Fig. 5. Molar fraction of C2H6 versus residence time. Comparison between 
experiment (symbol) and simulation (line). 

Fig. 6. Molar fraction of C2H4 versus residence time. Comparison between 
experiment (symbol) and simulation (line). 
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4.3. Oxidative coupling of methane 

The reaction of oxidative coupling of methane has been investigated 
in a large number of laboratories because its development should have 
led to a direct process to obtain more valuable hydrocarbons such as 
ethylene for the chemical industry: 

2CH4 + 1/2O2 = C2H4 + 2H2O 

This reaction was studied between 1023 K and 1173 K over La2O3 
catalyst with a CH4/O2 ratio of 5. Like for POM, the concentration of 
sites over the surface was L = 910− 11 mol.cm− 2 as the starting point and 
the value used after adjustment was L = 510− 11 mol.cm− 2. Figs. 16–20 
shows the molar fraction of CH4, C2H4, C2H6, CO and CO2 according to 
the residence time. Although the kinetic parameters were only slightly 

Fig. 7. Molar fraction of CO2 versus residence time. Comparison between 
experiment (symbol) and simulation (line). 

Fig. 8. Molar fraction of CO versus residence time. Comparison between 
experiment (symbol) and simulation (line). 

Fig. 9. Molar fraction of H2 versus residence time. Comparison between 
experiment (symbol) and simulation (line). 

Fig. 10. Conversion of CH4 versus residence time. Comparison between 
experiment (symbol) and simulation (line). 

Fig. 11. Molar fraction of C2H6 versus residence time. Comparison between 
experiment (symbol) and simulation (line). 

Fig. 12. Molar fraction of C2H4 versus residence time. Comparison between 
experiment (symbol) and simulation (line). 
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modified the agreement between the theoretical curves and the exper
imental points was correct. Therefore the hetero-homogeneous mecha
nism was validated in the experimental conditions. 

4.4. Comparison of the three reactions 

A simplification of the general mechanism can be represented 

according to Fig. 21. The mechanism of oxidation of methane comprises 
two distinct reaction pathways: an oxidative route and a non-oxidative 
route. 

The initiation of the oxidation of methane forms CH3. radicals (re
action 1). In the case of HOM, the activation occurs by reaction between 
CH4 and a gas phase radical while in OCM and POM the initiation takes 

Fig. 13. Molar fraction of CO2 versus residence time. Comparison between 
experiment (symbol) and simulation (line). 

Fig. 14. Molar fraction of CO versus residence time. Comparison between 
experiment (symbol) and simulation (line). 

Fig. 15. Molar fraction of H2 versus residence time. Comparison between 
experiment (symbol) and simulation (line). 

Fig. 16. Conversion of CH4 versus residence time. Comparison between 
experiment (symbol) and simulation (line). 

Fig. 17. Molar fraction of C2H6 versus residence time. Comparison between 
experiment (symbol) and simulation (line). 

Fig. 18. Molar fraction of C2H4 versus residence time. Comparison between 
experiment (symbol) and simulation (line). 
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place mainly on the catalyst by reactions involving surface species. 

CH4 +O(s)→CH3.+OH(s)

CH4 + s→CH3.+H(s)

Heterogeneous initiations represent 80% of the methane activation 
in the case of POM and 100% in the case of OCM. The main effect of the 
catalyst is the generation of free radicals. 

Then, the CH3. radicals can react according to the pyrolytic route 
(reaction 2) to form hydrocarbons or the oxidative route (reaction 3) to 
form oxygenated compounds. The pyrolytic route and therefore the 
formation of hydrocarbons is favored when the concentration of oxygen 
is low, which is the case for OCM. When the conversion is high, an 
oxidative step appears (reaction 4). This step decreases the concentra
tion of C2H4 and may explain why the yield of hydrocarbons in OCM 
does not exceed 22% to 27% for all catalysts tested, like reported by 
numerous authors. 

In POM and HOM, the oxygen concentration favors the oxidative 
pathway. However, lanthanum oxide is an excellent generator of free 
radical. Thus, in POM, the catalyst more easily generates radicals by 
reactions between CH4 and surface species and therefore accelerates the 
reaction. In addition, a new source of H2 formed by heterogeneous re
actions (reaction 5) appears on lanthanum oxide, which increases the 
yield of H2 in POM. 

5. Conclusion 

The study of catalytic oxidations of methane has met with renewed 
interest in the past 10 years due to the discovery of new natural gas fields 
and the rising price of oil. These catalytic reactions are carried out at 
high temperature and thus comport a homogeneous and heterogeneous 
part, which make their mechanism more complex. This reaction mech
anism is essential for the development of industrial processes. We have 
therefore developed a reaction mechanism that allows representing, at 
the same time, three methane oxidation reactions: homogeneous 
oxidation, partial oxidation and oxidative coupling. The homogeneous 
mechanism may be found in the literature or determined from an 
automatic generator of mechanism. The heterogeneous mechanism was 
written following the Eley-Rideal and Langmuir-Hinshelwood formal
isms. The pre-exponential factor was determined by methods derived 
from Benson’s technics whereas the activation energy was chosen, in a 
first time, by analogy with gas phase reactions. Finally, the mechanism 
used for the simulation give good results although the values of the rate 
constants were only slightly modified. Thanks to the sensitivity analysis, 
the heterogeneous mechanism has been simplified and contains only 17 
elementary reactions. 
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